
UNIVERSITY OF CALIFORNIA,
IRVINE

Architecture-Based
Specification-Time Software Evolution

DISSERTATION

submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Information and Computer Science

by

Nenad Medvidovic

Dissertation Committee:
Professor Richard N. Taylor, Chair

Professor David Rosenblum
Professor David Redmiles

1999

2

ABSTRACT OF THE DISSERTATION

Architecture-Based
Specification-Time Software Evolution

by

Nenad Medvidovic

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 1999

Professor Richard N. Taylor, Chair

Software architectures shift the focus of developers from lines-of-code to coarser-grained
architectural elements and their overall interconnection structure. Architectures have the potential
to substantially improve the development and evolution of large, complex, multi-lingual, multi-
platform, long-running systems. In order to achieve this potential, specific architecture-based
modeling, analysis, and evolution techniques must be provided. To date, software architecture
research has produced an abundance of techniques for architecture modeling and analysis, while
largely neglecting architecture-based evolution.

This dissertation motivates, presents, and validates a methodology for software evolution at
architecture specification-time. The methodology consists of a collection of techniques that,
individually and in concert, support flexible, systematic evolution of software architectures in a
manner that preserves the desired architectural relationships and properties. The methodology is
comprehensive in its scope: it addresses the evolution of individual architectural building
blocks—components and connectors—as well as entire architectures; it also supports the transfer
of (evolved) architecture-level decisions into implemented systems. The unique aspects of the
methodology are:component evolution via heterogeneous subtyping, well suited to a wide range
of design and reuse circumstances;connector evolution, facilitated by evolvable interfaces and
heterogeneous communication protocols;architecture evolution, facilitated by minimal
component interdependencies and heterogeneous, flexible connectors;analysis of architectures
for consistency, where the architect possesses the authority to override the analysis tool; off-the-
shelf component and connectorreuse, necessary for economic viability in large-scale software
development; andimplementation generation, aided by a well-bounded implementation space and
accomplished via a component-based, evolvable environment.

The dissertation is validated empirically, by constructing a series of demonstration
applications, and analytically, by evaluating the manner and degree to which the applications
validate the claims of the dissertation. The dissertation is concluded by examining its impact on
the tension between flexibility and formality, which characterizes current software architecture
research.

1

CHAPTER 1: Introduction

Software has become an integral part of life, so ubiquitous that its presence often goes
unnoticed. It is critical to supporting and enabling from the most basic of everyday activities to
the unprecedented achievements in science, industry, and military technology. The increasing
need for and importance of software is also reflected in the explosive growth of the software
industry. As our dependence on software and understanding of its potential grow, so do the
demands on software engineers to build larger, more complex systems, constructed from
heterogeneous parts, which must execute on multiple computing platforms and provide
uninterrupted service.

The ability to satisfy such demands depends on a large number of factors, the study of which
forms the underpinnings of software engineering research. One such factor is the ability to evolve
existing systems in response to changing requirements. The costs of system maintenance (i.e.,
evolution) are commonly estimated to be as high as 60% of the overall development costs [28].
Practitioners have traditionally faced many problems with curbing these costs. The problems are
often the result of poor understanding of a system’s overall architecture, unintended and complex
dependencies among its components, decisions that are made too early in the development
process, and so forth. These problems are only exacerbated in the case of large, complex, multi-
lingual, multi-platform, long-running systems.

Support for software evolution in-the-large includes techniques and tools that aid interchange,
reconfiguration, extension, and scaling of software modules and/or systems. Evolution in the
current economic context also requires reuse of third-party components. Traditional development
approaches do not provide the necessary support. In particular, approaches such as structural
programming or object-oriented analysis and design fail to properly decouple computation from
communication within a system, thus supporting only limited reconfigurability and reuse.
Conventional evolution techniques have also typically been programming language specific (e.g.,
inheritance) and applicable on the small scale (e.g., separation of concerns or isolation of change).
This is only partially adequate in the case of development with preexisting, large, heterogeneous
components that originate from multiple sources.

The research hypothesis of this dissertation is thatsoftware architecture is the appropriate
abstraction for supporting evolution in-the-large. Software architecture research is directed at
reducing the costs of developing applications and increasing the potential for commonality among
different members of a closely related product family [70], [83]. Software development based on
common architectural idioms has its focus shifted from lines-of-code to coarser-grained
architectural elements (components andconnectors) and their overall interconnection structure
(configurations). Additionally, architectures separate computation in a system (performed by
components) from interaction among the system’s computational units (facilitated by connectors).
This enables developers to abstract away the unnecessary details and focus on the “big picture:”
system structure, high level communication protocols, assignment of software components and
connectors to hardware components, development process, and so forth. The basic promise of
software architecture research is that better software systems can result from modeling their
important aspects throughout, and especially early in the development. Choosing which aspects of
a system to model and how to evaluate them are two decisions that frame software architecture
research [49].

2

CHAPTER 1

Evolution is an aspect of a software system that should be planned for throughout
development [28]. Doing so at the level of software architecture, an early model of a solution to
the customer’s requirements, thus becomes critical. However, current research has predominantly
focused on other areas, e.g., formal specification and analysis of architectures. While some
researchers are investigating the issues in architecture-based, run-time system reconfigurability
[43], [61], no current approaches address the problem of specification-time evolution, no specific
techniques are provided to support the reuse of existing components and connectors during
evolution, and no effective methods or tools exist to enable the mapping of (evolved) architectures
to their implementations in a property-preserving manner.

The goal of our work is to develop just such a principled, architecture-based method for
supporting reuse-driven development of flexible, extensible, and evolvable software. One
observation that guides this research is that architectures can evolve at the level of any of their
top-level constructs: components, connectors, or configurations. This dissertation presents a
comprehensive methodology for specification-time, architecture-based evolution that addresses
all three levels:
• evolution of components via heterogeneous subtyping,
• evolution of connectors via context-reflective interfaces and heterogeneous information

filtering mechanisms, and
• evolution of architectural configurations via heterogeneous, flexible connectors and minimal

component interdependencies.
Furthermore, the methodology supports transferring of architectural decisions to implementations
and reuse of existing components and connectors.

The different facets of our methodology have been incorporated into a specificarchitectural
style, C2, in order to bound the scope of the dissertation to a well defined investigation,
demonstration, and evaluation platform. Architectural styles are key design idioms that reflect and
leverage underlying characteristics of an application domain and recurring patterns of application
design within the domain. We have used the C2 style to model graphical user interface (GUI)
intensive applications and software development tool suites. Some of C2’s properties, e.g.,
implicit invocation, have been adopted from previous research and their benefits are well
understood. Others, e.g., substrate independence, are unique to C2, but show potential for general
applicability. This dissertation exploits both categories of properties specifically for the purpose
of supporting evolution. We also introduce heterogeneous subtyping, a novel technique that,
though applied in the context of C2, is style-independent. Using all these techniques in concert is
unique to this dissertation.

The specific contributions of the dissertation are as follows.

Component Evolution.We define ataxonomy that divides the space of potentially complex
subtyping relationships into a small set of well defined, manageable subspaces. This taxonomy is
used as the basis of a flexibletype theory for software architectures. By adopting a richer notion of
typing, this theory is applicable to a broad class of design, evolution, and reuse circumstances
across application domains, architectural styles, and architecture description languages (ADLs).
Additionally, the type theory enables architecture-levelanalysis by establishing type conformance
between interoperating components. The rules of type conformance are defined in a manner that
is better suited than other existing techniques to support the “large scale development with off-

3

CHAPTER 1

the-shelf reuse” philosophy on which architecture research is largely based. We have also
designed asimple ADL that embodies the principles of the type theory.

Connector Evolution.Unlike the evolution of components, which is supported with a specific
technique, the connectors employed in our approach areinherently evolvable. The interface
exported by a connector iscontext-reflective, i.e., it evolves to support any components that
interact through the connector. This adds a degree of freedom in composing components and
enables architecture reconfiguration and extension. A connector also evolves by altering its
communicationfiltering policy to support data broadcast, point-to-point exchange, or no
interaction among components. Different filtering policies may impact an application’s
performance and may also aid in testing and debugging the application.

Configuration Evolution. Configuration evolution is supported in this dissertation by employing
flexible connectors, discussed above,minimizing component interdependencies, and providing
heterogeneous connector implementations. Flexible connectors are key to supporting architectural
reconfiguration:addition, removal, replacement, andreconnection of architectural elements. We
minimize component interdependencies by combining two well-understood techniques,implicit
invocation andasynchronous communication, with a novel one,substrate independence. Also
unique to this dissertation is the ability to evolve only the interaction aspects of an architecture,
keeping the functionality unchanged, by interchanging implementations of a connector that
support differenttypes of interaction anddegrees of concurrency.

Implementation Support. We support the implementation of architectures with a simple,
extensibleimplementation infrastructure, a set of techniques to enablereuse of off-the-shelf
(OTS) components and connectors, and anenvironment for architecture-based development. In
tandem, they preserve desired architectural properties in the implementation, reduce development
time, and improve the reliability of the resulting software. The environment contains several
unique features. It supportsspecification, analysis, andevolution of architectures described in our
ADL. It also provides tool support forpartial generation of an application from its architecture,
which, in turn, facilitates reuse of OTS components. The environment itself iscomponent-based;
its architecture was designed to be easilyevolvable to support multiple ADLs, types of analysis,
architectural styles, and implementation platforms. Our approach is fullyreflexive: the
environment can be used to describe, analyze, evolve, and (partially) implement itself, using the
very ADL it supports. Also implemented into the environment is the notion ofarchitect’s
discretionto override the results of architectural analysis in the case of errors (s)he believes not to
be critical.

The claims of this dissertation have been explored and its contributions demonstrated in a
series of example applications.

The remainder of the dissertation is organized as follows. Chapter 2 presents the C2
architectural style, our research, demonstration, and validation platform. It purpose is also to
introduce certain concepts and issues relevant in the discussion of related work in Chapter 3. The
two subsequent chapters present our methodology: Chapter 4 presents techniques for supporting
the evolution of components, connectors, and architectural configurations, while Chapter 5
discusses our support for mapping architecture-level decisions, including evolution, to their
implementation(s). Chapter 6 demonstrates the application of our methodology to several
extensive examples and shows how the work described in the dissertation validates the above
contributions. Chapter 7 discusses future work and is followed by conclusions in Chapter 8.

4

CHAPTER 2: The C2 Architectural Style

In order to explore and validate our ideas and apply them in practice, we chose a specific
architectural style, C2, as our research and demonstration platform [89]. Our intent in this case is
reflective of UC Irvine software architecture group’s research philosophy:generalize from specific
experience [88]. The C2 architectural style was originally designed to support the particular needs
of applications that have a significant GUI aspect. However, the style clearly has the potential for
supporting other types of applications and we have since used it to achieve software tool
interoperability. C2 draws its key ideas from many sources, including other architectural styles,
such as client-server, pipe-and-filter, and blackboard, as well as from experience with the Chiron-
1 user interface development system [90].

A key motivating factor behind development of the C2 style is the emerging need, in the user
interface community, for a more component-based development economy [95]. User interface
software frequently accounts for a very large fraction of application software, yet reuse in the UI
domain is typically limited to toolkit (widget) code. The C2 style supports a paradigm in which
UI components, such as dialogs, structured graphics models of various levels of abstraction, and
constraint managers, can more readily be reused. A variety of other goals are potentially
supported as well. These goals include the ability to compose systems in which: components may
be written in different programming languages, components may be running concurrently in a
distributed, heterogeneous environment without shared address spaces, architectures may be
changed at runtime, multiple users may be interacting with the system, multiple toolkits may be
employed, multiple dialogs may be active and described in different formalisms, and multiple
media types may be involved.

The C2 architectural style can be informally summarized as a network of concurrent
components hooked together by message routing devices. Central to the style is a principle of
limited visibility, or substrate independence: a component within the hierarchy can only be aware
of components “above” it and is completely unaware of components which reside “beneath” it.
Notions of above and below are used here to support an intuitive understanding of the style. As is
typical with virtual machine diagrams found in operating systems textbooks, in this discussion the
application code is arbitrarily regarded as being at the top while user interface toolkits,
windowing systems, and physical devices are at the bottom. The human user is thus at the very
bottom, interacting with the physical devices of keyboard, mouse, microphone, and so forth.

All components have their own thread(s) of control and there is no assumption of a shared
address space. At minimum, this means that components may not assume that they can directly
invoke other components’ operations or have direct access to other components’ data. It is
important to recognize that a conceptual architecture is distinct from its implementation, as there
are many ways of realizing a given conceptual architecture. This topic will be further discussed
below.

A simple example, adopted from [89], serves to illustrate several of these points. In Figure 2-
1, we diagram a system in which a program alternately pushes and pops items from a stack; the
system also displays the stack graphically, using the visual metaphor of a stack of plates in a
cafeteria. The human user can “directly” manipulate the stack by dragging elements to and from
it, using a mouse. As the user drags elements around on the display, a scraping sound is played.

5

CHAPTER 2

Whenever the stack is pushed, a sound appropriate for a spring being compressed is played;
whenever the stack is popped, the sound of a plate breaking is played.

Visual depiction of the stack is performed by the “artist” that receives notification of
operations on the stack and creates an internal abstract graphics model of the depiction. The
rendering agent monitors manipulation of this model and ultimately creates the pictures on the
workstation screen. To produce the audio effects, the sound server at the bottom of the
architecture monitors the notifications sent from the artist and the graphics server; depending on
the events detected, the various sounds are played. Performance is such that playing of the sound
is very closely associated with mouse movement; there is no perceptible lag. The artist and
rendering agent are completely unaware of the activities of the sound server; similarly, the stack
manipulator is completely unaware that its stack object is being visualized.

Key elements of the C2 style arecomponents andconnectors. A configuration of a system of
components and connectors is anarchitecture. There is also a set of principles governing how the
components and connectors may be legally composed, discussed below. Components and
connectors both have a defined top and bottom. The top of a component may be connected to the
bottom of a single connector. The bottom of a component may be connected to the top of a single
connector. There is no bound on the number of components or connectors that may be attached to
a single connector. Components can only communicate via connectors; direct communication is
disallowed. When two connectors are attached to each other, it must be from the bottom of one to
the top of the other. Both components and connectors have semantically rich interfaces.
Components communicate by passingmessages; notifications travel down an architecture and
requests up. Connectors are responsible for the routing and potential multi-cast of the messages.

The remainder of this chapter further elaborates on the properties of C2.

Sound
Server

Stack
Manipulator

Stack
ADT

Stack
Artist

Rendering Agent
and X Server

I/O Devices I/O Devices

Legend:
Component

Connector
Communication
Link
Physical Device
Interaction

Figure 2-1. An audio-visual stack manipulation system.

6

CHAPTER 2

2.1 C2 Components

Components may have state, their own thread(s) of control, and must have a top and bottom
domain. The top domain specifies the set of notifications to which the component responds, and
the set of requests that the component emits up an architecture. The bottom domain specifies the
set of notifications that the component emits down an architecture and the set of requests to which
it responds. The elements of a bottom domain’s sets are closely related, as will be discussed later.
The two sets comprising the top domain do not necessarily have any relation.

For purposes of exposition below, a specific internal architecture of a component, targeted at
the GUI domain, is assumed.1 Components contain an object with a defined interface, a wrapper
around the object, a dialog and constraint manager, and a domain translator, as shown in Figure 2-
2.2 The object can be arbitrarily complex. For example, one component’s object might be a
complete structured graphics model of the contents of a window. The object’s wrapper provides
the following service: whenever one of the access routines of the object’s interface is invoked, the
wrapper reifies that invocation and any return values as a notification in the component’s bottom
domain and sends the notification to the connector below the component.3 Thus the types of
notifications emitted from a component are determined by the interface to its internal object.

The access routines of the object may only be invoked by the dialog portion of a component.
This code, which may have its own thread of control, may act upon the object for any reason, but
the intended style includes three situations:
• in reaction to a notification that it receives from the connector above it. The dialog receives a

notification in its top domain and determines what, if anything, to do as a result of receiving the
notification.

• to execute a request received from the connector below it. The component receives a request in
its bottom domain and determines what, if anything, to do with the request. For instance, it

1. Issues concerning composition of an architecture are independent of a component’s internal structure, so this
assumption is not at all restrictive.

2. With the exception of a specific example discussed in Chapter 6, the “dialog and constraints” portion of a
component will be referred to simply as “dialog” in the remainder of this dissertation.

3. Components can alternatively be formulated such that the wrapper sends to the connector the state, or part of
the state, of the internal object.

Internal

Object

Wrapper

Dialog
&

Constraints

Domain
Translator

Figure 2-2. The Internal Architecture of a C2 Component.

7

CHAPTER 2

could choose to delay processing of the request, ignore it, perform it without any additional
processing, or perhaps perform some other action.

• to maintain some constraint, as defined in the dialog. This case is best understood by
considering its user interface purpose: constraint managers are commonly employed in GUI
applications to resize fields, planarize graphs, or otherwise keep parts of objects in some
defined juxtaposition. The constraint portion of a component can play this role either as part of
the previous two cases, or the constraint manager may autonomously manipulate the
component’s object.

The dialog portion of a component may, in addition, choose to send a request to the connector
above it. A domain translator subcomponent may also be present, to assist in mapping between
the component’s internal semantic domain and that of the connector above it.

2.2 Notifications and Requests

Components in an architecture communicate asynchronously via messages. Messages consist
of a name and an associated set of typed parameters. There are two types of messages:
notifications and requests. A notification is sent downward through a C2 architecture while a
request is sent up. Notifications are announcements of state changes of the internal object of a
component. As noted above, the types of notifications that a component can emit are fully
determined by the interface to the component’s internal object.

Requests, on the other hand, are directives from components below, generated by their
dialogs, requesting that an action be performed by some set of components above. The requests
that a component can receive are determined by the interface to the component’s internal object,
similar to the way that notifications are determined. The difference is that a notification is a
statement of what interface routine was invoked and what its parameters and return values were,
whereas a request is a statement of a desired invocation of one of the object’s access functions.

2.2.1 Domain Translation

Since a component has no knowledge of the interfaces of components below it and does not
directly issue requests to those components, a component is independent of its substrate layers.
This substrate independence has a clear potential for fostering substitutability and reusability of
components across architectures. One issue that must be addressed, however, is the potential
dependence of a given component on its “superstrate,” i.e., the components above it. If each
component is built so that its top domain closely corresponds to the bottom domains of those
components with which it is specifically intended to interact in a given architecture, its reusability
value is greatly diminished. For that reason, the C2 style introduces the notion of domain
translation. Domain translation is a transformation of the requests issued by a component into the
specific form understood by the recipient of the request, as well as the transformation of
notifications received by a component into a form it understands. This transformation process is
encapsulated in the domain translator part of a component, as shown in Figure 2-2.

Domain translation of a single request or notification consists of at least two steps, described
below. While this discussion applies to both requests and notifications, for simplicity, examples
will mainly discuss requests.
• Message name matching — a mismatch may occur because a message name is different than

expected. For example, a component may issue a “stack_pop” request to a component which

8

CHAPTER 2

has a “pop_stack” entry point. In this case, domain translation involves a simple name
replacement.

• Parameter matching — a mismatch may occur in the number, ordering, type, and units of
parameters. As an example of parameter matching difficulties, suppose component A issues a
“make_alarm” request giving a time delay in seconds before component B issues an “alarm”
notification. A parameter mismatch occurs if component B only understands compound time
values of seconds and milliseconds, or only understands time values if they are given in
milliseconds.

Other factors may potentially affect domain translation. For example, if a component issues a
notification containing a complete state, and the receiving component expects a state change
instead, the domain translator might have to store the state and extract the expected state delta.
Factors external to a component’s interface, such as time performance or memory usage, might
also affect domain translation.

Simple domain translations, such as name replacement and parameter order swapping could
be specified by the system architect using the facilities of the development environment. Simple
translations will frequently be automatable, particularly in cases where there exists an
approximate one-to-one correspondence between the messages received by a component and
those it actually understands. More commonly, however, this task will at least partly be guided by
the software architect. A human agent is needed to provide semantic interpretation for both the
component’s top domain and the interface presented by the connector above it. More difficult
domain translations such as the generation of missing parameters and unit conversions may
require manual generation of domain translators using either a scripting language or a
programming language.

Domain translation unavoidably adds overhead to the message passing process. This is likely
to be less than the cost of passing the message itself, especially across thread or process
boundaries, and is not a major source of inefficiency, however. Domain translation can be viewed
as a tradeoff between slightly diminished message passing efficiency and the ability to reuse
components “as-is.”

The need for domain translation can be considerably reduced by the adoption of standard
interfaces for similar components. Exemplifying this approach are domain-specific software
architectures (DSSAs) [91], where similar components are characterized by similar interfaces,
certain component configurations are common, and usual patterns of component usage are known
to both the architect and the design environment.

Note that many potential C2 components, such as commercial user interface toolkits, have
interface conventions that do not match up with C2’s notifications and requests. Typically these
systems will generate events of the form “this window has been selected” or “the user has typed
the ‘x’ key” and send themup an architecture. These toolkit events will need to be converted by
C2 bindings to the toolkits into C2 request messages. Conversely, notifications from a C2
architecture will have to be converted to the type of invocations that a toolkit expects. In order for
these translations to occur and be meaningful, careful thought has to go into the design of the
internal objects of the bindings to the toolkits such that they contain the required functionality and
are reusable across architectures and applications. This is not an unreasonable task: we have
already accomplished this for both Motif and OpenLook in Chiron-1 [90], as well as for Xlib [77]
and Java’s AWT [14] in C2, as discussed in Chapter 5.

9

CHAPTER 2

2.3 Connectors

Connectors bind components together into a C2 architecture. They may be connected to any
number of components as well as other connectors. A connector’s primary responsibility is the
routing and broadcast of messages. A secondary responsibility of connectors is message filtering.
Connectors may provide a number of filtering and broadcast policies for messages, such as the
following:
• no filtering: Each message is sent to all connected components on the relevant side of the

connector (bottom for notifications, top for requests).
• notification filtering: Each notification is sent to only those components that have registered for

it.
• message filtering: Each message is sent only to those components that can understand and

respond to it. This filtering mechanism enables “point-to-point” communication in a C2
architecture.

• prioritized: The connector defines a priority ranking over its connected components, based on
a set of evaluation criteria specified by the software designer during the construction of the
architecture. This connector then sends a notification to each component in order of priority
until a termination condition has been met.

• message sink: The connector ignores each message sent to it. This is useful for isolating
subsystems of an architecture as well as incrementally adding components to an existing
architecture. A developer can connect a new component to the architecture and then “turn on”
its connector, by changing its filtering policy, when the component is ready to be tested or
used.

2.4 Architecture Composition and Properties

An architecture consists of a specific configuration of components and connectors. The
meaningfulness of an architecture is a function of the connections made. This section formalizes
several key relationships. In addition to aiding precise exposition, the formalizations are the basis
for automated analyses of candidate architectures, e.g., by a development environment, such as
the one discussed in Chapter 5.

Let bottom_in be the set of requests received at the bottom side of a component or connector.
Let bottom_out be the set of notifications that a component or connector emits from its bottom
side. Furthermore, lettop_in be the set of notifications received on the top side of a component or
connector, and lettop_out be the set of requests sent from its top side.

