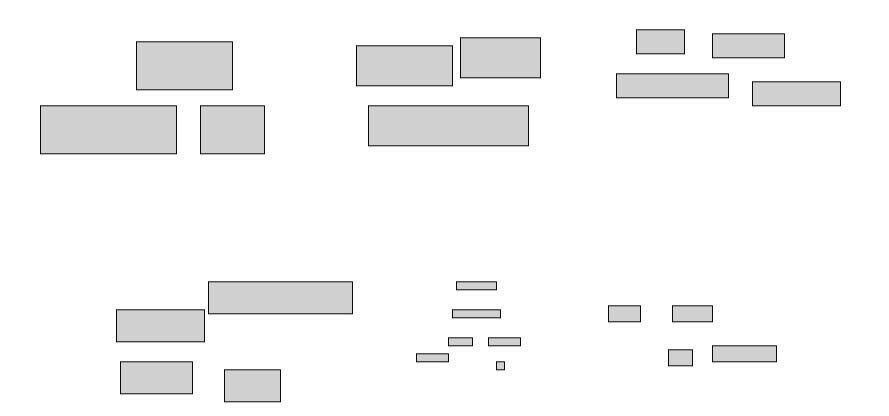
Problem Description

- Given: Set of Rectangles R
 - varying real lengths
 - widths drawn from integers in the range (typically) {1,2,3,4,5,6}
 - length/width ratios real values between 1 and 7
 - width w and penalty factors k_1 and k_2
 - (typically w = 9)

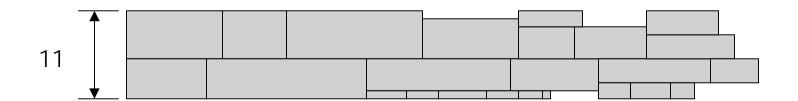
Task

- Arrange rectangles of *R* into a tiling of a rectangle of width at most *w*
 - in practical instances: 20-30 rectangles
 - would prefer arrangement to be convex,
 arrangement must be connected
- only translations of rectangles in R are allowed (no rotations)

Example



Possible Solution for w = 11



Optimization

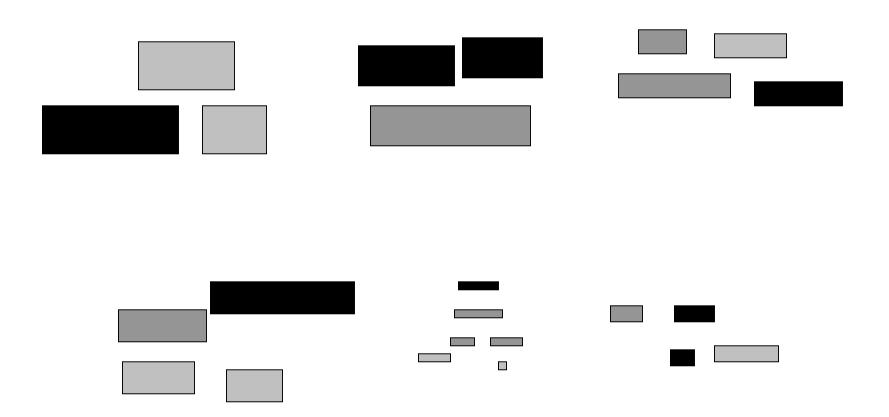
- Linear combination of several criteria:
 - Minimize total length of arrangement
 - Minimize sum of adjacency costs
 - applies only to *lateral* adjacencies
 - Minimize sum of nonconvexity costs
 - applies only to *long* sides of rectangles

adjacency $cost = k_1 * (length of common segment) * (difference in width) nonconvexity <math>cost = k_2 * (length of unshared segment) * (width of rectangle)$

A More General Case

- R is partitioned into subsets such that, when arranged, rectangles within subsets must form a connected (not necessarily convex) region.
 - In practical instances, total of ~2000 rectangles total, subsets range in size from 4 to 40.

Example



A Possible Arrangement with Subset Connectedness Constraint

Approaches

- Certainly NP-hard
 - With $k_1=k_2=0$, and all rectangles having same width (= w/m), equivalent to multiprocessor scheduling
 - With $k_1=k_2=0$, w=2, and all rectangles having same width (=1), equivalent to *PARTITION*
 - combination of constraints
- Approximation algorithm needed
 - need reasonable heuristic.
 - how can we prove a bound such a heuristic?