Figure 2-3 represents the external view of a component Ci. Ci.top_out andCi.top_in are
defined by the component’s dialog: they are the requests it will be submitting and notifications it
will be handling.Ci.bottom_out are the notifications the component will be making, reflecting
changes to its internal object.Ci.bottom_in are the requests the component accepts. Those
requests can be defined as a function,N_to_R, of the notifications:

This function is a bijection; it has an inverse function,R_to_N, that will uniquely map the requests
to notifications.

Ci .bottom_in N_to_R Ci .bottom_out()=

10

CHAPTER 2

Pairwise relationships can be specified between the domains of a connector and any
component attached to it. These relationships are expressed in terms of the potential for
communication between them. Connector Bi and the j-th component attached to its top, Ctj, are
consideredfully communicating if every request the connector sends up to the component through
the connector’s j-th port (top_outj) is “understood.”

In any given architecture, there is no guarantee that all of a component’s services will be
utilized by components above and below it or that the component will understand all the requests
sent to it. Since components communicate via connectors, it is possible to specify pairwise
relationships between the domains of any connector and each component attached to it. We can
express the ability of a component to understand and respond to messages it receives and the
utilization of a component’s services in terms of that relationship.

Bi and Ctj arepartially communicating if the component understands some, but not all of the
requests the connector sends:

A component and a connector arenot communicating as follows:

The relationship between a connector Bi and a component Cbk below it can be defined in a
similar manner, by substituting‘bottom_out’ for ‘top_out’ and ‘top_in’ for ‘ bottom_in’ in the
above equations.

The degree of utilization of a component’s services, i.e., the relationship between a
component and a connector from the perspective of the messages the componentreceives from
the connector can be defined through a simple substitution of terms in the three equations above.
For instance, ifBi.top_out is a non-empty proper subset ofCtj.bottom_in, then Ctj is being
partially utilized.

Ci

Ci.top_out Ci.top_in

Ci.bottom_outCi.bottom_in

Figure 2-3. C2 Component Domains.

Full-Comm Bi C
tj

,() Bi .top_outj C
tj

.bottom_in⊆≡

Partial-Comm Bi C
tj

,() ≡
Bi .top_outj C

tj
.bottom_in∩ ∅≠() ∧

Bi .top_outj C
tj

.bottom_in∩ Bi .top_outj⊂()

No-Comm Bi C
tj

,() Bi .top_outj C
tj

.bottom_in∩ ∅=()≡

11

CHAPTER 2

Clearly, the ideal scenario in an architecture would be one where (1) components are fully
communicating with the connectors to which they are attached and (2) components’ services are
fully utilized. However, such a constraint would limit the reusability of components across
architectures. Therefore, in general, there is no guarantee that a component, Cbk, will receive
notifications in reply to a request that it issues. In addition to the potential inability of the intended
recipient, Ctj, to understand the request, this can happen for several other reasons:
• both the request and the resulting notification(s) may be lost across the network and/or delayed

due to network failure;
• the nature of the request may be such that Ctj is able to respond to it only after receiving other

requests. If those requests are not issued, Cbk will not get a response;
• Ctj may itself need to issue requests to components above it in order to be able to respond to the

current request. If it does not receive the required information for any of the above reasons, it
will not be able to issue notifications in response to the original request.

The asynchronous nature of components will allow Cbk to still perform its function
meaningfully in the above cases. Cbk may choose to block on other messages for a certain amount
of time and/or preserve the part of its context relevant to properly handling the expected
notifications. After the specified time, the component may unblock, assuming either that the
request was lost or that the intended recipient is unable to respond to the request. The appropriate
action in such a case will depend on the component and the situation.

Finally, by utilizing the functions and relationships specified above, it is possible to express a
number of other relationships in a given configuration (e.g., Bi.bottom_out can be expressed as a
function ofCtj.bottom_in). All such relationships can be deduced from the complete formal
definition of the C2 style, given in Appendix A. We use this definition as a basis for our ADL,
which enables modeling, analysis, evolution, and implementation of C2-style architectures.

2.5 Example Architecture in the C2 Style

To further illustrate the concepts and properties behind the C2 style, we present an extended
example architecture. We revisit this architecture throughout this dissertation to illustrate and
clarify our discussion. The example architecture is a version of the video game KLAX.4 A
description of the game is given in Figure 2-4. This particular application was chosen as a useful
test of the C2 style concepts in that the game is based on common computer science data
structures and the game layout maps naturally to modular artists. Also, the game play imposes
some real-time constraints on the application, bringing performance issues to the forefront.

The architecture of the application is given in Figure 2-5. The components that make up the
KLAX game can be divided into three logical groups. At the top of the architecture are the
components which encapsulate the game’s state. These data structure components are placed at
the top since game state is vital for the functioning of the other two groups of components. These
ADT components receive no notifications, but respond to requests and emit notifications of
internal state changes. ADT notifications are directed to the next level where they are received by
both the game logic components and the artists components.

4. KLAX is trademarked 1991 by Atari Games.

12

CHAPTER 2

The game logic components request changes of ADT state in accordance with game rules and
interpret ADT state change notifications to determine the state of the game in progress. For
example, if a tile is dropped from the well, theRelativePositionLogicdetermines if the palette is in
a position to catch the tile. If so, a request is sent to thePaletteADT component to catch the tile.
Otherwise, a notification is sent that a tile has been dropped. This notification is detected by the
StatusLogic, causing the number of lives to be decremented.

The artist components also receive notifications of ADT state changes, causing them to update
their depictions. Each artist maintains the state of a set of abstract graphical objects which, when
modified, send state change notifications in hope that a lower-level graphics component will
render them. TheTileArtist provides a flexible presentation level for tiles. Artists maintain
information about the placement of abstract tile objects. TheTileArtist intercepts any notifications
about tile objects and recasts them to notifications about more concrete drawable objects. For
example, a “tile-created” notification might be translated into a “rectangle-created” notification.
TheLayoutManager component receives all notifications from the artists and offsets any
coordinates to ensure that the game elements are drawn in the correct juxtaposition.

TheGraphicsBindingcomponent receives all notifications about the state of the artists’
graphical objects and translates them into calls to a window system. User events, such as a key
press, are translated into requests to the artist components. A keystroke typically results in 10 to
30 message sends throughout the KLAX architecture; a tick of the clock typically causes 3 to 20
message sends.

The KLAX architecture is intended to support a family of “falling-tile” games. The
components were designed as reusable building blocks to support different game variations. One
such variation of the original architecture, shown in Figure 2-6, involved replacing the original tile
matching, tile placing, and tile artist components with components which instead matched,

KLAX Chute
Tiles of random colors

KLAX Palette
Palette catches tiles coming
down the Chute and drops
them into the Well.

KLAX Well
Horizontal, vertical, and

drop at random times

diagonal sets of three or
more consecutive tiles of
the same color are removed
and any tiles above them
collapse down to fill in the
newly-created empty spaces.

and locations.

KLAX Status

Figure 2-4. A snapshot and description of our implementation of the KLAXTM video game.

13

CHAPTER 2

placed, and displayed letters. This transformed the objective from matching the colors of tiles to
spelling words. Each time a word is spelled correctly, it is removed from the well. No
modifications to the rest of the architecture were needed to implement this variation.

2.6 Summary

The C2 architectural style is characterized by several principles, the collection of which
distinguish it from other styles. Subsets of these principles, of course, characterize a variety of
other systems.
• Substrate independence— a component is not aware of the components below it. In particular,

the notification of a change in a component’s internal object is entirely transparent to its dialog.
Instead, the wrapper does this automatically when the dialog accesses the internal object.
However, even the wrapper only generates a notification, not knowing whether any component
will receive it and respond. Substrate independence fosters substitutability and reusability of
components across architectures.

• Message-based communication — all communication between components is solely achieved
by exchanging messages. This requirement is suggested by the asynchronous nature of
applications that have a GUI aspect, where both users and the application perform actions
concurrently and at arbitrary times and where various components in the architecture must be
notified of those actions. Message-based communication is extensively used in distributed
environments for which this architectural style is suited.

Clock
Logic

Status
Logic

Tile
Artist

Graphics
Binding

Palette
Artist

Chute
ADT

Well
ADT

Palette
ADT

Relative Pos
Logic

Status
Artist

Well
Artist

Chute
Artist

Layout
Manager

Tile Match
Logic

Next Tile
Placing Logic

Status
ADT

Figure 2-5. Conceptual C2 architecture for KLAX.
Note that the Logic and Artist layers do not communicate directly and are in fact “siblings.” The Artist layer is
shown below the Logic layer since the components in the Artist layer perform functions conceptually closer to the
user.

14

CHAPTER 2

• Multi-threaded — this property is also suggested by the asynchronous nature of tasks in the
GUI domain. It simplifies modeling and programming of multi-user and concurrent
applications and enables exploitation of distributed platforms.

• No assumption of shared address space — any premise of a shared address space would be
unreasonable in an architectural style that allows composition of heterogeneous components,
developed in different languages, with their own threads of control, internal objects, and
domains of discourse.

• Implementation separate from architecture — many potential performance issues can be
remedied by separating the conceptual architecture from actual implementation techniques.
For example, while the C2 style disallows any assumptions of shared threads of control and
address spaces in a conceptual architecture, substantial performance gains may be made in a
particular implementation of that architecture by placing multiple components in a single
process and a single address space where appropriate. Furthermore, modelling the exchange of
messages among components by procedure calls where appropriate could yield performance
gains.

Although this dissertation exploits the above principles to support software evolution, their
potential benefits are not restricted to evolution. Any (subset) of these principles can be employed
to achieve other properties, such as distribution, safety (e.g., via redundant components), or
scalability.

Clock
Logic

Status
Logic

Letter
Artist

Graphics
Binding

Palette
Artist

Chute
ADT

Well
ADT

Palette
ADT

Relative Pos
Logic

Status
Artist

Well
Artist

Chute
Artist

Layout
Manager

Spelling
Logic

Next Letter
Placing Logic

Status
ADT

Figure 2-6. “Spelling” KLAX.
By replacing three components (highlighted in the diagram) from the original architecture, the game turns into one
whose object is to spell words horizontally, vertically, or diagonally.

15

CHAPTER 3: Related Work

The research of this dissertation has been influenced by work in several areas: layered
systems, implicit invocation systems, distributed systems, component interoperability models,
object-oriented (OO) typing, behavioral specification of software, software environments,
software reuse, and software architectures, architectural styles, and ADLs. Given the
dissertation’s focus on architectural models as critical, early points for software development and
evolution, it is most naturally related and comparable to the research in software architectures and
ADLs as the usual anchors of that research. However, much of the research that has influenced us
is outside the software architecture arena. We thus first outline the relationship between our work
and non-architectural approaches. We then provide a detailed overview of the work in software
architectures.

3.1 Layered Systems

In contrast to existing systems, such as Field [73] and SoftBench [13], X Windows [77],
Chiron-1 [90], Arch [71], and Slinky [92], which support only a fixed number of layers in an
architecture, the C2 architectural style allows layering to vary naturally with the application
domain. In this, the C2 style is similar to GenVoca [6], whose components may be composed in a
number of layers that naturally reflects the characteristics of a particular domain. Unlike
GenVoca, which uses explicit invocation, C2 provides a layering mechanism based on implicit
invocation [26]. This allows the C2 style to provide greater flexibility in achieving substrate
independence in an environment of dynamic, multi-lingual components: component
recompilation and relinking can be avoided and on-the-fly component replacement enabled [61].

C2’s explicit treatment of connectors directly distinguishes our work from more traditional
layered systems, such as network systems (e.g., Avoca [6]) and operating systems. Connectors
provide a level of indirection that reduces dependencies among computational elements
(components). Coupled with implicit invocation and domain translation, this indirection gives
developers more flexibility in building systems out of (existing) components whose interfaces do
not match perfectly, and enhancing such systems incrementally as additional (needed)
functionality becomes available. For example, a C2 connector can decide to route some of the
requests that were initially handled (and possibly ignored) by component X to the new component
Y, which can process them faster and/or provide higher-precision results. From the standpoint of
components which are below them in a C2 architecture, X and Y comprise a single component, as
illustrated in Figure 3-1.

3.2 Implicit Invocation

In C2, implicit invocation occurs when a component invokes its internal object in reaction to a
notification. The invocation is implicit because a component issuing notifications does not know if
those notifications will cause any reaction, nor does it explicitly name an entry point into a
component below it. The benefits of implicit invocation are described in the context of mediators
by Sullivan and Notkin [85], [86]. While many systems, such as Chiron-1 and VisualWorks [66]1,
employ implicit invocation for its benefits in minimizing module interdependencies, the C2 style

1. VisualWorks is a Smalltalk GUI library based on the Model-View-Controller paradigm [37], where the
model broadcasts change of state notifications to views and controllers.

16

CHAPTER 3

also provides a discipline for ordering components which use implicit invocation, yielding
substrate independence.

Another example of implicit invocation is the Weaves system [29], in which concurrently
executing tool fragments communicate by passing (pointers to) objects. This passing of objects
causes Weaves to be used in a data flow manner. Weaves allows data moving between output and
input portals of connected tool fragments. Unlike C2, which allows messages to flow in both
directions along a communication link, data flow in weaves is unidirectional (“left to right”); flow
in the other direction is achieved by explicitly creating communication cycles. Similarly to C2,
communication in Weaves occurs via connectors (transport services). The granularity of Weave
tool fragments is on the order of a single procedure. This, coupled with unidirectional data flow
and communication cycles, can result in Weave architectures consisting of large numbers of tool
fragments and transport services with a complicated interconnection structure.

3.3 Distribution

Existing systems tend to be rigid in terms of mapping their components to OS processes. At
one extreme, X Windows applications contain exactly two processes, a client and a server. While
there is greater process flexibility in VisualWorks and Weaves, both of these systems assume a
shared address space. It is only with systems such as GenVoca, Field or SoftBench, and C2 that
simultaneous satisfaction of arbitrary numbers of processes in a non-shared address space is
achieved. Similarly to Field/SoftBench, C2 employs connectors to achieve distribution. Unlike
them, however, C2 allows any number of connectors in a single application, removing the
potential bottleneck and single point of failure of the single Field/Softbench software bus.

3.4 Component Interoperability

Existing component interoperability models, such as JavaBeans [31], OLE [11] and OpenDoc
[62], provide standard formats for describing services offered by a component and runtime
facilities to locate, load, and execute services of other components. Since these models are
concerned with low-level implementation issues and provide little or no guidance in building a
system out of components, their use is neither subsumed by or restricted by C2. In fact, these
models may be used to realize an architecture in the C2 style, as demonstrated by Natarajan and

Comp1
X Y

B1

Comp2

Comp3

. . .

. . .

. . .

B2

Figure 3-1. An example (partial) architecture built according to C2 style rules.
The architecture demonstrates C2’s support for reconfigurability: component Y has been added to an existing
architecture and connector B1 routes to it some of the requests that were previously delivered to component X.
None of the components below B1 (e.g., Comp2 and Comp3) need to be updated in any manner, as they are
effectively still communicating with a single component.

17

CHAPTER 3

Rosenblum [58]. C2 provides its own interoperability infrastructure that exhibits the basic
properties of the existing interoperability models. Furthermore, as this dissertation will show,
C2’s connectors can be used as a platform for incorporating multiple interoperability models in a
single architecture.

3.5 Typing

This dissertation’s method for supporting component evolution — heterogeneous subtyping
— is influenced by object-oriented programming languages (OOPLs). A useful overview of
OOPL subtyping relationships is given by Palsberg and Schwartzbach [65]. They describe a
consensus in the OO typing community regarding the definition of a range of OO typing
relationships.Arbitrary subclassing allows any class to be declared a subtype of another,
regardless of whether they share a common set of methods.Name compatibility demands that
there exist a shared set of method names available in both classes.Interface conformance
constrains name compatibility by requiring that the shared methods have conforming signatures.
Monotone subclassing requires that the subclass relationship be declared and that the subclass
must preserve the interface of the superclass, while possibly extending it.Behavioral
conformanceallows any class to be a subtype of another if it preserves the interface and behavior
of all methods available in the supertype. Finally,strictly monotone subclassing additionally
demands that the subtype preserve the particular implementations used by the supertype.Protocol
conformance goes beyond the behavior of individual methods to specify constraints on the order
in which methods may be invoked.

OOPLs generally adopt only one of the subtyping/subclassing mechanisms along this
spectrum (e.g., monotone subclassing). Unlike OOPLs, however, architectures may contain
components implemented in heterogeneous programming languages and cannot rely on the
subtyping support provided by a single language. Furthermore, software components may require
subtyping methods not commonly found in OOPLs (e.g., preserving the behavior of a supertype,
but altering its interface). Finally, while OOPLs generally adopt a single subtyping mechanism,
our experience indicates that architectures often require multiple such mechanisms. For that
reason, OOPL typing alone cannot fulfill the needs of software architectures.

This dissertation adapts and expands OOPL typing for use with software architectures (see
Chapter 4) . We have developed a framework for understanding subtyping relationships as regions
in a space of type systems; any of the relationships identified by Palsberg and Schwartzbach can
be expressed as set operations on that space. This allows an architect to specify the most
appropriate relationship between a supertype and its subtype.

3.6 Behavioral Specification and Conformance

As indicated above, our type theory enables the modeling and subtyping of component
behavior. Behavioral specification and conformance have been explored by a number of
researchers, including Abadi and Leino [1], America [4], Leavens and colleagues [16], [39],
Fischer and colleagues [18], [79], Liskov and Wing [40], and Zaremski and Wing [99]. All these
approaches are applied on low-level abstractions, either at the programming language or detailed
design level. They all specify strict conformance criteria, based on one of several possible
variations of the logical implication or equivalence relationships between component behaviors,
as discussed by Zaremski and Wing [99].

18

CHAPTER 3

The different approaches diverge in their granularity of types, certain, mostly minor, details of
the required relationships, and the specific languages to which they are applied. For example,
Fischer et al. require conformance of individual methods, while Dhara and Leavens [16] do so for
entire components. Also, Liskov and Wing are influenced by, e.g., America’s work, but expand his
and similar definitions by adding a notion of history, essentially protocol conformance, to their
definition.

This dissertation’s approach to modeling behaviors and ensuring their conformance is similar
to the above approaches: we model component behavior with invariants and operation
preconditions and postconditions. However, we base our type theory on the ideas of
heterogeneous subtyping foreshadowed in the previous subsection and apply it at the level of
architectures. Our type theory differs from existing work in that we separate a component’s
behavior from its interface, allowing an operation to export multiple interfaces. We also separate
functionality provided by a component from the functionality it expects in an architecture. We do
so in a manner that is better suited to support development with third-party components than any
of the existing approaches.

We also distinguish betweensubstituting a supertype and its subtype andevolving the
supertype. All existing approaches focus exclusively on the former. However, substitutability
rules can be exceedingly rigid at the expense of the latter. We treat subtyping as a means of
specifying new functionality in a systematic manner as well as ensuring the correctness of an
architecture. Also, unlike the above approaches, we allow type-incorrect specifications (i.e.,
architectures) under certain conditions.

Finally, as already mentioned, Liskov and Wing define protocol conformance. Explicitly
modeling protocols has been shown to have practical benefits [3], [60], [98], [99]. However,
component invariants and method pre- and postconditions can be used to describe all state-based
protocol constraints and transitions. Thus, our notion of behavioral conformance implies protocol
conformance, and we do not address them separately.

3.7 Software Environments

A software development environment is a collection of capabilities integrated to support
developers and managers in their work. To be effective, an environment must exhibit properties
such as interoperability, heterogeneity, evolvability, and flexibility [35]. We have used these
properties as general guidelines in constructing an environment for C2 style architecture-based
software development.

Specifically, our work has roots in DSSA environments (e.g., ADAGE [5]). The DSSA
approach is based on developing a genericreference architecture for all systems in a given
domain of applicability [91]. The reference architecture is then instantiated for every individual
system within the domain, as shown in Figure 3-2. By making reference architectures explicit,
DSSAs employ a systematic approach to developing application families. The approach adopted
by DSSAs to address the problem of modeling architectures and generating an implementation
from an architecture is similar to ours: by restricting the software development space to a family
of applications that share a specific architectural style, reference architecture, and possibly
implementation infrastructure, DSSA environments have been very successful at transferring
architectural decisions to running systems.

19

CHAPTER 3

Unlike DSSA environments, we do not develop a reference architecture as a basis for building
an application family. However, there is also nothing inherent in the C2 style or its supporting
environment (see Chapter 5) that prohibits one from doing so. Quite the contrary, as an
architectural style, C2 can be applied to multiple domains, each of which would require its own
reference architecture. Each component in a C2 architecture is a conceptual placeholder that can
be instantiated by different implemented modules. The ease with which we have been able to
build application families (discussed in Chapter 6) without the aid of a reference architecture is
indicative of C2’s potential in this regard.

Our work has also drawn inspiration from the Inscape environment for software specification,
implementation, and evolution [68]. Inscape addresses many of the same issues addressed by C2
(scale, evolution, complexity, programming-in-the-large, practicality of the approach), but does so
at a level of abstraction below architecture. For example, Inscape requires the semantics of data
objects to be modeled, while we treat them as unelaborated (basic) types. Both approaches model
operations in terms of pre- and postconditions; Inscape also specifiesobligations, predicates that
must eventually be satisfied after an operation is invoked. Unlike our approach, which uses type-
theoretic principles to evolve components, Inscape supports component evolution at a finer level
of granularity and in a less systematic manner by adding, removing, and changing pre- and
postcondition predicates, and also by changing the implementation itself. Finally, our approach is
fully reflexive, i.e., our environment can be applied on itself; it is unclear whether and how
Inscape could be used in its own development and evolution.

3.8 Software Reuse

Explicit focus on architectures, and architectural styles in particular have a great potential to
facilitate both OTS component reuse and development of families of applications. At the same
time, basing reuse on general-purpose software architectures is difficult. One of the challenges
lies in effectively identifying, classifying, searhing, and retrieving existing components and
architectures that are needed in a new situation [38]. This problem can be remedied by adopting
higher-level abstractions that are applicable across applications. C2 is a style that attempts to
exploit commonalities across systems, and reuse individual components as well as successful
structural and interaction patterns.

Reference
Architecture

Application
Architecture Implementation

Figure 3-2. A simplified, high-level view of the DSSA lifecycle.
A generic reference architecture is instantiated to obtain an application-specific architecture, which is then used as
the basis for implementation.

20

CHAPTER 3

The two goals of maximizing reuse and building system families do not always go hand in
hand. For example, unlike their inherent support for application families, DSSAs have tended to
support reuse only to a limited degree. GenVoca [6] is an illustrative example of such limited
reuse. It has been particularly successful in producing a large library of reusable components.
However, those components have been custom built for the GenVoca style. In order to reuse them,
one must adhere to GenVoca’s formalism and its hierarchical approach to component
composition, which may result in a high degree of dependency between communicating
components. On the other hand, C2’s style rules are more flexible: C2 eliminates assumptions of
shared address spaces and threads of control, allows both synchronous and asynchronous
message-based communication, and separates the architecture from the implementation.2

Garlan, Allen, and Ockerbloom classify the causes of problems developers commonly
experience when attempting OTS reuse and give four guidelines for alleviating them [24]:
• make architectural assumptions explicit in components,
• construct large components using orthogonal subcomponents,
• provide techniques for bridging mismatches, and
• develop sources of architectural design guidance.
C2 is well suited to address these problems. The first two guidelines deal with the internal
architecture of OTS components, which is outside the reuser’s control, and therefore also outside
the scope of issues addressible by C2. The third guideline proposes techniques for building
component adaptors, which is subsumed by C2 wrappers and domain translators. The final
guideline emphasizes the need for design assistance, which has been a significant aspect of the
work on C2 to date[74].

Finally, Shaw discusses nine “tricks” for reconciling component mismatch in an architecture
[81]. Several of the tricks are related to reuse techniques employed in C2. For example,
transformations, such as “Change [component] A’s form to [component] B’s form”, “Provide B
with import/export converters”, and “Attach an adapter or wrapper to A,” are subsumed by C2’s
wrappers and/or domain translators. The need for other transformations is eliminated altogether
by C2 style rules. For example, “Make B multilingual” is unnecessary, as C2 assumes that
components will be heterogeneous and multilingual.

3.9 Architecture Description Languages

ADLs have recently become an area of intense research in the software architecture
community [20], [27], [96]. In order to support architecture-based development, formal modeling
notations and analysis and development tools that operate on architectural specifications are
needed. ADLs and their accompanying toolsets have been proposed as the answer to this need. A
number of ADLs have been developed for modeling architectures both within a particular domain
and as general-purpose architecture modeling languages: Aesop [23],C2SADEL3 [53], Darwin
[43], MetaH [94], Rapide [42], SADL [57], UniCon [82], Weaves [29], and Wright [3].

Recently, initial work has been done on an architecture interchange language, ACME [25],
which is intended to support mapping of architectural specifications from one ADL to another,

2. Although the C2 style focuses mainly on asynchronous communication, it also allows synchronous interac-
tion between components. This issue is discussed further in Chapter 4.

3. For simplicity and in order to more easily distinguish it from SADL, which resulted from an unrelated
project, we refer toC2SADEL simply as “C2” in the remainder of this chapter.

21

CHAPTER 3

and hence enable integration of support tools across ADLs. Although, strictly speaking, ACME is
not an ADL, it contains a number of ADL-like features. It is useful to compare and differentiate it
from other ADLs to highlight the difference between an ADL and an interchange language. It is
therefore included in this discussion.

This section is drawn from our extensive classification and comparison of ADLs [46], [51]. It
focuses on the issues pertinent to this dissertation. The remainder of the section is organized as
follows. Section 3.9.1 introduces our definition and taxonomy of ADLs. Sections 3.9.2-3.9.5
describe the elements of the taxonomy and assess the above-mentioned ADLs based on these
criteria. A brief summary of our findings is given in Section 3.9.6.

3.9.1 The Comparison Framework

Loosely defined, “an ADL for software applications focuses on the high-level structure of the
overall application rather than the implementation details of any specific source module” [93].
The building blocks of an architectural description are (1)components, (2)connectors, and (3)
architectural configurations.4 In order to inferany kind of information about an architecture, at a
minimum,interfaces of constituent components must also be modeled. Without this information,
an architectural description becomes but a collection of (interconnected) identifiers, similar to a
“boxes and lines” diagram with no explicit underlying semantics.

Other aspects of both components and connectors on which we focus here are desirable, but
not essential: their benefits have been acknowledged and possibly demonstrated by some ADL,
but their absence does not mean that a given language is not an ADL. These features are
interfaces (for connectors), andtypes, semantics, andevolution (for both). Desirable features of
configurations areunderstandability, heterogeneity, scalability, evolution, andsystem families.
Finally, even though the suitability of a given language for modeling software architectures is
independent of whether and what kinds of tool support it provides, an accompanying toolset will
render an ADL both more usable and useful. We focus on tools foractive specification, analysis,
and implementation generation.

3.9.2 Components

A component is a unit of computation or a data store [70]. Therefore, components are loci of
computation and state [82]. A component in an architecture may be as small as a single procedure
(e.g., MetaHprocedures and Weavestool fragments) or as large as an entire application (e.g.,
hierarchical components in C2 and Rapide ormacros in MetaH). It may require its own data and/
or execution space, or it may share them with other components.

Each surveyed ADL models components in one form or another and under various names.
ACME, Aesop, C2, Darwin, SADL, UniCon, and Wright share much of their vocabulary and
refer to them simply ascomponents; in Rapide they areinterfaces;5 in Weaves,tool fragments;
and in MetaH,processes. In this section, we present the aspects of components relevant to this
dissertation and assess existing ADLs with respect to them.

4. “Architectural configurations” will, at various times in this dissertation, be referred to simply as “configura-
tions” or “topologies.”

5. Interface is a language construct; the designers of Rapide commonly refer to Rapide interfaces as “compo-
nents.”

22

CHAPTER 3

3.9.2.1 Interface

A component’s interface is a set of interaction points between it and the external world. As in
OO classes or Ada package specifications, a component interface in an ADL specifies those
services (messages, operations, and variables) the component provides. In order to be able to
adequately reason about a component and the architecture that includes it, ADLs should also
provide facilities for specifying component needs, i.e., services required of other components in
the architecture. An interface thus defines computational commitments a component can make
and constraints on its usage. Interfaces also enable a certain, though rather limited, degree of
reasoning about component semantics.

All surveyed ADLs support specification of component interfaces. They differ in the
terminology and the kinds of information they specify. For example, each interaction point in
ACME, Aesop, SADL, and Wright is aport. On the other hand, in C2, the entire interface is
provided through a single port; individual interface elements aremessages. Weaves combines the
two approaches by allowing multiple componentports, each of which can participate in the
exchange of interface elements, orobjects. In Darwin, an interaction point is aservice, in Rapide
aconstituent, and in UniCon aplayer. MetaH distinguishes betweenports, events, andshared
data.

Most, but not all, ADLs distinguish between provided and required services. Some do so only
by distinguishing incoming from outgoing ports. Others also specify the types of data that are
provided or expected. Finally, C2, Rapide, and Wright are notable in that they also require explicit
specification of required services’ semantics.

The ports in ACME, Aesop, SADL, and Wright are named and typed. SADL distinguishes
between input and output ports (iport andoport), while Aesop allows definition of architectural
styles that do so (e.g.,inputs andoutputs for pipe-and-filter components). Wright goes a step
further by specifying the expected behavior of the component at that point of interaction. The
particular semantics of a port (whether they provide or require data) are specified in CSP [32] as
interaction protocols.

Component interface specifications in Darwin specify servicesprovided andrequired by a
component, as well as types of those services. Each service type is further elaborated with an
interaction mechanism that implements the service. For example,trace services are implemented
with events, outputs are accomplished viaports, andcommands acceptentry calls.

MetaH specifies input and output ports on components (processes). Ports are strongly typed
and connections among them type checked. They are the means for periodic communication: each
port has an associated buffer variable and port-to-port communication results in assignment.
Aperiodic communication is modeled by output events. Finally, sharable monitors or packages are
the means of indicating shared data among components.

Rapide subdivides component interfaces into constituents:provides, requires, action, and
service. Provides andrequires refer to functions. Connections between them specify synchronous
communication.In andout actions denote the events a component can observe and generate,
respectively. Connections betweenactions define asynchronous communication. A service is an
aggregation facility for a number of actions and functions. It is a mechanism for abstracting and
reusing component interface elements.

23

CHAPTER 3

Weaves distinguishes betweenread andwrite ports. In order to maximize the flexibility of
interconnection, Weaves ports are type-indifferent and “blind” (connection-indifferent). They
perform wrapping and unwrapping of data objects by means ofenvelopes, which hide the types of
the underlying data objects. Each port also supplies aWait method, which implements a port-
specific waiting policy in case of transmission problems.

UniCon specifies interfaces as sets of players. Players are visible semantic units through
which a component interacts by requesting or providing services and receiving external state and
events. Each player consists of a name, a type, and optional attributes such as signature, functional
specification, or constraints. UniCon supports a predefined set of player types:RoutineDef,
RoutineCall, GlobalDataDef, GlobalDataUse, ReadFile, WriteFile, ReadNext, WriteNext,
StreamIn, StreamOut, RPCDef, RPCCall, andRTLoad. PLBundle denotes a set of players.

A C2 component interface, on the other hand, consists of single top and bottom ports. Both
incoming (required) and outgoing (provided) message traffic is routed through each port. An
important distinction among C2 messages is betweenrequests andnotifications. Due to C2’s
principle of substrate independence, a component has no knowledge of components below it in an
architecture: any messages sent down an architecture must be notifications of that component’s
internal state; requests may only be sent up.

3.9.2.2 Types

Software reuse is one of the primary goals of architecture-based development [10], [24], [48].
Since architectural decomposition is performed at a level of abstraction above source code, ADLs
can support reuse by modeling abstract components as types. Component types can then be
instantiated multiple times in an architectural specification and each instance may correspond to a
different implementation of the component. Another benefit of explicitly modeling component
types is enabling evolution, as discussed below.

All of the surveyed ADLs distinguish component types from instances. Rapide does so with
the help of a separate types language [41]. Weaves distinguishes betweensockets and tool
fragments that populate them. With the exception of MetaH and UniCon, all ADLs provide
extensible component type systems. MetaH and UniCon support only a predefined, built-in set of
types. MetaH component types areprocess, macro, mode, system, andapplication.6 Component
types supported by UniCon areModule, Computation, SharedData, SeqFile, Filter, Process,
SchedProcess, andGeneral.

3.9.2.3 Semantics

Component semantics are modeled to enable evolution, analysis, enforcement of constraints,
and consistent mappings of architectures from one level of abstraction to another. However,
several languages do not model component semantics beyond interfaces. SADL and Wright focus
on other aspects of architectural description (connectors and refinement). Wright’s connectors
require specification of interaction protocols for each component interaction point; while it does
not focus on it, Wright also allows specification of component functionality in CSP.

6. As MetaH is used to specify both the software and the hardware architecture of an application,system is a
hardware construct, whileapplication pertains to both.

24

CHAPTER 3

Underlying semantic models and their expressive power vary across those ADLs that do
support specification of component behavior. ACME and UniCon allow semantic information to
be specified in components’ property lists. ACME places no restrictions on the specification
language; however, from its point of view, properties are uninterpreted, so that, strictly speaking,
component semantics are outside the scope of the language. Although UniCon’s main focus is on
non-functional properties of components, it allows specification of event traces in property lists to
describe component behavior.

Aesop does not provide any language mechanisms for specifying component semantics.
Instead, it allows the use of style-specific languages for modeling semantics for each architectural
style defined in Aesop.

MetaH allows specification of component implementation semantics with path declarations. A
path declaration consists of an optional identifier, followed by the names of (more primitive)
components in that path. MetaH also uses an accompanying language, ControlH, for modeling
algorithms in the guidance, navigation, and control (GN&C) domain [9].

In Rapide, each component specification has an associatedbehavior, which is defined via state
transition rules that generate partially ordered sets of events (posets). Rapide uses event patterns
to recognize posets for triggering rules and evaluating constraints. During poset recognition, free
variables in a pattern are bound to specific matching values in a component’s poset. Event patterns
are used both as triggers and outputs of component state transition rules. Weaves employ a
similar, though more primitive semantic model. It specifies a partial ordering between a tool
fragment’s input and output objects.

Darwin uses theπ-calculus [54] as its underlying semantic model. A system in theπ-calculus
is a collection of independent processes that communicate via named channels.π-calculus is used
to model basic component interaction and composition properties, so that each syntactic Darwin
construct concerned with requiring, providing, and binding services is modeled in it. It is
important to note that usingπ-calculus in this manner only supports modeling the semantics of
composite Darwin components (see [46]), while primitive components are treated as black boxes.

Finally, C2 specifies a component’s semantics in first-order logic. Constraints on the operation
of the component as a whole are expressed in its invariant. The semantics of both provided and
required operations are modeled via preconditions and postconditions. The behavior of a C2
component is modeled independently of its interface, so that it is possible to replace the operation
with which an interface element is associated and to associate the same operation with multiple
interface elements.

3.9.2.4 Evolution

As design elements, components evolve. ADLs must support a disciplined evolution process
by supporting techniques such as subtyping of components and refinement of their features. Only
a subset of existing ADLs provide support for evolution. Even within those ADLs, evolution
support is limited and often relies on the chosen implementation (programming) language. The
remainder of the ADLs view and model components as inherently static.

MetaH and UniCon define component types by enumeration, allowing no subtyping, and
hence no evolution support. Weaves focuses on evolving architectures, rather than individual tool

25

CHAPTER 3

fragments. ACME has recently introduced types, and supports structural subtyping via itsextends
feature.

Aesop supports behavior-preserving subtyping to create substyles of a given architectural
style. Aesop mandates that a subclass must provide strict subtyping behavior for operations that
succeed, but may also introduce additional sources of failure with respect to its superclass. It is
unclear whether this functionality has been implemented in Aesop’s supporting toolset.

Rapide allows its interface types to inherit from other types strictly by using OO methods,
resulting in structural subtyping. SADL, on the other hand, supports specification of properties
that must be satisfied by all elements of a given subtype. Both Rapide and SADL also provide
features for refinement of components across levels of abstraction. This mechanism may be used
to evolve components by explicating any deferred design decisions, which is somewhat similar to
extending inherited behavior in OO languages. Note that, in a general case, subtyping is a
restricted form of refinement. This is, however, not true in the case of Rapide and SADL, both of
which place additional constraints on refinement maps in order to prove or demonstrate certain
properties of architectures [46].

C2 stands out in its support for component evolution. It attempts to avoid dependence on
subtyping mechanisms provided by any underlying programming language. Our method is based
on the realization that architectural design is a complex activity in which architectures may
incorporate components implemented in heterogeneous programming languages; therefore, an
ADL cannot rely on a single subtyping method provided by any one language. Using
programming language terminology, C2 models conceptual component placeholders as formal
parameters, while the implemented components that instantiate them are actual parameters.
Multiple subtyping and type-checking relationships among components are allowed: name,
interface, behavior, and implementation subtyping, as well as their combinations.

A more complete summary of this section is given in Table 3-1. The table has been adapted
from [46].

3.9.3 Connectors

Connectors are architectural building blocks used to model interactions among components
and rules that govern those interactions. As in the case of components, surveyed ADLs model
connectors in various forms and under various names. For example, languages such as ACME,
Aesop, C2, SADL, UniCon, and Wright model connectors explicitly and refer to them as
connectors. Weaves also models connectors explicitly, but refers to them astransport services. In
Rapide and MetaH they areconnections, modeled in-line, and cannot be named, subtyped, or
reused (i.e., connectors are not first-class entities). Connectors in Darwin arebindings and are also
specified in-line, i.e., in the context of a configuration only. In this section, we present the aspects
of connectors that contribute strongly to their role as facilitators of architecture-centered evolution
and compare existing ADLs with respect to them.

3.9.3.1 Interface

In order to enable proper connectivity of components and their communication in an
architecture, a connector should export as its interface those services it expects. Therefore, a
connector’s interface is a set of interaction points between it and the components attached to it. It
enables reasoning about the well-formedness of an architectural configuration.

26

CHAPTER 3

Only those ADLs that support modeling of connectors explicitly, independently of
configurations in which they are used, support specification of connector interfaces. Weaves are
somewhat of an exception: although transport services are modeled explicitly, their interfaces are
not specified directly, but rather aspads of the encompassing sockets. A transport service itself is
indifferent to the types of data it handles; its main task is to buffer and synchronize the
communication among tool fragments.

ACME, Aesop, UniCon, and Wright refer to connector interaction points asroles. Explicit
connection of component ports and connector roles is required in an architectural configuration.
Roles are named and typed, and are in many ways similar to component ports (players in
UniCon), discussed in Section 3.9.2.1. Aesop allows definition of architectural styles that
distinguish between input and output roles (e.g.,sources andsinksfor pipe-and-filter connectors).
Semantics of each role’s interaction protocol in Wright are specified in CSP, similarly to port
protocols. This allows for analysis of compatibility between connected component ports and
connector roles. In UniCon, each role may include optional attributes, such as the type of players
that can serve in the role and minimum and maximum number of connections. UniCon also
supports only a predefined set of role types:Source, Sink, Reader, Readee, Writer, Writee,
Definer, Caller, User, Participant, andLoad.

A SADL connector only exports the type of data it supports in its interface. Other information
about the connector, such as the number of components it connects, is implicit in the connector

Table 3-1: ADL Support for Modeling Components

Interface Types Semantics Evolution

ACME
interaction points areports extensible type system;

parameterization enabled
with templates

no support; can use other ADLs’
semantic models in property lists

structural subtyping via
theextends feature

Aesop
interaction points areinput and
output ports

extensible type system (optional) style-specific languages
for specifying semantics

behavior-preserving sub-
typing

C2

 interface exported through
top and bottomports; interface
elements areprovided and
required

extensible type system causal relationships between input
and output messages

heterogeneous subtyping

Darwin
interaction points areservices
(provided andrequired)

extensible type system; sup-
ports parameterization

π-calculus none

MetaH
interaction points areports Predefined, enumerated set of

types
ControlH for modeling algorithms
in the GN&C domain; implementa-
tion semantics via paths

none

Rapide
interaction points areconstitu-
ents (provides, requires,
action, andservice)

extensible type system; con-
tains a types sublanguage;
supports parameterization

partially ordered event sets (posets) inheritance (structural
subtyping)

SADL
interaction points are input and
outputports (iportsand
oports)

extensible type system;
allows parameterization of
component signatures

none subtyping by constrain-
ing supertypes; refine-
ment via pattern maps

UniCon
interaction points areplayers predefined, enumerated set of

types
event traces in property lists none

Weaves
interaction points areread and
write ports; interface elements
areobjects

extensible type system; types
are componentsockets

partial ordering over input and out-
put objects

none

Wright
interaction points areports;
port interaction semantics
specified in CSP

extensible type system;
parameterizable number of
ports and computation

not the focus; allowed in CSP none

Features

ADL

27

CHAPTER 3

type (see Section 3.9.3.2) and/or specified as part of the architectural configuration
(Section 3.9.4). Finally, although Darwin and Rapide define their connectors in-line, both
languages allow abstracting away complex connection behaviors into “connector components,”
which are then accompanied by a set of simple connections (bindings in Darwin).

In C2, connector interfaces, like component interfaces, are modeled withports. Each port can
export multiple messages; the sets of messages at two different ports belonging to the same
connector need not be disjoint. C2 connectors are unique in that their interfaces arecontext-
reflective. In other words, a connector’s interface is determined by and adapts to the (potentially
dynamic) interfaces of components that communicate through it.

3.9.3.2 Types

Architecture-level communication may need to be expressed with complex protocols. To
abstract away these protocols and make them reusable, ADLs should model connectors as types.
This is typically done in two ways: as extensible type systems which are defined in terms of
communication protocols and are independent of implementation, or as built-in, enumerated types
which are based on their implementation mechanisms.

Only those ADLs that model connectors as first-class entities distinguish connector types
from instances. This excludes languages like Darwin, MetaH, and Rapide. ACME, Aesop, C2,
SADL, and Wright base connector types on protocols. ACME also provides a parameterization
facility through connector templates and SADL via parameterized connector signatures and
constraints that define connector semantics. Similarly to their components, Wright allows
connectors to be parameterized by the number of roles and by the glue specification, while
Weaves distinguishes between sockets from transport services that instantiate them. UniCon, on
the other hand, only allow connectors of prespecified enumerated types. UniCon currently
supportsPipe, FileIO, ProcedureCall, DataAccess, PLBundler, RemoteProcCall, and
RTScheduler connector types.

MetaH does not support connector types, but it does define three broad categories of
connections. Inport connections, anout port of one component may be connected to anin port of
another.Event connections allow outgoing events to be connected to incoming events (event-to-
event), as well as to their recipient components (event-to-process and event-to-mode). Finally,
equivalence connections specify objects that are shared among components.

3.9.3.3 Semantics

To perform useful analyses of component interactions, consistent refinement mappings across
levels of architectural abstraction, and enforcement of interconnection and communication
constraints, architectural descriptions provide connector protocol and transaction semantics. It is
interesting to note that languages that do not model connectors as first-class objects, e.g., Rapide,
may still model connector semantics.

ADLs often use a single mechanism for specifying the semantics of both components and
connectors. For example, ACME allows connector semantics to be specified in its property lists
using any specification language, but considers them uninterpreted; Rapide uses posets to
describe communication patterns among its components; Wright models connectorglue and event
trace specifications with CSP; and UniCon allows specification of semantic information for
connectors in property lists (e.g., a real-time scheduling algorithm or path traces through real-time

28

CHAPTER 3

code). Additionally, connector semantics in UniCon are implicit in their connector types. For
example, declaring a component to be apipe implies certain functional properties.

Exceptions to this rule are Aesop, C2, SADL, and Weaves. Aesop uses a different semantic
model for its connectors than it does for components. Namely, Aesop does not use style-specific
formal languages, but supports specification of operational connector semantics and (optionally)
also employs Wright to specify connector semantics. C2 provides an insight into how a connector
will behave by specifying its message filtering policies. SADL does not focus on modeling
component semantics, but supports specification of connector semantics via axioms in SADL’s
constraint language. Finally, Weaves employs a set of naming conventions that imply a transport
service’s semantics. For example, a single-writer, single-reader queue transport service is named
Queue_1_1.

3.9.3.4 Evolution

Component interactions are governed by complex and ever changing and expanding
protocols. Maximizing connector reuse is achieved by modifying or refining existing connectors
whenever possible. As with components, ADLs can support connector evolution with specific
techniques such as subtyping and refinement.

Even fewer ADLs support evolution of connectors than do evolution of components. ADLs
that do not model connectors as first-class objects (Darwin, MetaH, and Rapide) also provide no
facilities for their evolution. Others either currently only focus on architecture-level evolution
(e.g., Weaves), or provide a predefined set of connector types with no language features for
evolution support (e.g., UniCon). Wright does not facilitate connector subtyping, but supports
type conformance, where a role and its attached port may have behaviorally related, but not
necessarily identical, protocols. ACME, Aesop, and SADL provide more extensive support for
connector evolution, similar to their support for component evolution discussed in Section 3.9.2.4.
ACME supports structural connector subtyping via itsextends feature. Aesop supports behavior
preserving subtyping, while SADL supports subtyping of connectors and their refinements across
styles and levels of abstraction.

C2 does not provide techniques for connector evolution that are similar to its component
subtyping. Instead, C2 connectors are inherently evolvable due to their context-reflective
interfaces. Furthermore, the degree of information a C2 connector filters out can evolve, e.g., to
account for newly added or removed components.

A more complete summary of this section is given in Table 3-2. The table has been adapted
from [46].

3.9.4 Configurations

Architectural configurations, or topologies, are connected graphs of components and
connectors that describe architectural structure. This information is needed to determine whether:
appropriate components are connected, their interfaces match, connectors enable proper
communication, and their combined semantics result in desired behavior. In concert with models
of components and connectors, descriptions of configurations enable assessment of concurrent
and distributed aspects of an architecture, e.g., potential for deadlocks and starvation,
performance, reliability, security, and so on. Descriptions of configurations also enable analyses
of architectures for adherence to design heuristics, e.g., to determine whether an architecture is

29

CHAPTER 3

“too deep,” which may affect performance due to message traffic across many levels and/or
process splits, or “too broad,” which may result in too many dependencies among components (a
“component soup” architecture). Finally, architectural description is necessary to establish
adherence to architectural style constraints, such as C2’s rule that there are no direct
communication links between components.

Architectures are likely to describe large, long-lived software systems that may evolve over
time. The changes to an architecture may be planned or unplanned; they may also occur before or
during system execution. ADLs must support such changes through features for modeling
specification-time evolution and execution-time, or run-time, evolution [61]. Another key role for
modeling architectural configurations is to facilitate communication for the many stakeholders in
the development of a system. The goal of configurations is to abstract away the details of
individual components and connectors. They depict the system at a high level that can potentially
be understood by people with various levels of technical expertise and familiarity with the
problem at hand. This section investigates whether and to what degree various ADLs fulfill these
roles.

3.9.4.1 Understandable Specifications

One of the major roles of software architectures is that they facilitate understanding of
(families of) systems at a high level of abstraction. To truly enable easy communication about a
system among developers and other stakeholders, ADLs must model structural (topological)

Table 3-2: ADL Support for Modeling Connectors

Interface Types Semantics Evolution

ACME
interaction points areroles extensible type system, based

on protocols; parameterization
via templates

no support; can use
other ADLs’ semantic
models in property lists

structural subtyping via
theextends feature

Aesop
interaction points areroles extensible type system, based

on protocols
(optional) semantics
specified using Wright

behavior-preserving sub-
typing

C2
interface with each component via a sepa-
rateport; interface elements areprovided
andrequired

extensible type system, based
on protocols

partial semantics speci-
fied via message filters

context-reflective inter-
faces; evolvable filtering
mechanisms

Darwin none; allows “connection components” none none none

MetaH
none none; supports three general

classes of connections: port,
event, and equivalence

none none

Rapide
none; allows “connection components” none posets; conditional con-

nections
none

SADL
connector signature specifies the sup-
ported data types

extensible type system; param-
eterized signatures and con-
straints

axioms in the constraint
language

subtyping; connector
refinement via pattern
maps

UniCon

interaction points areroles predefined, enumerated set of
types

implicit in connector’s
type; semantic informa-
tion can be given in
property lists

none

Weaves
interaction points are the encapsulating
socketpads

extensible type system; types
are connectorsockets

via naming conventions none

Wright
interaction points areroles; role interac-
tion semantics specified in CSP

extensible type system, based
on protocols; parameterizable
number of roles and glue

connectorglue seman-
tics in CSP

supports type conform-
ance for behaviorally
related protocols

Features

ADL

30

CHAPTER 3

information with simple and understandable syntax. The structure of a system should ideally be
clear from a configuration specification alone, i.e., without having to study component and
connector specifications.

Configuration descriptions in Darwin, MetaH, and Rapide tend to be encumbered with details
of connectors, which are modeled in-line. On the other hand, ACME, Aesop, C2, SADL, UniCon,
Weaves, and Wright provide separate, explicit abstractions for components and connectors and
thus arguably have the best potential to facilitate understandability of architectural structure.
Clearly, whether this potential is realized or not will also depend on the particular ADL’s syntax.
For example, UniCon allows the connections between players and roles to appear in any order,
possibly distributed among individual component and connector specifications; establishing the
topology of such an architecture may (unnecessarily) require studying a significant portion of the
architectural description. Although somewhat subjective, a distinction can also be made between
those notations that employ formalisms that are accessible to a narrower crossection of
practitioners (e.g., Wright’s CSP, or Rapide’s posets) than others (e.g., C2’s first-order logic).

3.9.4.2 Heterogeneity

A goal of software architectures is to facilitate development of large-scale systems, preferably
with pre-existing components and connectors of varying granularity, specified by different
designers, potentially in different formal modeling languages, implemented by different
developers, possibly in different programming languages, with varying operating system
requirements, and supporting different communication protocols. It is therefore important that
ADLs beopen, i.e., to specification and development with heterogeneous components and
connectors.

Although no ADL provides explicit support for multiple specification languages, ACME,
Aesop, C2, Darwin, and UniCon do allow it in principle. ACME’s and UniCon’s property lists are
open, and will accept any modeling notation. To actually achieve architectural interchange in
ACME, however, explicit mappings are required from architectural models described in one
notation to another. Aesop allows style-specific modeling languages for component semantics, in
addition to using operational semantics and/or Wright for modeling connectors. The possibility of
using multiple notations for components within a single style is not precluded either. Darwin uses
π-calculus to model external (visible) component characteristics and the semantics of composite
components. At the same time, it leaves open the choice of specification languages for the
semantics of primitive components. Although C2 currently bases its modeling, analysis,
implementation, and evolution support on operation pre- and postconditions specified in first-
order logic, nothing in the style or in the ADL precludes a choice of other formalisms.

Of the ADLs that support implementation of architectures, several are tightly tied to a
particular programming language. For example, Aesop and Darwin only support development
with components implemented in C++, while MetaH is exclusively tied to Ada and UniCon to C.
On the other hand, Weaves supports interconnection of tool fragments implemented in C, C++,
Objective C, and Fortran; and Rapide supports construction of executable systems specified in
VHDL, C, C++, Ada, and Rapide itself. C2 currently supports development in C++, Ada, and
Java. C2 is also unique in that it supports heterogeneous connector implementations, possibly by
utilizing OTS middleware.

31

CHAPTER 3

MetaH and Weaves place some additional restrictions on components. MetaH requires that
each component contain a loop with a call to the predeclared procedureKERNEL.AWAIT _DISPATCH

to periodically dispatch a process. Any existing components have to be modified to include this
construct before they can be used in a MetaH architecture. Similarly, all Weaves tool fragments
must implement a set of control methods:Start, Suspend, Resume, Sleep, andAbort. ADLs may
also preclude reuse of many existing components and connectors by allowing only certain types
of each. For example, UniCon can use existing filters and sequential files, but not spreadsheets,
constraint solvers, or relational databases.

Finally, most surveyed ADLs support modeling of both fine and coarse-grain components. At
one extreme are components that describe a single operation, such ascomputations in UniCon or
procedures in MetaH, while the other can be achieved byhierarchical composition, where an
entire architecture becomes a single component in another (larger) architecture.

3.9.4.3 Scalability

Architectures are intended to support large-scale systems. For that reason, ADLs must support
specification and development of large systems that may further grow in size. For the purpose of
this discussion, we can generalize the issues inherent in scaling software, so that an architectural
configuration, such as that depicted in Figure 3-3, can be scaled up in two ways: by adding
components and connectors along its boundaries (Figure 3-3a), and by adding elements to
architecture’s interior (Figure 3-3b). To support the former, ADLs can employ compositionality
features, by treating the original architecture as a single, composite component, which is then
attached to new components and connectors. Objectively evaluating an ADLs ability to support
the latter, i.e., adding internal elements, is more difficult, but certain heuristics can be of help.

It is generally easier to expand architectures described inexplicit configuration ADLs, such as
ACME, Aesop, C2, SADL, UniCon, Weaves, and Wright, which model connectors as first-class
entities, than those described inin-line configuration ADLs like Darwin, MetaH, and Rapide,
which model them only as part of a configuration. Connectors in the latter are described solely in
terms of the components they connect; adding new components or connectors may require direct
modification of existing connector instances.

ADLs, such as C2, UniCon, Weaves, and Wright, that allow a variable number of components
to be attached to a single connector are better suited to scaling up than those, such as ACME or
Aesop, (or an earlier version of Wright described in [2]), which specify the exact number of
components a connector can handle.7 For example, ACME and Aesop could not handle the
extension to the architecture shown in Figure 3-3b without redefiningConn1 andConn2, while
C2, UniCon, Weaves, and Wright can.

3.9.4.4 Evolution

Support for software evolution is a key aspect of architecture-based development. Evolution at
the architectural level encompasses component and connector addition, removal, replacement,
and reconnection. An architecture evolves to reflect and enable evolution of a set of software
systems based on that architecture. ADLs need to augment evolution support at the level of

7. The number of components attached to a Wright or UniCon connector must be specified at connector instan-
tiation-time.

32

CHAPTER 3

components (Section 3.9.2.4) and connectors (Section 3.9.3.4) with features for incremental
development.

Incrementality of an architectural configuration can be viewed from two different
perspectives. One is the ability to accommodate addition of new components in the manner
depicted in Figure 3-3.8 The issues inherent in doing so were discussed above. The arguments that
were applied to scalability also largely apply to incrementality: in general, explicit configuration
ADLs can support incremental development more easily and effectively than in-line configuration
ADLs; ADLs that allow variable numbers of components to communicate through a connector are
well suited for incremental development, particularly when faced with unplanned architectural
changes.

Additionally, an ADL’s support for incrementality is inversely related to the degree of
dependency among components in an architecture. In-line configuration ADLs (Darwin, MetaH,
and Rapide), which modelconnections, rather than first-class connectors, embed a large degree of
interdependency into their components. To add a component to a Darwin architecture, for
example, existing components may have to be modified to establish the proper connections.
Along similar lines, ADLs whose connectors are instantiated with theexact number, type, and
interaction profile of components whose communication they can support (e.g., Wright or
UniCon) ultimately hamper incrementality. If one is using such an ADL to evolve a configuration
by adding a component, for example, a connector instance may need to be replaced in order to
handle the new component. Similarly, if a component makes explicit assumptions about the
components with which it will interact and requires those assumptions to be fully satisfied (e.g.,
Wright’s port protocols), evolution of a configuration that includes such a component may not be
possible.

8. A similar argument can be made for component removal. For the purposes of this discussion, we view recon-
nection as a combination of component addition with removal.

Comp1

Comp4

Comp3Comp2

Conn1

Conn2

Conn3

(b)

(a)

Original Architecture

Comp5

Comp6

Figure 3-3. Scaling up an architecture.
(a) The architecture is expanded along its boundaries.
(b) New components/connectors are added to the architecture’s interior.

33

CHAPTER 3

As this dissertation will show, it is exactly these types of considerations that have guided our
choice of C2 properties: C2 components and connectors make minimal assumptions about other
components and connectors in an architecture. This, in turn, allows the use of heterogeneous
connectors, thus enabling a C2 architecture to better adapt to changing requirements.

Another view of incrementality is an ADL’s tolerance and/or support for incomplete
architectural descriptions. Incomplete architectures are common during design, as some decisions
are deferred and others have not yet become relevant. Most existing ADLs and their supporting
toolsets have been built around the notion that precisely these kinds of situations must be
prevented. For example, Darwin, MetaH, Rapide, and UniCon compilers, constraint checkers, and
runtime systems have been constructed to raise exceptions if such situation arise.9 In this case, an
ADL such as Wright, which focuses its analyses on information local to a single connector, is
better suited to accommodate expansion of the architecture than, e.g., SADL, which is very
rigorous in its refinement ofentire architectures.

C2 makes no distinction between “incomplete” and “complete” architectural descriptions, as
reflected in its connectors with context-reflective interfaces, support for partial communication
and component service utilization, and focus on dynamic change [61]. Indeed, we consider an
architecture in any state to be complete (i.e., it is analyzable, evolvable, and possibly describes
meaningful functionality that can be transferred to an implementation). Conversely, any
architecture is inherently incomplete, in that it is expected to continuously evolve to fulfill new
requirements.

3.9.4.5 System Families

A potential benefit of explicit architectural models is that they can help identify or highlight
ways to minimize the costs of developing new products, by sharing and reusing software structure
and/or components. New software systems rarely provide entirely unprecedented functionality,
but are rather “variations on a theme.” They either belong to a family of systems, where much of
the structure and functionality may be shared among different members, or to a style, where
certain composition and communication characteristics recur within a given application domain
or set of domains. In order for software architects to be able to adequately take advantage of
existing (partial) solutions to their problems and of the potential cost savings incurred by system
families, ADLs should provide adequate support for families.

System families can exist and grow at two different levels:
1. the architecture remains constant among the different members of the family, while their

implementations vary;
2. the architecture also varies across the members of the family.
In the first case, the members of the family are functionally more closely related. The ability of an
ADL to support this first type of system family largely depends on its separation of architecture
from implementation, i.e., allowing multiple implementations of a given architectural model. Not
all ADLs allow this.

Certain ADLs, e.g., C2, Wright, and Rapide do not assume or prescribe a particular
relationship between an architectural description and its implementation(s). We refer to these

9. UniCon does allow differing levels of completeness of an architecture, depending upon the task. For exam-
ple, schedulability analysis does not require source code, but only a specification of the appropriate real-time
information.

34

CHAPTER 3

languages asimplementation independent. On the other hand, several ADLs, e.g., Weaves,
UniCon, and MetaH, require a much higher degree of fidelity of an architecture to its
implementation. Components modeled in these languages are directly related to their
implementations. These areimplementation constraining languages. Darwin has elements of both
implementation constraining and independent languages: it ties each primitive component to its
implementation, but also enables modeling of composite components.

Implementation independence alone does not completely support system families. It does not
address the creation of families by modifying architectures across family members. Component
and connector inheritance, subtyping, or other evolution mechanisms are also inadequate: for
example, interchanging two components that are related by subtyping does not guarantee that the
resulting two architectures belong to the same logical family. Therefore, additional techniques are
needed.

One such technique may be to exploit hierarchical composition and apply subtyping or
inheritance to composite components. Another possible solution, adopted by ACME, takes
advantage of an ADL’s support for non-functional attributes: in addition to components and
connectors used in a configuration, ACME also specifies the application family to which the
architecture belongs. ACME’s supports for architectural families goes beyond this simple
notational addition: application families are first-class constructs that can also evolve using the
extends feature. The component and connector types declared in a specific family provide a
design vocabulary for all systems that are declared as members of that family.

A more complete summary of this section is given in Table 3-3. The table has been adapted
from [46].

3.9.5 Tool Support for ADLs

A major impetus behind developing formal languages for architectural description is that their
formality renders them suitable to manipulation by software tools to support architectural design,
evolution, analysis, and executable system generation. The need for tool support in architectures
is well recognized. However, there is a definite gap between what is identified as desirable by the
research community and the state of the practice. While every surveyed ADL provides some tool
support, with the exception of C2 and Rapide, they tend to focus on a single area of interest, such
as analysis (e.g., Wright), refinement (e.g., SADL), or dynamism (e.g., Weaves). Furthermore,
within these areas, ADLs tend to direct their attention to a particular technique (e.g., Wright’s
analysis for deadlocks), leaving other facets unexplored. This is the very reason ACME has been
proposed as an architecture interchange language: to enable interaction and cooperation among
different ADLs’ toolsets and thus fill in these gaps. This section surveys the tools provided by the
different languages, attempting to highlight the biggest shortcomings.

3.9.5.1 Active Specification

Active specification support can significantly reduce the cognitive load on software architects.
Only a handful of existing ADLs provide tools that actively support specification of architectures.
In general, such tools can be proactive or reactive. Proactive specification tools act in a
proscriptive manner, similar to syntax-directed editors for programming languages: they limit the
available design decisions based on the current state of architectural design. For example, such

35

CHAPTER 3

tools may prevent selection of components whose interfaces do not match those currently in the
architecture or disallow invocation of analysis tools on incomplete architectures.

UniCon’s graphical editor operates in this manner. It invokes UniCon’s language processing
facilities toprevent errors during design, rather than correct them after the fact. Furthermore, the
editor limits the kinds of players and roles that can be assigned to different types of components
and connectors, respectively. Similarly, C2’sDRADEL development environment proactively
guides the “architecting” process by disallowing certain operations (e.g., architectural type
checking) before others are completed (e.g., topological constraint checking).

Aesop provides a syntax-directed editor for specifying computational behavior offilters.
Although no other types of components are currently supported, integration with external editors

Table 3-3: ADL Support for Modeling Architectural Configurations

Understandability Heterogeneity Scalability Evolution System Families

ACME
explicit, concise textual
specification

open property lists; required
explicit mappings across
ADLs

aided by explicit configu-
rations; hampered by
fixed number of roles

aided by explicit configura-
tions

first-class architec-
tural families

Aesop

explicit, concise graphi-
cal specification; paral-
lel type hierarchy for
visualization

allows multiple languages
for modeling semantics;
supports development in C

aided by explicit configu-
rations; hampered by
fixed number of roles

no support for partial archi-
tectures; aided by explicit
configurations

implementation
independent

C2

explicit, concise textual
and graphical specifica-
tion

enabled by internal compo-
nent architecture; supports
development in C++, Java,
and Ada

aided by explicit configu-
rations and variable num-
ber of connector ports;
used in the construction
of its own tool suite

allows partial architectures;
aided by explicit configura-
tions; minimal component
interdependencies; hetero-
geneous connectors

implementation
independent

Darwin

implicit textual specifi-
cation with many con-
nector details; provides
graphical notation

allows multiple languages
for modeling semantics of
primitive components; sup-
ports development in C++

hampered by in-line con-
figurations

no support for partial archi-
tectures; hampered by in-
line configurations

implementation
independent

MetaH

implicit textual specifi-
cation with many con-
nector details; provides
graphical notation

supports development in
Ada; requires all compo-
nents to contain a process
dispatch loop

hampered by in-line con-
figurations

no support for partial archi-
tectures; hampered by in-
line configurations

implementation con-
straining

Rapide

implicit textual specifi-
cation with many con-
nector details; provides
graphical notation

supports development in
VHDL, C/C++, Ada, and
Rapide

hampered by in-line con-
figurations; used in large-
scale projects

no support for partial archi-
tectures; hampered by in-
line configurations;

implementation
independent

SADL
explicit, concise textual
specification

supports both fine- and
coarse-grain elements

aided by explicit configu-
rations; used in large-
scale project

no support for partial archi-
tectures; aided by explicit
configurations;

implementation
independent

UniCon

explicit textual and
graphical specification;
configuration descrip-
tion may be distributed

supports only predefined
component and connector
types; supports component
wrappers

aided by explicit configu-
rations and variable num-
ber of connector roles

some support for partial
architectures; aided by
explicit configurations;

implementation con-
straining

Weaves

explicit, concise graphi-
cal specification

development in C, C++,
Objective C, and Fortran;
requires all tool fragments
to provide a set of methods

aided by explicit configu-
rations, sockets, and vari-
able number of socket
pads; used in large-scale
project

allows partial architectures;
aided by explicit configura-
tions

implementation con-
straining; support
for application fami-
lies via socket popu-
latedframeworks

Wright

explicit, concise textual
specification

supports both fine- and
coarse-grain elements

aided by explicit configu-
rations and variable num-
ber of roles; used in
large-scale project

suited for partial specifica-
tion; aided by explicit con-
figurations

implementation
independent

Features

ADL

36

CHAPTER 3

for such components is allowed in principle. Aesop also provides a type hierarchy for
visualizations of its architectural elements, where each component and connector class has an
associated visualization class. For example, thepipe subclass ofconnector refers to thearrow
visualization class, which is a subclass of the more generalconnector_line class. These classes
can refer to external editors, so that, e.g., a visualization class in the pipe-and-filter style invokes
an editor on filter code.

Darwin’sSoftware Architect’s Assistant [59] is another example of a proactive specification
tool. TheAssistant automatically adds services of appropriate types to components that are bound
together. It also maintains the consistency of data types of connected ports: changing one port’s
type is automatically propagated to all ports which are bound to it. Finally, the choice of
component properties during specification is constrained via dialogs.

Reactive specification tools detectexisting errors. They may either only inform the architect of
the error (non-intrusive) or also force him to correct it before moving on (intrusive). In the former
case, once an inconsistency is detected, the tool informs the architect, but allows him to remedy
the problem as he sees fit or ignore it altogether. The type checker in C2’sDRADEL environment
provides non-intrusive active specification support: the architect can proceed to the
implementation generation phase even in the presence of type mismatches. In the latter case, the
architect is forced to remedy the current problem before moving on. Certain features of MetaH’s
graphical editor can be characterized as intrusive: the MetaH editor gives the architect full
freedom to manipulate the architecture until theApply button is depressed, after which any errors
must be rectified before the architect may continue with the design.

3.9.5.2 Analysis

Architectural descriptions are often intended to model large, distributed, concurrent systems.
The ability to evaluate the properties of such systems upstream, at the architectural level, can
substantially lessen the cost of any errors. Given that many unnecessary details are abstracted
away in architectures, this task may also be easier than at source code level. Analysis of
architectures has thus been the primary focus of ADL toolset developers.

The types of analyses for which an ADL is well suited depend on its underlying semantic
model and, to a lesser extent, its specification features. For example, Wright, which is based on
CSP, analyzes individual connectors and components attached to them for deadlocks. Aesop
currently provides facilities for checking for type consistency, cycles, resource conflicts, and
scheduling feasibility in its architectures. It also uses Wright’s tools to analyze connectors.
Darwin enables analysis of architectures by instantiating parameters and dynamic components to
enact “what if” scenarios. Similarly, Rapide’s, C2’s, and Weaves’ event monitoring and filtering
tools facilitate analysis of architectures through simulation. Another analysis technique
commonly employed in Weaves, and enabled by its data-flow nature, is the insertion of tool
fragments whose only task is to analyze the data they receive from adjacent fragments in a weave.
MetaH and UniCon both currently support schedulability analysis by specifying non-functional
properties, such as criticality and priority. Given two architectures, SADL can establish their
relative correctness with respect to a refinement map. Finally, C2’sDRADEL environment ensures
that the topological constraints imposed by the style are enforced; it also uses the specification of
provided and required component services to establish type conformance among components in
an architecture or a type hierarchy.

37

CHAPTER 3

Language parsers and compilers are other kinds of analysis tools. Parsers analyze
architectures for syntactic correctness, while compilers establish semantic correctness. All of the
surveyed languages have parsers. Darwin, MetaH, Rapide, and UniCon also have “compilers,”
enabling them to generate executable systems from architectural descriptions, provided the
implementations of individual components already exist. Aesop must provide style-specific
compilers that can process the style-specific formal notations used in modeling components. For
example, Aesop currently provides a compiler for the pipe-and-filter style and its substyles, such
as pipeline. C2 provides a tool that generates executable implementation skeletons from an
architectural model; the skeletons are completed either by developing new functionality or by
reusing OTS components.

Another aspect of analysis is enforcement of constraints. Parsers and compilers enforce
constraints implicit in type information, non-functional attributes, component and connector
interfaces, and semantic models. Rapide also supports explicit specification of other types of
constraints, and provides means for their checking and enforcement. ItsConstraint Checker
analyzes the conformance of a Rapide simulation to the formal constraints defined in the
architecture. C2’s constraint checker currently focuses only on the rules of the style; an initial
integration with the architecture constraint checking tool, Armani [55], allows specification and
enforcement of arbitrary constraints.

3.9.5.3 Implementation Generation

An elegant architectural model that exhibits desirable properties and is amenable to
sophisticated analysis is of little value unless it can be refined into an implementation in a
consistent and systematic manner. A large number of ADLs, but not all, provide such support.

Darwin and UniCon require preexisting component implementations in C++ and C,
respectively, in order to generate applications. Rapide can construct executable systems in the
same manner in C, C++, Ada, and VHDL, or it can use its executable sublanguage. Weaves
generates implementations by providing dynamic linking support for tool fragments already
implemented in C, C++, Objective C, and Fortran.

There are several problems with this approach. Primarily, there is an assumption that the
relationship between elements of an architectural description and those of the resulting executable
system will be 1-to-1. This is not always necessary, and may also be unreasonable, as
architectures are intended to describe systems at a higher level of abstraction than source code
modules. Secondly, there is no guarantee that the specified source modules will correctly
implement the desired behavior; even if the specified modules currently implement the needed
behavior correctly, this approach provides no means of ensuring that any future changes to those
modules are traced back to the architecture and vice versa. Finally, this approach assumes certain
homogeneity among OTS components that are composed into a system.

Aesop provides a C++ class hierarchy for its concepts and operations, such as components,
connectors, ports, roles, connecting a port to a role, and so on. This hierarchy forms a basis from
which an implementation of an architecture may be produced; the hierarchy is in essence a
domain-specific language for implementing Aesop architectures. Aesop currently only generates
C code for architectures in the pipe-and-filter style.

A similar approach is used in C2: we developed a framework of abstract classes for C2
constructs (discussed in Chapter 5). The framework implements interconnection and message

38

CHAPTER 3

passing protocols and enables generation of top-level (“main”) application routines, a concept
required by the implementation languages. The framework has been implemented in C++ and
Java; its subset is also available in Ada. Using this framework, theDRADEL environment
automatically generates an application’s skeleton from an architecture. As discussed in
Section 3.7, this approach is influenced by the DSSA work: we restrict the software development
space to a specific architectural style and implementation infrastructure in order to transfer
architectural decisions to running systems.

Several ADLs—SADL, ACME, and Wright—are currently used strictly as modeling
notations and provide no implementation generation support. It is interesting to note that, while
SADL focuses on refining architectures across levels of abstraction, it does not take the final step
from architectural descriptions to source code.

A more complete summary of this section is given in Table 3-4. The table has been adapted
from [46].

3.9.6 Discussion

Software architecture research provides a wide spectrum of specification and tool support.
The support for certain areas, e.g., formalism in architectures and analyses it enables, has been
pervasive. This has, inevitably, resulted in neglect of other important areas. The support for

Table 3-4: ADL Tool Support

Active Specification Analysis Implementation Generation

ACME none parser none

Aesop
syntax-directed editor for compo-
nents; visualization classes invoke
specialized external editors

parser; style-specific compiler; type checker;
cycle checker; checker for resource conflicts
and scheduling feasibility

build tool constructs system glue code
in C for pipe-and-filter style

C2
proactive “architecting” process in
DRADEL; reactive, non-intrusive type
checker

parser; style rule checker; type checker class framework enables generation of
C/C++, Ada, and Java code;DRADEL
generates application skeletons

Darwin

automated addition of ports to com-
municating components; propagation
of changes across bound ports; dia-
logs to specify component properties;

parser; compiler; “what if” scenarios by
instantiating parameters and dynamic compo-
nents

compiler generates C++ code

MetaH

graphical editor requires error correc-
tion once architecture changes are
applied; constrains the choice of com-
ponent properties via menus

parser; compiler; schedulability, reliability,
and security analysis

DSSA approach; compiler generates
Ada code

Rapide
none parser; compiler; analysis via event filtering

and animation; constraint checker to ensure
valid mappings

executable system construction in C/
C++, Ada, VHDL, and Rapide

SADL
none parser; analysis of relative correctness of

architectures with respect to a refinement map
none

UniCon
graphical editor prevents errors during
design by invoking language checker

parser; compiler; schedulability analysis compiler generates C code

Weaves
none parser; real-time execution animation; low

overhead observers; analysis/debugging com-
ponents in a weave

dynamic linking of components in C,
C++, Objective C, and Fortran; no
code generation

Wright
none parser; model checker for type conformance

of ports to roles; analysis of individual con-
nectors for deadlock

none

Features

ADL

39

CHAPTER 3

architecture-based evolution, in particular, is sparse. ADLs that do address evolution typically
treat an architectural description as a conventional program, relying on a chosen implementation
language to enforce a single form of subtyping/subclassing. Our experience indicates that
architectures require more flexible and heterogeneous evolution methods. This is supported by the
prevalent view of architectures as independent of the programming language(s) in which they may
be implemented.

The separation of an architecture from its implementation also calls into question some
aspects of existing approaches to implementing an architecture. The implementation generation
approaches have largely embraced one of two positions:
• provide programming language-level constructs in the ADL and use acompiler to generate the

executable system from the “architecture”; or
• assume that every architectural component corresponds to an existing implemented module

and employ alinker to join those modules into a system.

Both classes of approaches fail to fully separate the architecture from its implementation(s).
They can also hamper heterogeneity: the former is likely to exclude third-party components,
while the latter has typically assumed that all components are implemented in a single
programming language (see Table 3-4). Explicitly linking the modules prior to the system’s
execution also results in a static implementation architecture. To remedy these shortcomings, we
have developed an approach that combines reuse, arbitrary distribution, explicit connectors in the
implementation, and heterogeneous implementation substrates.

40

CHAPTER 4: Evolution of Components, Connectors, and
Configurations

This chapter presents our solution to the problem of specification-time, architecture-based
evolution of software systems. The solution is comprehensive in that it provides a methodology
for evolving all three top-level architectural constructs: components, connectors, and architectural
configurations. Each is discussed in detail in Sections 4.1, 4.2, and 4.3, respectively. An ADL that
embodies the evolution concepts discussed in this chapter is introduced in Section 4.4.

4.1 Component Evolution

This dissertation’s support for component evolution stems from the recognition that
architecture-level components share certain traits with OO classes, and the resulting expectation
that, in particular, techniques for evolving the latter can be adapted to support the evolution of the
former. An architectural component is similar to an OO class: the services a component provides
are equivalent to a class specification; the services it requires roughly correspond to OO
messages.1 The specific aspect of OOPLs we adapt for supporting component evolution is the OO
type theory. Garlan has argued that an architectural style can be viewed as a system of types,
where the architectural vocabulary (components and connectors) is defined as a set of types [21].
We take this notion further: if specified in an OO context, type hierarchies of architectural
elements are also possible, where, e.g., one component is a subtype of another. Specifying
architectural elements as type hierarchies is a domain-independent approach that structures
relationships between software components and enables us to verify those relationships via type
checking. Furthermore, an existing software module can evolve in a controlled manner via
subtyping.

Our approach to component evolution is indeed based on a type theory. We treat each
component specification in an architecture as a type and support its evolution via subtyping.
However, while programming languages (and several existing ADLs [23], [25], [42]) support a
single subtyping mechanism, architectures may require multiple subtyping mechanisms, many of
which are not commonly supported in programming languages. Therefore, existing programming
language type theories are inadequate for use in software architectures.

Beyond evolution, types are also useful in establishing certain correctness criteria about a
program or an architecture. As discussed in Chapter 3, several existing ADLs support type
checking (e.g., Aesop [23], Darwin [43], Rapide [42], and UniCon [82]). However, as with most
all of the existing programming languages, these ADLs essentially establish simple syntactic
matches among interacting components. Our approach also establishes semantic conformance of
components.

1. Note that some component properties have no OO equivalent. For example, state changes of C2 components
are reified as notifications and no assumptions are made about the existence or number of their recipients,
resulting in the possibility of messages being ignored in a C2 architecture. This is generally not allowed in
an OOPL. Another difference is the granularity, since a component may encapsulate a number of objects
(class instances). These differences are not critical in the case of component evolution [47]. Architectures
address several other issues not found in OOPLs, including connectors as first-class entities and style-
imposed topological constraints on the composition of component instances. However, these differences
have no bearing on individual components and classes.

41

CHAPTER 4

Furthermore, all existing type checking mechanisms regard types as either compatible or
incompatible. Although it is beneficial to characterize component compatibility in this way,
determining thedegree of compatibility, and thus the potential for component interoperability, is
more useful. One of the goals of the software architecture and component-based-development
communities is to provide more extensive support for building systems out of existing parts.
Those parts will typically not perfectly conform to each other. This dissertation will demonstrate
that partially mismatched components can in certain cases still be effectively combined in an
architecture (see Chapter 6). Establishing the degree of compatibility can also help determine the
amount of work necessary to retrofit a component for use in a system.

The contributions of our method for supporting component evolution are threefold:
• a taxonomy that divides the space of potentially complex subtyping relationships into a small

set of well defined, manageable subspaces;
• a flexible type theory for software architectures that is domain-, style-, and ADL-independent.

By adopting a richer notion of typing, this theory is applicable to a broad class of design,
evolution, and reuse circumstances; and

• an approach to establishing type conformance between interoperating components in an
architecture. This approach is better suited to support large-scale development and OTS reuse
facets of architecture research than other existing techniques.

4.1.1 General Principles of the Type Theory

When treating collections of architectural components as type hierarchies, architectural
modeling involves
• identifying the types needed in an architecture (abstract components);
• selecting and evolving suitable existing types via subtyping (existing component

specifications) to achieve the desired functionality; and
• creating new types (custom-designed components).

As discussed in above, OOPL subtyping alone is not sufficient to fulfill the evolution needs of
software architectures. Instead, architectures need to expand upon the lessons learned from
OOPLs and provide facilities forheterogeneous subtyping. To this end, we have developed a type
theory for software architectures, represented by a framework for understanding component

U

Nam Beh

ImpInt

Figure 4-1. A framework for understanding OO subtyping relationships as regions in a space of type systems.

42

CHAPTER 4

subtyping relationships as regions in a space of type systems, shown in Figure 4-1. The entire
space of type systems is labeledU. The regions labeledInt andBeh contain systems that demand
that two conforming types share interface and behavior, respectively. TheImp region contains
systems that demand that a type share particular implementations of all supertype methods, which
also implies that types preserve the behavior of their supertypes. TheNam region demands only
shared method names, and thus includes every system that demands interface conformance.

Each subtyping relationship described by the Palsberg and Schwartzbach taxonomy [65] and
summarized in Chapter 3 can be denoted via set operations on these regions. For example,
behavioral conformance, which requires that both interface and behavior of a type be preserved,
corresponds to the intersection of the Int and Beh regions and is expressed asint and beh
(Figure 4-2b). Each region in Figure 4-1 encompasses a set of variations of a given subtyping
relationship, rather than a single relationship. Thus, for example, the different flavors of the
behavioral conformance relationship, described by Zaremski and Wing [99], represent different
points in theint and beh subspace. The architectural type system we propose in the next section
also represents a selection of individual points within the different subspaces.

This type theory is motivated by our specific experience with C2-style architectures, where we
have encountered numerous situations in which new components are created by preserving one or
more aspects of one or more existing components [48], [50]. Several examples are shown in
Figure 4-2. We relate them to specific scenarios from the KLAX architecture described in
Chapter 2:
• interface conformance (int) is useful when interchanging components without affecting

dependent components. TheSpellingLogic component in the Spelling KLAX architecture
(Figure 2-6) used interface subtyping to provide a new implementation for the
TileMatchingLogic component of the original architecture (Figure 2-5);

• behavioral conformance (int and beh) can be useful, e.g., in demonstrating correctness during
component substitution. In KLAX, we employed behavioral subtyping to provide an Ada

U
Nam Beh

ImpInt

U
Nam Beh

ImpInt

U
Nam Beh

ImpInt

U
Nam Beh

ImpInt

int int and beh

int and imp imp and not int

(a) (b)

(c) (d)

Figure 4-2. Examples of component subtyping relationships encountered in practice.

43

CHAPTER 4

implementation of the originalTileArtist written in C++. Behavioral subtyping results in sets of
substitutable components, potentially facilitating semi-automatic component selection during
system generation;

• strictly monotone subclassing(int and imp) can be useful, e.g., when extending the behavior of
an existing component while preserving correctness relative to the rest of the architecture. In
KLAX, it was used to evolve a component with functionality that enables it to respond to
queries from a debugger;

• implementation conformance with different interfaces (impand not int) is useful in describing
domain translators in C2, which allow a component to be fitted into an alternate domain of
discourse. Domain translators provide functionality similar to that of the adapter OO design
pattern [19];

• multiple conformance mechanisms allow creation of a new type by subtyping from several
types, potentially using different subtyping mechanisms. In the KLAX architecture, for
example,SpellingLogicfrom Figure 2-6 was created by monotone subclassing of the
TileMatchLogic component from the original architecture in Figure 2-5, and strictly monotone
subclassing of an OTS spell checker.

These examples demonstrate that no single type conformance mechanism is adequate in
describing all the subtyping relationships in a component hierarchy or an architecture. Note that
we referred to the first three examples (Figure 4-2a-c) using the terminology from the Palsberg-
Schwartzbach taxonomy. However, while in OOPLs the three subtyping mechanisms would be
provided by three separate languages, in architectures they all may need to be supported by the
same ADL and may actually be applied to components in a single architecture. Also, the example
in Figure 4-2d does not have a corresponding OOPL mechanism, further motivating the need for a
flexible type theory for software architectures. Relaxing the rules of a particular method to
support our needs would sacrifice type checking precision. In order to describe typing
relationships accurately while preserving type checking quality, we have opted to use multiple
type conformance mechanisms to describe and evolve architecture-level components.

At the same time, by giving a software architect more latitude in choosing the direction in
which to evolve a component, we allow some potentially undesirable side effects. For example, by
preserving a component’s interface, but not its behavior, the component and its resulting subtype
may not be interchangeable in a given architecture. However, it is up to the architect to decide
whether to preserve architectural type correctness, in a manner similar to America [4], Liskov and
Wing [40], Leavens et al. [16], [39], and others (depicted in Figure 4-2b), or simply to enlarge the
palette of design elements in a controlled manner, in order to use them in the future.

4.1.2 Architectural Type System

In this section we present a type system for software architectures that instantiates the type
theory. The two possible applications of an architectural type theory—evolution of existing
components by software architects, and type checking of architectural descriptions—are
discussed below in Sections 4.1.2.2 and 4.1.2.3, respectively. All definitions are specified in Z, a
language for modeling mathematical objects based on first order logic and set theory [84]. Z uses
standard logical connectives (, , , etc.) and set-theoretic operations (to denote sets, , ,

, etc.). For a brief overview of Z, see Appendix A.
∨ ∧ ⇒ ∈ ∪

∩

44

CHAPTER 4

4.1.2.1 Components

Every component specification at the architectural level is anarchitectural type. We
distinguish architectural types frombasic types (e.g., integers, strings, arrays, records, etc.).
Unlike OOPLs, in which objects communicate by passing around other objects, in software
architectures components are distinguished from the data they exchange during communication.
In other words, a “component” in the sense in which we use it here is never passed from one
component in an architecture to another.

A component has a name, a set of interface elements, an associated behavior, and (possibly)
an implementation. Each interface element has a direction indicator (provided orrequired), a
name, a set of parameters, and (possibly) a result. Each parameter, in turn, has a name and a type.

A component’s behavior consists of an invariant and a set of operations. The invariant is used
to specify properties that must be true of all component states. Each operation has preconditions,
postconditions, and (possibly) a result. An operation is defined for a set of input states. Given an
input state, the operation produces an output state. The sets of input and output states may or may
not be disjoint. Since operations are decoupled from interface elements, they also provide a set of
variables. Operation variables are used to express preconditions and postconditions; the values of
operation variables and (relevant) component state variables at a given time represent the
operation’s current state. Like interface elements, operations can beprovided orrequired. Only
provided operations will have an implementation in a given component. The preconditions and
postconditions of required operations express theexpected semantics for those operations. The
relationship of component invariants to operation pre- and postconditions can be summarized as
follows. Given a component C and operation O provided by C, for all valid input states of O that
satisfy C’s invariant and O’s precondition, there exists a valid output state that satisfies both O’s
postcondition and C’s invariant. Formal specification of an architectural type (component) is
shown in Figure 4-3.2

Since we separate the interface from the behavior, we define a function,int_op_map, which
maps every interface element to an operation of the behavior. This function is a total surjection:
each interface element is mapped to a single operation, while each operation implements at least
one interface. An interface element can be mapped to an operation only if the types of its
parameters are subtypes of the corresponding variable types in the operation, while the type of its
result is a supertype of operation’s result type. This property directly enables a single operation to
export multiple interfaces.

4.1.2.2 Architectural Type Conformance

Informally, a subtyping relation, , between two components, C1 and C2, is defined as the
disjunction of thenam, int, beh, andimp relations shown in Figure 4-1:

(C 1,C 2:Component)(C 2 C1
C2 namC1 C2 int C1 C2 beh C1 C2 imp C1)

We consider these four relations in more detail below.

Name Conformance.Name conformance requires that a subtype share its supertype’s interface
element names and all interface parameter names. The subtype may introduce additional interface

2. Capitalized identifiers are the basic (unelaborated) types in a Z specification. Trivial schemas and schemas
whose meanings are obvious are omitted for simplicity.

≤

∀ ≤ ⇔
≤ ∨ ≤ ∨ ≤ ∨ ≤

45

CHAPTER 4

Variable

name : STRING

type : BASIC TYPE

value : BASIC TYPE INSTANCE

Int Element

dir : DIRECTION

name : STRING

params : �Variable

result : BASIC TYPE

Operation

vars : �Variable

precond : Logic Pred

postcond : Logic Pred

result : BASIC TYPE

dir : DIRECTION

implementation : seq STATEMENT

in states : � STATE

out states : � STATE

current state : STATE

dir = REQ) implementation = �

current state 2 in states _ current state 2 out states

vars � current state

Oper Computation

�Operation

Computation : STATE $ STATE

#vars0
= #vars

dir 0
= dir

implementation 0
= implementation

in states0
= in states

out states0
= out states

domComputation = in states

ranComputation = out states

current state 2 in states

current state0 2 out states

8 in; out : STATE j in 2 in states ^ out 2 out states �

(in; out) 2 Computation

,

in = current state ^

out = current state0 ^

(vars [precond :var operands) � in ^

(vars0 [postcond :var operands) � out

Figure 3-3 continues on the next page

46

CHAPTER 4

Component

Basic Type Conformance

name : STRING

state vars : �Variable

interface : � Int Element

invariant : Logic Pred

operations : �Operation

int op map : Int Element � Operation

states : � STATE

current states : � STATE

dom int op map = interface

ran int op map = operations

current states � states

8 o : Operation j o 2 operations �

o:vars \ state vars = � ^

(o:in states [o:out states) � states ^

o:current state 2 current states ^

o:precond :var operands � (o:vars [state vars) ^

o:postcond :var operands � (o:vars [state vars)

8 ie : Int Element ; o : Operation j

ie 2 interface ^ o 2 operations �

(ie; o) 2 int op map

,

ie:dir = o:dir ^

(ie:result ; o:result)2 Basic Conf ^

(8 iv : Variable j iv 2 ie:params �

9 ov : Variable j ov 2 o:vars �

(ov :type; iv :type) 2 Basic Conf)

State Transition

�Component

Oper Computation

name0 = name

#state vars0 = #state vars

interface0 = interface

int op map0 = int op map

states0 = states

current states0 6= current states

8 s : STATE ; o : Operation j s 2 current states ^ o 2 operations �

s = o:current state ^ s 2 o:in states

)

state vars [o:vars � s ^

o:precond :Value(state vars [o:vars) = TRUE ^

invariant :Value(state vars [o:vars) = TRUE ^

(9 s2 : STATE j s2 = Computation(s) �
s2 2 current states 0 ^

o 2 operations 0 ^

state vars 0 [o:vars � s2 ^
o:postcond :Value(state vars0 [o:vars) = TRUE ^

invariant :Value(state vars 0 [o:vars) = TRUE)

Figure 4-3. Z specification of architectural types (components).
Logic_Pred is a schema that denotes a logical predicate, which is either aLogical_Expression or a
Boolean_Constant (both evaluate to eitherTRUE or FALSE). A Logical_Expression consists of operands and
operators.STATE is defined as a set ofVariables. RelationBasic_Conf is defined in the schema
Basic_Type_Conformance and relates two basic types, the first of which is a supertype of the second.

47

CHAPTER 4

elements and additional parameters to existing interface elements. Two interface elements in a
single component can have identical names, but then their sets of parameter names must differ.
Name conformance rules are formally specified in Figure 4-4.

Note that the possibility of introducing additional parameters to existing interface elements is
different from method overloading and is typically not allowed in a programming language.
However, software architectures are at a level of abstraction that is above source code and this
feature may be supported by the architecture implementation infrastructure. For example, the C2
implementation infrastructure discussed in the next chapter allows the sender of the
communication message to include parameters the receiver component does not expect; those
parameters are simply ignored by the receiver. It is up to the architect to decide whether such a
situation should be permitted in a given architecture.

Interface Conformance.Name conformance is a rather weak conformance requirement and we
have encountered it in practice only as part of the stronger interface conformance relationship.
Component C2 is an interface subtype of C1 if and only if it provides at least (but not necessarily
only) the interface elements provided by C1, andmatching parameters and results for each
interface element. Two parameters belonging to the two components’ interface elements match if
and only if they have identical names (Param_Name_Conformance schema in Figure 4-4) and

Param Name Conformance

Prm Nam Conf : Int Element $ Int Element

8 ie1; ie2 : Int Element �

(ie1; ie2) 2 Prm Nam Conf

,

(8 p1 : Variable j p1 2 ie1:params �

9 p2 : Variable j p2 2 ie2:params �

p1:name = p2:name ^

(8 p3; p4 : Variable j

p3 2 ie1:params ^ p4 2 ie2:params �

p3:name = p4:name

,

(p1 = p3 ^ p2 = p4) _

(p1 6= p3 ^ p2 6= p4)))

Name Conformance

Param Name Conformance

Nam Conf : Component $ Component

8 c1; c2 : Component �

(c1; c2) 2 Nam Conf

,

(8 ie1 : Int Element j ie1 2 c1:interface ^ ie1:dir = PROV �

9 ie2 : Int Element j ie2 2 c2:interface ^ ie2:dir = PROV �

ie1:name = ie2:name ^

(ie1; ie2) 2 Prm Nam Conf) ^

(8 ie2 : Int Element j ie2 2 c2:interface ^ ie2:dir = REQ �

9 ie1 : Int Element j ie1 2 c1:interface ^ ie1:dir = REQ �

ie1:name = ie2:name ^

(ie2; ie1) 2 Prm Nam Conf)

Figure 4-4. Name Conformance.

1

48

CHAPTER 4

each parameter type of C1 is a subtype of the corresponding parameter type of C2 (contravariance
of parameters, defined in theParam_Conformance schema in Figure 4-5). The results of two
corresponding interface elements match if the result type in C1 is a supertype of the result type in
C2 (covariance of result). For each interface element, the subtype must provide at least (but not
necessarily only) the parameters that match the supertype’s parameters.

The relationship among provided interface elements ensures that the subtype’s functionality
corresponding to a given interface element can always be accessed in the same manner as the
supertype’s functionality corresponding to the matching interface element. This means that the
subtype can always be used in the place of the supertype.3 To ensure that the same is true in the
case ofrequired interface elements, this relationship is reversed: the subtype can requireat most
the interface elements required by the supertype (with the appropriate relationship among
parameters). If this were not the case, i.e., if the subtype required more than the supertype, the
subtype could not be used in the place of the supertype. Interface conformance rules are formally
specified in Figure 4-5.

Behavior Conformance.Behavior conformance requires that the invariant of the supertype be
ensured by that of the subtype. Furthermore, each provided operation of the supertype must have
a corresponding provided operation in the subtype (the subtype can also introduce additional

3. Note that this relationship only addresses interfaces and that it is possible for the subtype to provide behavior
that is entirely different from the supertype’s. This issue is addressed below.

Figure 4-5. Interface Conformance.

Param Conformance

Basic Type Conformance

Param Name Conformance

Prm Conf : Int Element $ Int Element

8 ie1; ie2 : Int Element �

(ie1; ie2) 2 Prm Conf

,

(ie1; ie2) 2 Prm Nam Conf ^

(8 p1; p2 : Variable j

p1 2 ie1:params ^ p2 2 ie2:params ^ p1:name = p2:name �

(p2:type; p1:type) 2 Basic Conf)

Interface Conformance

Name Conformance

Param Conformance

Int Conf : Component $ Component

8 c1; c2 : Component �

(c1; c2) 2 Int Conf

,

(c1; c2) 2 Nam Conf ^

(8 ie1; ie2 : Int Element j

ie1 2 c1:interface ^ ie2 2 c2:interface ^ ie1:name = ie2:name �

((ie1:dir = ie2:dir = PROV ^ (ie1; ie2) 2 Prm Nam Conf))

((ie1; ie2) 2 Prm Conf ^ (ie1:result ; ie2:result) 2 Basic Conf)) ^

((ie1:dir = ie2:dir = REQ ^ (ie2; ie1) 2 Prm Nam Conf))

((ie2; ie1) 2 Prm Conf ^ (ie2:result ; ie1:result) 2 Basic Conf)))

49

CHAPTER 4

operations), where the subtype’s operation has the same direction indicator as the supertype’s, the
same or weaker preconditions, same or stronger postconditions, and preserves result covariance.
This relationship is reversed for required operations; the argument for doing so is analogous to the
one used above for interface elements.

No constraints are placed on the relationship between the types of the supertype’s and
subtype’s corresponding operation variables. This relationship can vary, but is always an instance
of one of the two cases depicted in Figure 4-6. Either relationship between the variable types is
allowed so long as the proper relationships between operation pre- and postconditions are
maintained. The rules for behavior conformance are specified in Figure 4-7.

The subtyping relationship that results from the combination of theBehavior_Conformance
andInterface_Conformance schemas (in particular, theBeh_Conf andInt_Conf relations they
define), and the mapping function,int_op_map, represents a point in the region depicted in
Figure 4-2b. This relationship is similar to other notions of behavioral subtyping in that it
guarantees substitutability between a supertype and a subtype in an architecture.

Implementation Conformance.Although useful in practice for evolving components,
implementation conformance is not a particularly interesting relationship from a type-theoretic
point of view. Implementation conformance may be established with a simple syntactic check if
the operations of the subtype have identical implementations (both syntactically and semantically)
as the corresponding operations of the supertype. Implementation conformance between two
types thus also requires a behavioral equivalence between their shared operations, as shown in
Figure 4-8. Note that establishing semantic equivalence between syntactically different
implementations is undecidable in general. Techniques for making this problem tractable are
outside the scope of this dissertation.

Supertype Subtype

Interface

Operation

Parameter

Variable
Type

Type
[5..6]

[2..8]

Component Component

[4..7]

[3..8]

[2..9]

subtype

(contravariance of arguments)

su
bt

yp
e

(in
t_

op
_m

ap
)

su
bt

yp
e

(in
t_

op
_m

ap
)

subtype

subtype

(a)

(b)

Figure 4-6. Relationship between supertype’s and subtype’s operation variable types.
Contravariance of arguments and theint_op_map function do not guarantee a particular relationship between
supertype’s and subtype’s operation variable types (illustrated using integer subranges): (a) supertype component’s
variable type is a supertype of subtype component’s; (b) supertype component’s variable type is a subtype of
subtype component’s.

50

CHAPTER 4

4.1.2.3 Type Checking a Software Architecture

In order to discuss type conformance of interoperating components, we must define an
architecture that includes those components. There is no single, universally accepted set of
guidelines for composing architectural elements. Instead, architectural topology depends on the

Figure 4-7. Behavior conformance.
Logic_Impl is a relation that denotes that the first element in the relation implies the second.

Oper Conformance

Basic Type Conformance

Logical Implication

Oper Conf : Operation $ Operation

8 o1; o2 : Operation �

(o1; o2) 2 Oper Conf

,

(8 v1 : Variable j v1 2 o1:vars �

9 v2 : Variable j v2 2 o2:vars �

(v1:type; v2:type) 2 Basic Conf _

(v2:type; v1:type) 2 Basic Conf) ^

(o1:precond ; o2:precond) 2 Logic Impl ^

(o2:postcond ; o1:postcond) 2 Logic Impl ^

(o1:result ; o2:result) 2 Basic Conf

Behavior Conformance

Oper Conformance

Logical Implication

Beh Conf : Component $ Component

8 c1; c2 : Component �

(c1; c2) 2 Beh Conf

,

(c2:invariant ; c1:invariant) 2 Logic Impl ^

(8 o1 : Operation j o1 2 c1:operations ^ o1:dir = PROV �

9 o2 : Operation j o2 2 c2:operations ^ o2:dir = PROV �

(o1; o2) 2 Oper Conf) ^

(8 o2 : Operation j o2 2 c2:operations ^ o2:dir = REQ �

9 o1 : Operation j o1 2 c1:operations ^ o1:dir = REQ �

(o2; o1) 2 Oper Conf)

Implementation Conformance

Behavior Conformance

Imp Conf : Component $ Component

8 c1; c2 : Component �

(c1; c2) 2 Imp Conf

,

(c1; c2) 2 Beh Conf ^

(c1:invariant ; c2:invariant) 2 Logic Impl ^

(8 o1; o2 : Operation j o1 2 c1:operations ^ o2 2 c2:operations �

(o1; o2) 2 Oper Conf) (o2; o1) 2 Oper Conf ^

(o2; o1) 2 Oper Conf) (o1; o2) 2 Oper Conf ^

o1:dir = PROV) o1:implementation = o2:implementation)

Figure 4-8. Implementation Conformance.

51

CHAPTER 4

ADL in which the architecture is modeled, characteristics of the application domain, and/or the
rules of the chosen architectural style. We therefore had to make certain choices in specifying
properties of an architecture, partly influenced by our experience with C2:
• we model connectors explicitly, unlike, e.g., Darwin [43] and Rapide [42];
• we allow direct connector-to-connector links, unlike, e.g., Wright [3];
• finally, we assume certain topological constraints that are derived from the rules of the C2 style

discussed in Chapter 2: a component is attached to single connectors on its top and bottom
sides, while a connector can be attached to multiple components and connectors on its top and
bottom.

None of the above choices is required by our type theory. It is indeed possible to provide a
definition of architecture that reflects any other compositional guidelines. However, these kinds of
decisions were necessary in order to formally specify and check type conformance criteria.

The formal definition of architecture is given in Figure 4-9. Connectors are treated simply as
communication routing devices (as in C2); therefore, their definitions are omitted. Two
components can interoperate if there is a communication link between them. This means that they

Figure 4-9. Formal definition of architecture.

Architecture

components : �Component

connectors : �Connector

comp conn : Component � Connector

conn comp : Connector $ Component

conn conn : Connector $ Connector

Comm Link : Component $ Component

domcomp conn = components

ran comp conn = connectors

domconn comp = connectors

ran conn comp = components

domconn conn = connectors

ran conn conn = connectors

domComm Link = components

ranComm Link = components

8 c : Component ; b : Connector j
c 2 components ^ b 2 connectors �

(c; b) 2 comp conn) (b; c) =2 conn comp ^
(b; c) 2 conn comp) (c; b) =2 comp conn

8 b1; b2 : Connector j b1 2 connectors ^ b2 2 connectors �

(b1; b2) 2 conn conn) (b1 6= b2 ^ (b2; b1) =2 conn conn)

8 c1; c2 : Component j c1 2 components ^ c2 2 components �

(c1; c2) 2 Comm Link

,
c1 6= c2 ^

(9 b1; b2 : Connector j b1 2 connectors ^ b2 2 connectors �
((c1; b1) 2 comp conn ^
(b2; c2) 2 conn comp ^
(b1; b2) 2 conn conn�)

_
((c2; b1) 2 comp conn ^
(b2; c1) 2 conn comp ^
(b1; b2) 2 conn conn�))

52

CHAPTER 4

are either on the opposite sides of the same connector or one can be reached from the other by
following one or more connector-to-connector links (defined by theComm_Link relation).

For example, in the KLAX architecture from Figure 2-5, there is a communication link
betweenStatusADT andStatusLogic components (via a single connector-to-connector link).
There is also a link betweenStatusADT andTileMatchLogic components (different sides of the
same connector). On the other hand, there is no communication link betweenStatusADT and
ClockLogiccomponents: they are attached above the same (top-most) connector; however, the
Comm_Link relation mandates that they be on different sides of a connector, which reflects C2’s
communication rules.

Given this definition of architecture, it is possible to specify type checking predicates. As
already discussed, components need not be able to fully interoperate in an architecture. The two
extreme points on the spectrum of type conformance are:
• minimal type conformance, where at least one service (interface and corresponding operation)

required by each component is provided by some other component along its communication
links; and

• full type conformance, where every service required by every component is provided by some
component along its communication links.

They are defined in Figure 4-10. The predicates expressing the degree of utilization of a
component’s provided services in an architecture can be specified in a similar manner (see
Appendix A).

Minimal Type Conformance

Interface Conformance

Behavior Conformance

Architecture

8 c1 : Component j c1 2 components �

9 c2 : Component j c2 2 components ^ (c1; c2) 2 Comm Link �

(9 ie1; ie2 : Int Element j

ie1 2 c1:interface ^ ie2 2 c2:interface �

ie1:name = ie2:name ^

ie1:dir = REQ ^ ie2:dir = PROV ^

(ie1; ie2) 2 Prm Conf ^

(c1:int op map(ie1);

c2:int op map(ie2)) 2 Oper Conf)

Full Type Conformance

Interface Conformance

Behavior Conformance

Architecture

8 c1 : Component ; ie1 : Int Element j

c1 2 components ^ ie1 2 c1:interface ^ ie1:dir = REQ �

9 c2 : Component ; ie2 : Int Element j

c2 2 components ^ (c1; c2) 2 Comm Link ^

ie2 2 c2:interface ^ ie2:dir = PROV �

ie1:name = ie2:name ^

(ie1; ie2) 2 Prm Conf ^

(c1:int op map(ie1); c2:int op map(ie2)) 2 Oper Conf

Figure 4-10. Type conformance predicates.

53

CHAPTER 4

Depending on the requirements of a given project (reliability, safety, budget, deadlines, and so
forth), type conformance corresponding to different points along the spectrum may be adequate.
What would be classified as a “type error” in one architecture may be acceptable in another.
Therefore, architectural type correctness is expressible in terms of a percentage corresponding to
the degree of conformance (per component or for the architecture as a whole).

Type Conformance and Off-the-Shelf Reuse.Establishing type conformance brings up the
question of how much a component may know about other components with which it will
interoperate. Although magnified by our separation of provided from required component
services, this issue is not unique to our type theory. Rather, it is pertinent to all approaches that
model behavior of a type and enforce behavioral conformance.

To demonstrate behavioral conformance between two interoperating components, by
definition one must show that a specific relationship holds between their respective behaviors.
This relationship is one of several flavors of equivalence or implication, summarized in [99].

Establishing whether two components can interoperate includes matching the specification of
what is expected by a required operation of one component against what another component’s
provided operation supplies. Behavior of an operation is modeled in terms of its interface
parameters (in our approach, operation variables) and component state variables. A component
may thus need to refer to state variables that belong to another component in order to specify a
required operation’s expected behavior. However, doing so would be a violation of the “provider”
component’s abstraction. It would also violate some basic principles of component-based
development:
• the designer may not know in advance which, if any, components will contain a matching

specification for the required operation and, thus, what the appropriate (types of) state
variables are. This is particularly the case when using behavior matching to aid component
discovery and retrieval;

• large-scale, component-based development treats an off-the-shelf component as a black box,
thereby intentionally hiding the details of its internal state. Having to explicitly refer to those
details would require them to be exposed.

Existing approaches to behavior modeling and conformance checking have not addressed this
problem. The problem does not apply to component subtyping: the designer must know all of
existing component’s details in order to effectively evolve it. Thus, those approaches that focus on
behavioral subtyping (e.g., America [4], Liskov and Wing [40], and Leavens et al. [16], [39]) do
not encounter this problem. Zaremski and Wing [99] do address component retrieval and
interoperability. However, their approach makes the very assumption that the designer will have
access to a “provider” component’s state (via a shared Larch trait [30]). Fischer and colleagues
[18], [79] model components at the level of a single procedure. In order to be able to properly
specify pre- and postconditions, they include all the necessary variables as procedure parameters.
Thus, for example, the stack itself is passed as a parameter to thepush procedure.

The solution to this problem we propose is based on two requirements arising from a more
realistic assessment of component-based development:
• we do not have access to a “provider” component’s internal state (unlike Zaremski and Wing’s

approach), and
• we cannot change the way many software components, especially in the OO world, are

modeled (unlike Fischer et al.).

54

CHAPTER 4

These two requirements result in an obvious third requirement:
• we must somehow refer to a “provider” component’s state when modeling operations, even

though we do not know what that state is.

This seeming paradox actually suggests our solution. We model a required operation as if we
have access to a “provider” component’s state. However, since we do not know the actual
“provider” state variables or their types, we introduce a generic type,STATE_VARIABLE , which is a
supertype of all basic types. Thus, variables of this type are essentially placeholders in logical
predicates. When matching, e.g., a required and provided precondition, we attempt to unify
(instantiate) each variable of theSTATE_VARIABLE type in the required precondition with a
corresponding state variable in the provided precondition. If the unification is possible and the
implication (with all instances ofSTATE_VARIABLE placeholders replaced with actual variables)
holds, then the two preconditions conform.

4.1.3 Summary

This section defined the major elements of our type theory: multiple subtyping relationships
(Section 4.1.2.2) and type conformance (Section 4.1.2.3). The type theory couples the rigor
necessary to ensure the substitutability of a subtype in the place of its supertype (by combining
interface and behavior conformance) with the unprecedented flexibility of evolving a component
via heterogeneous subtyping. Certain characteristics of our type theory are unique (e.g.,
separation of interface from behavior) and give rise to seemingly anomalous relationships when
considered in isolation (e.g., supertype and subtype operation variable types depicted in Figure 4-
6). However, the type theory as a whole supplies mechanisms that prevent any such anomalies.
For example, theint_op_map function constrains the actual use of operation variables with the
types of interface parameters through which the variables are accessed. The desired relationship
between a supertype’s and subtype’s operation variables is thus ensured.

4.2 Connector Evolution

One of the greatest benefits of architectures is theirseparation of computation from
interaction in a system. Software connectors are elevated to a first-class status, and their benefits
have been demonstrated by a number of existing approaches [3], [82], [89]. Software connectors
are a key enabler of this dissertation’s support for architectural configuration evolution. The
specific role of connectors is to remove from components the responsibility of knowing how they
are interconnected and isolate all decisions regarding communication, mediation, and
coordination in a system. At the same time, connectors also introduce a layer of indirection
between components. Any potential penalties paid due to this indirection should be outweighed
by other benefits of connectors, such as their role as facilitators of evolution. Connectors with a
rigid structure and static interfaces hamper evolution. One of the hypotheses of our work is that
flexible, i.e., evolvable connectors result in increased software adaptability by more easily
accommodating changes to their attached components.

Existing architectural approaches have by and large sacrificed the potential flexibility
introduced by connectors in order to support more powerful architectural analyses. For example,
Wright [3] and UniCon [82] require the architect to specify the types of componentports and
players, respectively, that can be attached to a given connectorrole. Furthermore, although some
variability is allowed in specifying the number of components that a given connector will be able

55

CHAPTER 4

to support (parameterized number of roles in Wright; potentially unbounded number of players
with which each role may be associated in UniCon), once these variables are set at architecture
specification time, neither approach allows their modification.

Evolvability was a guiding principle in the design of the connectors introduced and employed
in this dissertation. We achieve connector evolvability by assigning two properties to connectors:
context-reflective interfaces and varying degrees of information exchange. Each is discussed
below. Using the two techniques in tandem gives us unparalleled flexibility in evolving connectors
and, in turn, supporting the evolution of architectures. The connectors discussed in this
dissertation are also part of the C2 architectural style; for simplicity we will refer to them as “C2
connectors” below.

4.2.1 Context-Reflective Interfaces

A unique aspect of C2 connectors, and a direct facilitator of architectural evolution, are their
context-reflective interfaces. This is a very simple concept, but one that has powerful
consequences. A connector does not export a specific interface. Instead, it acts as a
communication conduit which, in principle, supports communication among any set of
components. The number of connector ports is not predetermined, but changes as components are
attached or detached. This allows any C2 connector to support arbitrary addition, removal,
replacement, and reconnection of components or other connectors, as shown in Figure 4-11. In
other words, C2 connectors are inherently evolvable. The “interface” exported by a C2 connector
is thus a function of its attached components’ interfaces.

Conn1

Conn1

C1 C2 C3

Conn1

C1

C1

C2

Conn1

C2

C1 C3

(a) (b)

(c) (d)

Figure 4-11. C2 connectors havecontext reflective interfaces.
Each C2 connector is capable of supporting any number of C2 components.
(a) Software architect selects a set of components and a connector from a design palette. The connector has no

communication ports, since no components are attached to it.
(b-d) As components are attached to the connector to form an architecture, the connector creates new

communication ports to support component intercommunication.

56

CHAPTER 4

In order to elaborate more formally on this relationship between the interface of a C2
connector and the interfaces of its attached components, we consider a static, “snapshot” view of
a connector. Figure 4-12 shows a C2 connector Bi, with the components Ctj and Cbk attached to its
top and bottom respectively. The connector’s upper and lower domains of discourse (i.e., the
connector’s interface) are completely specified in terms of these components’ interfaces.

Consider the notifications that come in from the components Ctj above the connector:

Since connectors have the ability to filter messages, as discussed below, the notifications that are
emitted out of the bottom of a connector are a subset of the notifications that the connector
receives from above. Thus, for each connector Bi, it is possible to identify the functionFilter_TB,
such that

Similarly, consider the requests that come in from the components Cbk below the connector:

If the connector also filters requests, the requests that come out of its top are a subset of those that
come in from below, so the functionFilter_BT is defined as follows

Therefore, a C2 connector’s interface is defined by the unions of the interfaces of the
components above and below it, along with any filtering that the connector does to those
interfaces. The interface will evolve dynamically as components are added, removed, and/or
replaced.

Bi .top_in C
tj

.bottom_out
j

∪=

...

Bi

Bi.top_in1..nBi.top_out1..n

Bi.bottom_in1..mBi.bottom_out1..m

Ct1 Ct2 Ctn

...Cb1 Cb2 Cbm

Figure 4-12. The interface of a C2 connector is a function of the interfaces of its attached components.

Bi .bottom_out Filter_TB Bi .top_in()=

Bi .bottom_in C
bk

.top_out
k

∪=

Bi .top_out Filter_BT Bi .bottom_in()=

57

CHAPTER 4

4.2.2 Degree of Information Exchange

Another direction in which connectors may evolve deals with the amount of information that
is shared between two components that communicate through a given connector. Our practical
experience has indicated that, under certain circumstances, architectures can describe meaningful
functionality even if their components cannot fully interoperate. In other cases, it is preferable to
limit the degree of information exchange among components, e.g., to eliminate undesired
behavior or improve performance. Enabling the architect to make the relevant decisions and
change them during the lifetime of an architecture is thus critical. Isolating those changes to an
appropriate construct will minimize the amount of modification to the architecture necessary to
enact the changes. Since connectors are responsible for controlling all interaction among
components, they are the natural construct to manage this aspect of interaction.

Information filtering constitutes a spectrum along which different amounts of information
may be filtered out (or, conversely, propagated) by a connector. The two extremes areno
interaction, meaning that the connector allows no information to be exchanged between two or
more components, andpartial communication,meaning that the connector essentially broadcasts
all the information it receives to all of the attached components, regardless of whether they need
or even understand the information.

Different points along this spectrum correspond to the current support for message exchange
and filtering in C2 connectors, discussed in Chapter 2:
• A connector supportsno interaction among its attached components if it employs themessage

sink filtering mechanism, whereby it filters out all messages it receives.
• Full communicationcorresponds to point-to-point information exchange in an architecture,

achieved by using connectors that employ themessage filtering mechanism. This is the optimal
information exchange policy, since every component receives only those messages it needs and
emits only the messages needed by other components in the architecture.

• As already discussed, a C2 connector that broadcasts messages to all of its attached
components supportspartial communication. The messages not understood by a given
component are simply ignored (hence the communication is partial). Partial communication
actually represents a range, rather than a single value, along the spectrum of information
exchange, depending on whether only certain or all messages are broadcast by the connector. A
variant of partial communication may occur in connectors that employnotification filtering,
whereby a component receives only those notifications for which it explicitly registers. Since
C2 components are substrate independent and thus are unable to register for requests they
receive, partial communication occurs if the connector broadcasts the component’s requests to
all components above it.

The notions of no interaction and partial and full communication are formally defined as part of
the formal specification of the C2 style, given in Appendix A.

A connector evolves by supporting different filtering mechanisms. Connectors do not provide
any application-level functionality. However, their evolution may alter the behavior of an
application. For example, a broadcast connector can evolve into a point-to-point connector
without affecting the functionality of the encompassing architecture (although this is likely to
improve the application’s performance, as no unnecessary message traffic occurs). On the other
hand, if a broadcast connector is evolved into a message sink, it would eliminate the portion of the
behavior resulting from the interactions among its attached components.

58

CHAPTER 4

4.3 Architectural Configuration Evolution

In addition to the evolution of individual components and connectors, architecture-based
evolution can also occur at the level of their configurations. This section discusses the issues in
configuration evolution and techniques employed by this dissertation to support it. The specific
aspects of configuration evolution on which we have focused are addition, removal, replacement,
and reconnection of components. Our support for evolving architectural configurations is based
on
• employing evolvable connectors,
• providing heterogeneous connectors, and
• minimizing interdependencies among components in an architecture.
Evolvable connectors were presented in the preceding section. The remaining two categories are
discussed below. Although this dissertation focuses on configuration evolution at specification-
time, various facets of our approach have been critical in supporting the run-time evolution of C2-
style architectures [61].

4.3.1 Minimal Component Interdependencies

Several C2 properties serve to provide added degrees of freedom in composing components in
an architecture by minimizing component interdependencies: substrate independence, implicit
invocation, and asynchronous communication. Each individual property aids the addition,
removal, and interchange of components in a given architectural configuration. The three
properties are related and together form a powerful tool for evolving C2-style architectures. They
have been discussed in some depth in Chapter 2. We revisit them here specifically in the context
of configuration evolution.

4.3.1.1 Substrate independence

A component in a C2-style architecture is not aware of the components below it. In particular,
all notifications of component operation results, changes in the component’s internal object, or of
the component’s entire current state are generated without knowing whether any component(s)
will receive them and respond. Thus, the effects of adding, removing, or replacing a component in
an architecture depend upon the component’s position in the architectural configuration. For
example, oneGraphicsBinding component in Figure 2-5 may be substituted for another without
any effect on the rest of the architecture, as no components have any explicit knowledge of the
GraphicsBinding. Analogously, replacing components “higher” in an architecture affects all
components below them. This effect is minimized by C2’s use of domain translation, discussed in
Chapter 2, and asynchronous communication via implicit invocation, discussed below.

4.3.1.2 Implicit Invocation

In the C2 style, implicit invocation occurs when a component reacts to a notification sent
down an architectural configuration by invoking certain functionality. The internal architecture of
a C2 component directly enables implicit invocation: the component that issues a notification does
not know whether the notification will cause any reaction, while the notification itself does not
explicitly name entry points into the objects of any components below. Even when a component
issues a request, it does not explicitly name entry points into a component above it. Instead, the
connectors above the component may route the request message to multiple possible recipients. If,
due to component removal, no one is able to respond to the request, the issuing component may

59

CHAPTER 4

be affected (see Chapter 2); however, due to the asynchronous nature of communication
(discussed below), the rest of the application can still continue with operation.

In the case of both notification and request messages, a recipient component’s dialog attempts
to respond to the message by invoking appropriate internal object operations. If it is unable to
interpret the message, i.e., if the message is not in its domain of discourse (interface), the dialog
simply ignores it. Implicit invocation thus greatly simplifies the process of adding a component to
an architecture.

The internal component architecture also enables easy component replacement. A single
internal object can export multiple message interfaces (via different dialogs). Conversely, multiple
internal objects can export the same message interface. Interchanging two components that export
identical interfaces is straightforward. Doing so for components withsimilar interfaces may result
in partial communication and/or component service utilization, but, in general, the application
will continue functioning at least in a degraded mode, as already discussed.4

4.3.1.3 Asynchronous Communication

All communication between C2 components is asynchronous and is solely achieved by
exchanging messages. Message-based communication is extensively used in distributed
applications, for which C2 is intended. While the style does not forbid synchronous
communication, the responsibility for implementing synchronous message passing resides with
individual components.

Asynchronous, message-based communication has direct ramifications on the evolvability of
a given architectural configuration. It enables the resulting system to perform in a degraded mode
if components fail and/or are being removed or replaced: any components that issue requests to a
failed or removed component may continue functioning until those requests are answered at a
later time; substrate independence mandates that no components whose notifications may reach
the failed component will have any dependencies on it. Components may be added to a
configuration at arbitrary times. They can immediately start responding to notifications (by
issuing requests and their own notifications). If requests are broadcast, newly added components
can also start responding to those requests they understand and thus improve the system’s
performance and accuracy.

4.3.2 Heterogeneous Connectors

The evolution of architectural configurations can also be facilitated by providing
heterogeneous connectors, such that the behavior modeled in the architecture is preserved or
modified, as desired. The encapsulation provided by a C2 connector allows variation of the low-
level interaction mechanism it employs in a manner that is transparent to the architecture that
includes the connector, the connector’s attached components, or software architects who may
want to employ the connector. This variation can happen along three different dimensions, shown
in Figure 4-13:
• by interchanging connectors that support different types of interaction,
• by interchanging connectors that support different degrees of concurrency, and
• by interchanging connectors that support different degrees of information exchange.

4. This discussion has not addressed the effects of the difference in the two components’ functionalities on the
architecture. Our assumption is that the architect is aware of this difference and its impact.

60

CHAPTER 4

A point in this three-dimensional space represents a specific kind of connector. Thedegree of
information exchange dimension represents a direction in which a C2 connector itself may evolve
and was discussed in the preceding section. Different points along the remaining two dimensions
deal with implementation-level issues and result indifferent connectors. Therefore, we do not
consider them examples ofconnector evolution. They are discussed in more detail below.

4.3.2.1 Type of Interaction

In architectures, connectors may, e.g., be separately compilable message routing devices,
shared variables, table entries, buffers, instructions to a linker, dynamic data structures, procedure
calls, initialization parameters, client-server protocols, pipes, SQL links between a database and
an application, and so forth [25], [82]. The corresponding axis in the space of Figure 4-13 has a
nominal ordering of values.

Since a connector provides a distinct abstraction that isolates architecture-level
communication, mediation, and coordination, it may be possible to evolve an architecture by
replacing an existing connector with a connector that supports a different type of interaction. For
example, a message passing connector may be replaced with an RPC connector. It should be
noted that connectors that employ certain types of interaction will not be interchangeable without

Type of
Interaction

Degree
of Concurrency

Degree of
Information
Exchange

Figure 4-13. Dimensions of connector variation.
TheType of Interaction axis represents a set of discrete values with a nominal ordering.
TheDegree of Concurrency axis is a set of discrete values with an ordinal ordering.
TheDegree of Information Exchange axis is a continuum with an ordinal ordering of values.
Example values are shown along each axis. A single point in the three-dimensional space represents a particular
kind of connector. One such connector is highlighted: a message broadcasting, inter-thread connector.

Procedure
Call

Message
Passing

Shared
Variable

Pipe

Single
Thread

Inter
Thread

Inter
Process

Inter
Threadand

Process

No Interaction

Partial Communication

Full Communication

61

CHAPTER 4

additional modifications to the components that communicate through them. For example,
procedure calls are typically synchronous, whereas shared variables may be used asynchronously
in an application; to effectively substitute one for the other, the application itself may need to be
(partially) redesigned.

In this dissertation, we have employed connectors that support two types of interaction:
asynchronous message passing and RPC. We have used message passing connectors very
extensively. We employed RPC to a lesser degree, in the context of a specific OTS middleware
technology, discussed in Chapter 6. A C2 architecture is easily evolved to use one or the other
type of connector or it can employ both simultaneously. Note that certain types of connectors
cannot be employed in a C2 architecture because of the mismatch between their interaction
mechanisms (e.g., shared variables) and the properties of the C2 style (e.g., no assumption of
shared address space across components).5

4.3.2.2 Degree of Concurrency

Another distinction is among connectors that enable interaction between components
executing in the same thread of control (no concurrency) or in different threads of control. The
granularity of concurrency supported by a given connector ranges from fine-grained, where all
components execute in different threads but in the same operating system process, to coarse-
grained, where every component executes in a different process. An architecture whose
implementation employs single-thread connectors can be easily evolved into a distributed
architecture by replacing those connectors with inter-process connectors.

Effective support for inter-thread and inter-process communication is of particular importance
to us: it is essential for distributed applications, for which C2 is specifically intended. We have
built support for single-thread, inter-thread, and inter-process connectors. This has enabled us to
easily distribute C2-style architectures across process and machine boundaries. For example, the
KLAX architecture discussed in Chapter 2 was easily distributed across three processes by using
an inter-process C2 connector, as shown in Figure 4-14. In creating inter-thread or inter-process
C2 connectors, all decisions that deal with concurrency support are encapsulated inside a
connector. The benefits of this approach are twofold:
• the architect is not required to have any knowledge of the actual communication mechanism

employed by the connector, but can instead use connectors that support any degree of
concurrency in exactly the same manner;

• additional inter-thread or inter-process C2 connectors can be created simply by replacing the
communication-mechanism-specific portion of an existing C2 connector.

When possible, we exploit the threading mechanisms provided in the underlying
programming languages to support inter-thread connectors. However, if a programming language
does not provide threading support, and in order to enable interconnection of parts of a C2
application executing in multiple processes and possibly on multiple machines, this dissertation
provides three additional techniques. These techniques are independent of the choice of

5. Recall from Chapter 2 that such restrictions only apply to a conceptual architecture and do not constrain its
implementation. Hence, it is indeed possible to implement C2 components to interact via shared variables.
However, the responsibility of ensuring that an application implemented in such a manner adheres to its
architecture resides entirely with developers. Furthermore, specific implementation-level techniques and
tools must be provided to support the evolution of components implemented in this manner, as well as their
configurations.

62

CHAPTER 4

underlying inter-process communication mechanism.6 One divides an architecture along a single
communication port, while the other two do so along a connector (as in Figure 4-14).

Linking Ports across Process Boundaries.The first method we implemented involves linking
two C2 ports across a process or a machine boundary, using an interprocess communication
mechanism to bridge those boundaries. All accesses to the middleware technology would be
entirely encapsulated within the port entity and would not be visible to architects or developers.
The single-process implementation of a C2 connector links two ports together by having each port
contain a reference to the other one. In this way, the ports can call methods on each other, sending
communication messages as method parameters.

One potential solution is to simply exchange port references across process boundaries and
use the existing, single-process technique for message passing. This strategy is infeasible for
several reasons, however. Most importantly, ports are complex objects and are not easily
serializable. Typically, any objects sent across a process or network boundary must first be
serialized into a byte stream. C2 ports contain references to complex C2 objects to which they are
attached (connectors, components, and entire architectures), which would, in turn, also have to be

6. The same arguments apply to both inter-thread and inter-process connectors in the remainder of the section.
For simplicity, we refer only to inter-process connectors.

Clock
Logic

Status
Logic

Tile
Artist

Graphics
Binding

Palette
Artist

Chute
ADT

Well
ADT

Palette
ADT

Relative Pos
Logic

Status
Artist

Well
Artist

Chute
Artist

Layout
Manager

Tile Match
Logic

Next Tile
Placing Logic

Status
ADT

Figure 4-14. Multi-process implementation of the KLAX architecture.
Shaded ovals represent process boundaries. The application exhibits the same behavior as “original” KLAX.

IPconn1

IPconn2

63

CHAPTER 4

serialized, rendering this approach impractical. Secondly, references to objects are typically not
preserved across process boundaries since all network data is passed by copy instead of by
reference. Thus, even if we could overcome the serialization issue and pass port objects through
the network, a connection made by using the references to them would not be preserved over the
network.

Instead of passing complex objects across a process or network boundary, we refine the
approach to simply send messages. Messages consist only of data and are easily marshaled. This
method results in the creation of two ports, one per process, to simulate a single “virtual port,” as
shown in Figure 4-15. Rather than sending a reference to itself to the other port, each port simply
sends messages.

Linking Connectors across Process Boundaries.Sharing communication ports across process
boundaries gives us fine-grained control over implementing an architecture as a multi-process
application. However, it fails to isolate the change to the appropriate abstraction: the connector. In
order to remedy this, we provide two connector-based methods, both of which consist of
implementing a single conceptual connector using two or more actual connectors that are linked
across process or network boundaries. Each actual connector thus becomes a segment of a single
“virtual connector.” All access to the underlying inter-process communication mechanisms is
encapsulated entirely within the abstraction of a connector, i.e., it is hidden from both architects
and developers.

We call the first method “lateral welding,” depicted in Figure 4-16a. Messages sent to any
segment of the multi-process connector are broadcast to all other segments. Upon receiving a
message, each segment has the responsibility of filtering and forwarding it to components in its
process as appropriate. Only messages are sent across process boundaries.

While the lateral welding approach allowed us to “vertically slice” a C2 architecture, we also
provide an approach to “horizontally slice” an application, as shown in Figure 4-16b. This
approach is similar to the idea of lateral welding: a conceptual connector is broken up into top and
bottom segments, each of which exhibits the same properties as a single-process connector to the

Comp1

Comp2 Comp4

Conn1

Figure 4-15. Linking ports across process boundaries.
Two communication ports in separate processes comprise a single “virtual port.” For clarity, we do not highlight
component and connector ports. Shaded ovals represent process boundaries.

Comp3

64

CHAPTER 4

components attached above and below it, respectively. The segments themselves are joined across
process boundaries using the appropriate middleware.

4.3.3 Discussion

It is important to note that, strictly speaking, the three-dimensional space shown in Figure 4-
13 is not defined at every point. The three concerns (type of interaction, level of concurrency, and
degree of information exchange) are not fully orthogonal. Instead, some types of connectors
imply a particular execution thread/process structure and degree of information exchange. For
example, procedure calls are typically employed inside a single thread of control. Furthermore,
procedure calls require full communication: in order to compile an application, every procedure
call must correspond to a procedure definition, it is never broadcast, and cannot be ignored. Thus,
it would not make sense to talk about procedure call connectors that support partial
communication.

Although this is not a particular focus of this dissertation, it may be possible in general to
modify a given connector type to fully separate the three concerns. For example,RPC is an inter-
thread/process counterpart toprocedure calls. Similarly, shared variable connectors assume a
single address space, which is not the case with components that execute in multiple processes.
Replacingshared variable connectors with connectors that enable communication by reading
from and writing to specific blocks of memory accessible to all of the interacting components
(shared memory) can remedy this problem. Finally, connectors that implement certain types of
interaction can be used to simulate other types of interaction if the appropriate mechanisms are
unavailable. For example, we have demonstrated the ability to simulate asynchronous message
broadcast via RPC (see Chapter 6).

4.4 An Architecture Description and Evolution Language

In order to render the evolution concepts introduced in this dissertation and discussed in this
chapter usable in practice, we have designed an ADL that incorporates them. This section
introducesC2SADEL, a SoftwareArchitectureDescription andEvolutionLanguage for C2-style
architectures. The complete specification ofC2SADEL’s syntax is given in Appendix A.C2SADEL

Comp1 Comp3

Comp2 Comp4

Conn1 Conn2

Comp1 Comp3

Comp2 Comp4

Conn1

Conn2

(a) (b)

Figure 4-16. Linking connectors across process boundaries.
Connectors are the primary vehicle for interprocess communication. A single conceptual connector can be “broken
up” (a) vertically or (b) horizontally for this purpose. Shaded ovals represent process boundaries.

65

CHAPTER 4

supports component evolution via heterogeneous subtyping and facilitates architectural
descriptions that allow establishment of type-theoretic notions of architectural soundness. It also
supports modeling of connectors with context-reflective interfaces and different data filtering
capabilities, as well as configurations that adhere to the topological rules of the C2 style.

We encountered a tension between formality and practicality in designingC2SADEL. Our goal
was a language that was simple enough to be usable in practice, yet formal enough to adequately
support analysis and evolution. For this reason, we kept the syntax simple and reduced formalism
to a minimum.

A C2SADEL specification consists of either a set of component types or of an architecture. An
architecture contains a specification of component types, connector types, and topology. To
properly specify an architecture’s topology, component and connector types are instantiated and
connected.

4.4.1 Component Types

A component specification is a type that can be defined in-line or externally (using the
keywordextern). The specification of an external component type is given in a file different from
the file in which the rest of the architecture is specified. For example,

component WellADT is extern {WellADT.c2;}

specifies that theWellADT component used in the KLAX architecture shown in Figure 4-14 on
page 62 is specified in the fileWellADT.c2. This feature allows for components to be treated as
reusable design elements, independent of an architecture. A component type consists of the
following:
• state variables,
• component invariant,
• interface,
• behavior, and
• the map from interface elements to the operations of the behavior. This map is a surjective

function, as discussed in Section 4.1.

A component type may be asubtype of another type. The exact subtyping relationship must be
specified. Keywordsnam, int, beh, andimp are used to denote name, interface, behavior, and
implementation conformance, respectively. Different combinations of these relationships,
corresponding to the different areas in the space of type systems shown in Figure 4-1, are
specified using the keywordsand andnot. For example,

component WellADT is subtype Matrix (beh)

specifies that the KLAX componentWellADT preserves (and possibly extends) the behavior of a
componentMatrix, but may change its interface. This relationship can be made stricter by
specifying thatWellADT must alterMatrix’s interface as follows:

component WellADT is subtype Matrix (beh \and \not int)

The rules defined in Section 4.1 are used to ensure that the specified subtyping relationship
between two components holds.

As in a programming language, variables are specified as <name, type> pairs, as in
capacity : Integer;

66

CHAPTER 4

Additionally, a component’s state variable may also be specified as a function:
well_at : Integer -> Color;

Thewell_at function maps a set ofInteger locations in the well to a set ofColor tiles at each
location.

Variable types inC2SADEL, such asInteger or Color, arebasic types and are distinguished
from components, which arearchitectural types. We do not explicitly model the semantics of
basic types; however,C2SADEL does allow the architect to specify that one basic type is a subtype
of another:

Natural is basic_subtype Integer;

Such relationships allow the creation of basic type hierarchies. This, in turn, enables proper
mapping of interface elements to operations and checking of contra- and covariance rules in
architectural type conformance checking, specified in Section 4.1.

A component’s invariant is a conjunction of predicates specified in first-order logic. The
invariant defines a set of conditions that must be satisfied throughout the component’s execution.
It is specified with component state variables as operands and logical operators (\and, \or, \not,
\implies, and\equivalent), comparison operators (\greater, \less, \eqgreater, \eqless, = , and<>)7,
set operators (\union, \intersection, \in, \not_in, and#)8, and arithmetic operators (+ , -, * , /, and
^)9. This set of operators is intended to be extensible as needed; the currently supported operators,
described above, have been sufficiently expressive to describe the properties of C2-style
applications to date (see Chapters 2 and 6). Operator precedence inC2SADEL is defined as shown
in Table 4-1.

For example, the invariant for theWellADT component can be specified as follows.
invariant {

(num_tiles \eqgreater 0) \and (num_tiles \eqless capacity);
}

7. <> denotes inequality.
8. \in and\not_in denote set membership, while# denotes set cardinality.
9. ^ denotes exponentiation.

Table 4-1: Operator Precedence inC2SADEL, Given in Descending Order

Operator Precedence

#, \not

^

*, /

+, -

\union, \intersection

\greater, \eqgreater, \less, \eqless, =, <>, \in, \not_in

\and, \or

\implies, \equivalent

67

CHAPTER 4

A component’s interface consists of a set of interface elements. An interface element is
declared with a direction indicator (prov or req), name, set of parameters, and possibly a result
type. The parameter specification syntax is identical to that used in variable specification. Since
interface elements may have identical names, a unique label may be assigned to each as a
notational convenience. For example, in

prov gt1: GetTile (location : Integer) : Color;
prov gt2: GetTile (i : Natural) : GSColor;

both interface elements are intended to be used with operations that remove and return a tile at the
given location in the KLAXwell. The first interface element accesses a color tile at theInteger
locationlocation; the second accesses a gray-scale tile at theNatural locationi. The labels,at1
andat2, uniquely identify the two.

A component’s behavior consists of a set of operations. Each operation is declared as either
provided orrequired and with a unique label, used to refer to the operation. Additionally, each
operation may define a set of preconditions that must be trueprior to the operation’s execution,
and a set of postconditions that must be trueafter its execution. Since operations are separated
from the interface elements through which they are accessed, operations also define local
variables, which, along with component state variables, are used in specifying the pre- and
postcondition predicates. The pre- and postconditions are specified in the same manner as
component invariants. An operation’s postcondition may contain the keyword\result, to denote
the operation’s return value. Additionally, a postcondition may specify the value of a variable
after the operation has executed, denoted with a~, followed by the variable name.

An example operation can be specified as follows.
prov tileget: {

let pos : Integer;
pre (pos \greater 0) \and (pos \eqless num_tiles;)
post \result = well_at(pos) \and ~num_tiles = num_tiles - 1;

}

The local variablepos denotes the position in the well.num_tiles andwell_at are component state
variables. Recall thatwell_at is a function that returns the color value of the well at the given
position. The postcondition specifies that the number of tiles in the well decreases after the tile is
removed.

Thetileget operation can export multiple interfaces. For example, bothGetTile interface
elements can be mapped to the operation based on the mapping rules specified in Section 4.1,
provided thatGSColor is a basic subtype ofColor:

map {
gt1 -> tileget (location -> pos);
gt2 -> tileget (i -> pos);

}

These elements are composed into a complete component specification in the following
manner:10

10. For illustration, the specification ofWellADT only includes the aspects of this component previously dis-
cussed.

68

CHAPTER 4

component WellADT is subtype Matrix (beh) {
state {

capacity : Integer;
num_tiles : Integer;
well_at : Integer -> GSColor;

}
invariant {

(num_tiles \eqgreater 0) \and (num_tiles \eqless capacity);
}
interface {

prov gt1: GetTile (location : Integer) : Color;
prov gt2: GetTile (i : Natural) : GSColor;

}
operations {

prov tileget: {
let pos : Integer;
pre (pos \greater 0) \and (pos \eqless num_tiles);
post \result = well_at(pos) \and ~num_tiles = num_tiles - 1;

}
}
map {

gt1 -> tileget (location -> pos);
gt2 -> tileget (i -> pos);

}
}

Finally, a component type may be specified as avirtual type: it can be used in the definition of
the topology, but it does not have a specification and does not affect type checking of the
architecture; furthermore, a virtual type cannot be evolved via subtyping. The concept of virtual
types is useful in the case of components for which implementations are known to already exist,
but which are not specified inC2SADEL.

4.4.2 Connector Types

Since the connectors in this dissertation do not export a particular interface, but are context-
reflective, the only aspect of connector types modeled inC2SADEL is their filtering mechanism,
denoted with themessage_filter keyword. The different filtering mechanisms areno_filtering,
notification_filtering, message_filtering, prioritized, ormessage_sink. We consider type of
interaction and concurrency, discussed in Section , to be implementation-level issues, and do not
model them as part of a connector. An example broadcast connector is specified as follows.

connector BroadcastConn is {
message_filter no_filtering;

}

4.4.3 Topology

To model the topology of an architecture, component and connector types are instantiated and
interconnected. Each type may be instantiated multiple times.C2SADEL requires that a component
be attached to at most one connector on its top and one on its bottom; it allows multiple
components and connectors to be attached to the top and bottom sides of a connector. The part of
the KLAX topology that concerns the well (see Figure 2-5 on page 13) is specified as follows.

69

CHAPTER 4

architectural_topology {
component_instances {

Well : WellADT;
WellArt : WellArtist;
MatchLogic : TileMatchLogic;

}
connector_instances {

ADTConn : BroadcastConn;
ArtConn : BroadcastConn;

}
connections {

connector ADTConn {
top Well;
bottom MatchLogic, ArtConn;

}
connector ArtConn {

top ADTConn;
bottom WellArt;

}
}

}

4.4.4 Composite Components

C2SADEL supportshierarchical composition of components, where an entire architecture is
used as a single component in another architecture, as shown in Figure 4-17. We supply no
additional constructs in the language to support hierarchical composition. Instead, we use the
existingC2SADEL constructs to specify composite components (as architectures) and provide a
technique for determining their sets of provided and required services, needed for architectural
type checking.

Direct interaction with a composite component is restricted to its externally-visible
constituent components. A component in an architecture is externally visible if it is a top-most or
bottom-most component in the architecture (e.g., C1 and C7, respectively, in Figure 4-17), or if it
is accessible via connector-to-connector links (e.g., C3 in Figure 4-17).11

Figure 4-17. Hierarchical composition.
A component,C, in an architecture is itself an architecture (highlighted).

C3 C4 C5

A

B C

D C6 C7

C2

T

B

C1

70

CHAPTER 4

We employ the following technique for achieving hierarchical composition; the technique
preserves the principles of the C2 architectural style:
• add connectors,T andB, at the top and bottom of the composite component;
• attach the top sides of the architecture’s top-most components and connectors to the bottom of

T;
• attach the bottom sides of the architecture’s bottom-most components and connectors to the

top ofB;
• finally, attach the top of T to the bottom of the connector above it and the bottom of B to the

top of the connector below it.

The invariant and sets of provided and required services of the composite component are a
function of its constituent components’ invariants and services. Recall that C2 mandates that a
component only request services from components above it and respond to requests from
components below it. Thus the composite component’s provided services are a union of the
bottom-visible components’ provided services. Similarly, the composite component’s required
services are a union of the top-visible components’ required services. Finally, although the type
theory defined in Section 4.1 currently does not support the evolution of composite components,
we do employ a mechanism for determining a composite component’s invariant: since only the
externally-visible components directly interact with the rest of the architecture, only their
invariants are relevant for subtyping; thus, a composite component’s invariant is a conjunction of
the invariants of its externally-visible components.12

11. For simplicity, in the remainder of the section we refer to components externally visible from a composite
component’s top and bottom sides as “top-visible” and “bottom-visible,” respectively.

12. We discuss our intent to expand component evolution to include composite components in Chapter 7.

71

CHAPTER 5: Mapping Architecture to Implementation

The ultimate goal of any software design and modeling endeavor is to produce the executable
system. An elegant and effective architectural model is of limited value unless it can be converted
into a running application. Doing so manually may result in many problems of consistency and
traceability between an architecture and its implementation. For example, it may be difficult to
guarantee or demonstrate that a given system correctly implements an architecture. Furthermore,
even if this is currently the case, one has no means of ensuring that future changes to the system
are appropriately traced back to the architecture and vice versa. It is, therefore, desirable, if not
imperative, for architecture-based software development approaches to provide source code
generation tools.

At the same time, it is unreasonable to expect that architectures can be used as a basis for a
general solution to the problem of automated system generation. That would essentially reduce
architecture-based software development to a variant of transformational programming [67], thus
inheriting all of the latter’s problems and limitations, with the added problem of scale. Instead,
architecture can render the problem more tractable by focusing on application properties within
specific domains and OTS reuse of components and connectors. Understanding the properties of
an application domain (or set of domains) enables the identification of canonical implementation
constructs, which can be exploited during implementation generation. Reuse of large-grain
software components offers the potential for significant savings in application development cost
and time. Reuse of interconnection mechanisms, typically found in OTS middleware
technologies, enables architects to achieve the desired properties during system composition:
heterogeneity, efficiency, reliability, distribution, and so forth.

Successful reuse and substitutability of components and connectors depends both on qualities
of the components and connectors reused as well as the software context in which the reuse is
attempted. Architectural styles are disciplined approaches to the structure and design of software
applications and offer the potential of providing a hospitable setting for such reuse. However, all
styles are not equally well equipped to support reuse. If a style is too restrictive, it will exclude the
world of legacy components. On the other hand, if the set of style rules is too permissive,
developers may be faced with all of the well documented problems of reuse in general [7], [8],
[24], [38], [81]. Therefore, achieving a balance, where the rules are strong enough to make reuse
tractable but broad enough to enable integration of OTS components, is a key issue in formulating
and adopting architectural styles.

In this chapter we argue that the principles introduced in this dissertation and embodied in the
C2 architectural style offer significant potential for automating the generation of implementations
from architectures, OTS reuse and, consequently, the development of application families. By
providing support to encapsulate legacy systems and new software in C2 components and bind
these components together with custom-built or middleware-integrated software connectors, the
costs and difficulties of building new software systems are diminished. By embodying in software
tools the principles discussed in the preceding chapter, this dissertation enables the evolution of
architectures to be reflected in their implementations. Finally, by enabling evolution and multiple
implementations of an architecture, the dissertation directly facilitates application families.

This chapter discusses the development tools we have constructed to aid the mapping of C2
architectures to their implementation(s) and reuse of OTS components. The chapter also discusses

72

CHAPTER 5

the issues in reusing OTS components and middleware technologies, highlighting those
characteristics of our approach and tools that facilitate their reuse. Finally, we discuss an
environment for modeling, analyzing, evolving, and implementing architectures. The
environment supports automated implementation generation aided by OTS reuse.

5.1 C2 Implementation Infrastructure

5.1.1 C2 Class Framework

To support implementation of C2 architectures, we developed an extensible framework of
abstract classes for C2 concepts such as architectures, components, connectors, communication
ports, and messages, shown in Figure 5-1. This framework is the basis of development and OTS
component reuse in C2. It implements component interconnection and message passing protocols.
Components and connectors used in C2 applications are subclassed from the appropriate abstract
classes in the framework.1 The components subclassed from the framework’s “component”
abstract classes contain application-specific functionality. The connectors are application-
independent, i.e., they are reusable across C2 architectures, and can differ in their interaction
mechanisms, support for concurrency, and degree of message filtering, as discussed in Chapter 4.
The connectors are implemented to export dynamically changing (i.e., context-reflective)
interfaces.

The framework guarantees interoperability among components and connectors, eliminates
many repetitive programming tasks, and allows developers of C2-style applications to focus on
application-level issues. The different implementations of component and connector classes in the
framework enable a variety of implementation configurations for a given architecture: the entire
resulting system may execute in a single thread of control, a set of components and/or connectors

1. Note that implementation framework concepts, such as “abstract class,” refer to the programming language
used to implement an architecture, and are in no way related to the architectural type theory presented in
Chapter 4.

C2Object
C2Message

C2Request
C2Notification

C2Port
C2Port_FIFO

C2Brick
C2Connector

C2Connector_SameProcess
C2Connector_Thread
C2Connector_IPC

C2Component
C2Architecture
C2Component_Threads

C2Architecture_Threads

Figure 5-1. C2 implementation framework.

73

CHAPTER 5

may run in its own thread of control or OS process, or each component and connector may run in
its own thread of control or process.

The framework has been fully implemented in C++ and Java; its subset is also available in
Ada. The framework is compact, as reflected in the fact that both of its full implementations
consists of approximately 3500 commented source lines of code. The framework is also easily
extensible. For example, we have been able to add a multi-process and multi-lingual connector to
the framework by reusing the Q system [44]. This connectors enables communication between C2
components implemented in C++ and Ada. The infrastructure for extending this support to Java
C2 components has been integrated into the framework in the form of the ILU distributed object
system [97]. The integrations of Q and ILU are discussed in more detail in Chapter 6.

The Java implementation of the framework is particularly significant in that it represents the
first step in our endeavor to (partially) automate domain translation. A common form of interface
mismatch between communicating components is different ordering of message parameters, as
discussed in Chapter 2. The Java implementation of C2 messages eliminates this problem by
allowing components to access message parameters by name, rather than by position. Other
domain translation techniques can be incrementally incorporated into the framework. The Java
implementation of the framework has also been used as the basis of ArchShell, a tool that
supports interactive construction, execution, and runtime modification of C2-style architectures
[61].

5.1.2 C2 Graphics Binding

As already discussed, C2’s particular focus is on applications with a significant GUI aspect.
However, commercial user interface toolkits have interface conventions that do not match up with
C2’s notifications and requests. In a C2 architecture, the toolkit is always at or near the bottom,
since it performs functions conceptually closest to the user (see Chapter 2). As such, it must be
able to receive notifications from components above it and issue requests in response. Typically,
however, toolkits will generate events of the form “this window has been selected” or “the user
has typed the ‘x’ key.” These events need to be converted into C2 requests before they can be sent
up the architectures. Conversely, notifications from a C2 architecture have to be converted to the
type of invocations a toolkit expects.

In order for these translations to occur and be meaningful, careful thought has to go into the
design of the bindings to the toolkits such that they contain the required functionality and are
reusable across architectures and applications. Our experience with reusing OTS components in
C2 architectures and with building bindings for Motif and OpenLook in Chiron-1 [90] suggested
the approach depicted in Figure 5-2: a C2 component is created such that the graphics toolkit
becomes its internal object, while the C2 message traffic is handled by its dialog.
GraphicsBinding’s dialog accepts notifications from C2 components above it and reifies them as
calls to toolkit methods. It also transforms user events, generated in the graphics toolkit, into C2
requests. A C2 component’s internal architecture, its reliance on asynchronous, message-based
communication, and no assumption of shared address space or thread of control eliminate the
need to internally modify the toolkits in any way.

We have built C2 bindings for two graphics toolkits: Xlib [77] and Java’s AWT [14]. The Xlib
and AWT bindings are subclasses of C++ and Java frameworks’componentclasses, respectively.
This enables their easy integration into C2-style architectures built using the two frameworks. The

74

CHAPTER 5

dialog portions of the toolkit binding components are extensible wrappers that enable rendering of
user interface widgets and graphical objects on the screen by exchanging C2 messages. The
components export standard interfaces and are reusable across architectures implemented using
each respective framework. The standardized interfaces also enable the interchange of the two
bindings in the same architecture if an appropriate connector that supports composition of multi-
lingual components is employed.2

5.2 OTS Component Reuse

The two C2GraphicsBinding components represent examples of OTS component reuse. This
section discusses the characteristics of our approach, reflected in the C2 style, that make it a good
platform for OTS reuse. We then propose a set of heuristics that should be employed when
attempting to reuse OTS components in C2-style architectures.

5.2.1 C2’s Suitability for OTS Component Reuse

Several characteristics of the C2 style render it well suited to supporting reuse. Although most
of these characteristics are not unique to C2, this dissertation’s approach of combining and
exploiting them for reuse is. We believe the style rules are restrictive enough to make reuse easier
while flexible enough to integrate components built outside the style:
• component heterogeneity - the style does not place restrictions on the implementation language

or granularity of the components.
• substrate independence - a component is not aware of components below it, and therefore does

not depend on their existence.
• internal component architecture - the internal architecture of a C2 component (recall Figure 2-

2 on page 6) separates communication from processing. The dialog receives all incoming
notifications and requests and maps them to internal object operations (implicit invocation). By
localizing this mapping, the dialog isolates the internal object (i.e., the OTS component) from
changes in the rest of the architecture.

• asynchronous message passing via connectors - since all communication between components
is achieved by exchanging asynchronous messages through connectors, control integration

2. Note that identical interfaces are not a requirement; two bindings with different interfaces could be substi-
tuted for one another by using a domain translator.

GraphicsDialog
Toolkit

Figure 5-2. A C2GraphicsBinding component.
An OTS windowing toolkit is wrapped inside a C2 component. Since a graphics binding is always at the very
bottom of a C2-style architecture, the Dialog only receives notifications and emits requests.

75

CHAPTER 5

issues are greatly simplified. This remedies some of the problems associated with integrating
components which assume that they are the application’s main thread of control [24].

• no assumption of shared address space - components cannot assume that they will execute in
the same address space as other components. This eliminates complex dependencies, such as
components sharing global variables, that hamper reuse.

• no assumption of single thread of control - conceptually, components execute in their own
thread(s) of control. This allows multithreaded OTS components, with potentially different
threading models, to be integrated into a single application.

• separation of architecture from implementation - many potential performance issues can be
remedied by separating the conceptual architecture from actual implementation techniques.
For example, C2 disallows direct procedure calls and any assumptions of shared threads of
control or address spaces in a conceptual architecture. However, substantial performance gains
may be made in a particular implementation of that architecture by placing multiple
components in a single process and address space where appropriate. Such implementation
decisions are isolated in the C2 implementation framework, discussed above. For example, if
two components are placed in the same address space, a connector between them may use
direct procedure calls to implement message passing.3

5.2.2 OTS Component Reuse Heuristics

A study of the properties of the C2 style and the experience of integrating OTS components,
such as graphics toolkits, have enabled us to devise a set of simple heuristics for OTS component
integration in C2. We have refined these heuristics and established their utility and applicability in
the process of incorporating OTS components, discussed in Chapter 6. The only assumption we
make is that the functionality of OTS components will be accessible (at least) via application
programmable interfaces (APIs):
• If the OTS component does not contain all of the needed functionality, its source code must be

altered. In general, this is a difficult task, whose complexity is well recognized [24], [38],
[56].4

• If the OTS component does not communicate via messages, a C2 wrapper must be built for it.
This was the case with the twoGraphicsBinding components described above.

• If the OTS component is implemented in a programming language different from that of other
components in the architecture, an IPC connector must be employed to enable their
communication. An example such connector that uses the Q system [44] and enables the
interaction of C2 components implemented in C++ and Ada was briefly discussed above. We
have also incorporated existing support for software packaging [72]. The potential benefit of
software packaging technologies is to decouple a component’s functionality from its
interfacing requirements and automate a significant portion of the work associated with
adapting the component for use in new environments. The details of this integration are
discussed in Chapter 6.

• If the OTS component must execute in its own thread of control, an inter-thread connector
must be employed. This was accomplished in the case of the Java AWT graphics toolkit.

3. We do not currently provide procedure call connectors as part of the framework. This was a deliberate deci-
sion intended to explore the issues in employing less conventional types of interaction, in particular, implicit
invocation via asynchronous messages.

4. Note that the component can still be reused “as is” if the developers are willing to risk degraded or incorrect
performance, due to partial communication and partial component service utilization in the architecture.

76

CHAPTER 5

• If the OTS component executes in its own process, an IPC connector must be employed. The
issues in incorporating IPC connectors into C2 were discussed in Chapter 4.

• If the OTS component communicates via messages, but its interface does not match interfaces
of components with which it is to communicate, a domain translator must be built for it.
Although not a specific focus of our work to date, preliminary support for domain translation
exists in the Java implementation of the C2 class framework. The architectural type theory,
presented in Chapter 4, has the potential to further aid this task.

The information above is summarized in Table 5-1. As a whole, the heuristics in the table are
conceptually very simple. This simplicity is an indicator of the inherent support for OTS
component reuse provided by this dissertation. Practical support for the heuristics requires
specific, but achievable, techniques, such as component wrapping and domain translation, and
technologies, such as inter-thread or IPC connectors.

5.3 Constructing Connectors by Reusing OTS Middleware

As argued in Chapter 4 and indicated in Table 5-1, connectors are a natural abstraction that
isolates many issues regarding interactions among components in an architecture. Connectors
have an externally-visible structure, while internally they utilize low-level communication
mechanisms (e.g., message exchange between ports in a single process or RPC for inter-process
communication). The exact nature and source of these low-level mechanisms is irrelevant, so long
as the connector maintains the same external appearance. Middleware (e.g., Enterprise JavaBeans
[63], CORBA [62], COM/DCOM [80]) is a potentially useful tool when building software
connectors in that it can supply these communication mechanisms in a reliable manner. First, it
often specializes in bridging across thread, process and network boundaries. Secondly, it can
provide pre-built protocols for exchanging data among software components or connectors.
Finally, some middleware packages already implement features of software connectors such as
filtering, routing, and broadcast of messages or other data.

The techniques for distributing connectors across process boundaries, discussed in Chapter 4
and depicted in Figure 4-16, are used as a basis of OTS connector reuse in this dissertation: a C2
connector is “sliced” horizontally or vertically across processes and an OTS middleware
technology is used to ensure the proper communication among the connector segments. By
combining the two techniques, a single conceptual connector can potentially be implemented
using multiple middleware mechanisms.

Table 5-1: OTS Component Integration Heuristics for C2

Problem with OTS Component Integration Method

Inadequate Functionality Source Code Modification

No Message-Based Communication Wrapper

Different Threads of Control Inter-Thread Connector

Different Programming Language IPC Connector

Different OS Process IPC Connector

Message Interface Mismatch Domain Translator

77

CHAPTER 5

5.3.1 Middleware Evaluation Criteria

Unlike software components, which are reused to satisfy the needs of specific applications,
connectors are intended to be used across applications. Still, the choice of a specific connector
will depend upon the characteristics and needs of an application. For this reason, we provide a
framework for evaluating OTS middleware before investing in their integration with our
infrastructure. In doing so, we focus on several factors:
• inter- and intra-process communication support — a distributed application is likely to contain

a mix of components that execute in asingle thread of control, indifferent threads of control
(but in the same process), and indifferent processes, some of which will reside on different
machines. If a given middleware technology effectively supports only interprocess
communication, its utility is limited and additional types of middleware may need to be
employed. Note that multiple types of middleware in an application may indeed be preferable,
as each may optimize a particular type of communication.

• features of software connectors — a middleware technology may only provide the ability for
two processes to exchange data. The needs of software connectors are broader: event routing
(e.g., broadcast, multicast, point-to-point), filtering, registration, and so forth [69]. If such
features are not supported, additional infrastructure must be provided before such a technology
may be used in a distributed architecture, such as a typical C2-style architecture.

• platform and language support — software architectures, and C2 architectures in particular,
are intended to support the development of distributed systems, built out of components which
are potentially implemented in different programming languages and executing on multiple
platforms. An interconnection technology that supports multi-lingual and multi-platform
applications is thus a better candidate for integration than one that does not. The penalties (e.g.,
adoption costs, performance) accrued by using a technology that only supports a single
language and/or platform may outweigh any benefits of using it.

• communication method — similarly to the different types of connectors at the architectural
level (see Section 4.3), methods of communication across middleware technologies vary and
can include RPC, message passing, passing object references, shared memory, and so forth. A
middleware technology that is not suited to an architectural style may cause implementation
difficulties when used in the context of that style. The degree of difficulty will vary depending
on the middleware and the style. For example, we have been able to implement connectors that
translate from the RPC communication method to message-passing to fit the constraints of the
C2 style with relatively little effort.

• ease of integration and use— if integrating an OTS technology into the implementation
infrastructure and/or its use in an application requires a substantial amount of effort, its
effectiveness and power may be rendered irrelevant. One possible source of problems was
discussed above (communication method mismatch). Another is a mismatch in assumptions
made by the OTS tool and the environment into which it is being incorporated. For example, if
an interconnection tool assumes that it is the application’s main thread of control, it is not well
suited for use with C2, since C2 mandates that all components execute independently of each
other.

• multiple instances in an application — one benefit of distributed systems is that they do not
have to depend on a single set of resources, thus avoiding performance bottlenecks.
Analogously, it may be useful to physically distribute the very tool used to interconnect a

78

CHAPTER 5

distributed system. Centralized OTS middleware tools that use a single point of
communication form potential bottlenecks and single points of failure.

• support for dynamic change — for an important class of safety- and mission-critical software
systems, such as air traffic control or telephone switching systems, shutting down and
restarting the system for upgrades incurs unacceptable delays, increased cost, and risk. Support
for run-time modification is thus a key aspect of these systems. A middleware technology that
does not support dynamic change is not an adequate candidate for them.

• performance — performance is a key issue in systems with real-time requirements. For
example, in the KLAX application described in Chapter 2, several hundred messages may be
generated every second. The ability to efficiently ferry these messages among the components
and across process boundaries is paramount.

Because software connectors provide a uniform interface to other connectors and components
within an architecture, architects need not be concerned with the properties of different
middleware technologies as long as the technology can be encapsulated within a software
connector. Internally, however, connectors based on different middleware technologies have
different abilities. Implementors of a given architecture can use this knowledge to determine
which middleware solutions are appropriate in a given implementation of an architecture. In this
way, encapsulating middleware functionality within software connectors maintains the integrity
of an architectural style by keeping it separate from implementation-dependent factors such as
how to bridge process boundaries within a given architecture.

5.3.2 Multiple Mappings from Architecture to Implementation

Different connector implementations enable architects to select a mapping from an
architecture to its implementation that is best suited to the system’s current requirements.
Different middleware technologies used in implementing a connector can have unique benefits.
By combining multiple such technologies in a single application, the application can potentially
obtain the benefits of all of them. For instance, a middleware technology that supports multiple
platforms but only a single language could be combined with one that supports multiple
languages but a single platform, to create an application that supports both multiple languages and
multiple platforms.

The advantages of combining multiple middleware technologies within a single software
connector are manifold. In the absence of a single panacea solution which supports all required
platforms, languages, and network protocols, the ability to leverage the capabilities of several
different middleware technologies significantly widens the range of applications that can be
implemented within an architectural style such as C2.

As an example, we consider two connectors that encapsulate different OTS middleware
technologies. The two are implemented using different strategies for supporting component
interaction across process boundaries, described in Chapter 4. The two connectors can be used to
implement a single conceptual connector, as shown in Figure 5-3. This is accomplished with no
modification to the C2 implementation framework or the connectors themselves, by combining
the lateral welding technique from Figure 4-16a with the horizontal slicing technique from
Figure 4-16b. This approach creates a three-process “virtual connector” using two in-process C2
connectors to laterally bind two multi-process connectors. The approach works for any

79

CHAPTER 5

combination of OTS connectors that use the lateral welding technique. An integration of OTS
middleware technologies using the technique depicted in Figure 5-3 is discussed in Section 6.2.

An alternative approach would be to explicitly create a single connector implementation that
supports both OTS middleware technologies, but this would require changes to the framework.
The technique shown in Figure 5-3 avoids this difficulty with an expected slight efficiency cost
due to the addition of in-process connectors to bind the multi-process connectors.

5.4 An Environment for Architecture-Based Development and Evolution

Chapter 4 discussed techniques for evolving architectures and individual architectural
elements, as well as an ADL for modeling them. This chapter has thus far presented a set of
mechanisms for providing implementations for architectures and their individual elements. Many
of the concepts from Chapter 4, such as minimal component interdependencies and
heterogeneous, inherently-evolvable connectors, are directly supported in the mechanisms
introduced in this chapter, such as the implementation framework and middleware-integrated
connectors. Other concepts, e.g., subtyping and analysis via type checking, are not supported by
the mechanisms described thus far and can only be used as conceptual tools in making decisions
about evolving existing architectures and reusing OTS components and connectors. The evolution
and reuse must be performed manually, which is potentially expensive and error-prone.
Furthermore, the implementation framework alone cannot guarantee that an architecture
described inC2SADEL will be mapped to its implementation in the intended manner. Therefore, to
render our architecture-based development and evolution methodology more useful in practice,
we provide an environment that implements subtyping, type checking, and transferring of the
properties of an architecture to its implementation. This section describes the environment, called
DRADEL (Development ofRobustArchitectures using aDescription andEvolutionLanguage).

DRADEL is a culmination of several years of our research in software architectures and ADLs,
evolution, and OTS reuse. It allows

OTS Connector Type 1

Comp

OTS Connector Type 2

Figure 5-3. A three-process C2 application that employs different OTS middleware mechanisms.
A single virtual connector is implemented with two in-process and two multi-process connectors. The in-process
connectors facilitate message passing between the multi-process connectors. Shaded ovals represent process
boundaries.

CompComp

CompCompComp

Virtual Connector

80

CHAPTER 5

• architecture modeling inC2SADEL,
• evolution via heterogeneous subtyping,
• analysis of internal architectural consistency, topological constraints, and type conformance

among interacting component instances in a given configuration, and
• generation of application skeletons using our implementation infrastructure and, thereby,

support for OTS component and connector reuse.
DRADEL also guides a high-level “architecting” process and supports the concept ofarchitect’s
discretion: architecture-level analyses serve as guides to the architect; the architect has the
prerogative to override an analysis tool if (s)he believes the errors reported by the tool not to be
critical and/or their correction to be unreasonably expensive.

In addition to supporting the concepts introduced in this dissertation,DRADEL was also
constructed to serve as a demonstration of those concepts. The conceptual architecture of the
DRADEL environment is shown in Figure 5-4. Just like the application architectures it is built to
support, the architecture ofDRADEL itself adheres to C2 style rules. The environment is built using
the C2 implementation infrastructure, discussed in Section 5.1. Specifically, we have used the
Java version of the C2 framework and the binding to Java’s AWT toolkit in the implementation of
DRADEL. The current implementation consists of 13,000 source lines of code, in addition to the
7,000 lines of code in the base framework and C2GraphicsBinding. In the current
implementation, eachDRADEL component executes in a separate thread of control within the same
process.

The remainder of this section presents a more detailed view ofDRADEL’s functionality.

Repository
Internal

Consistency
Checker

Parser
Topological
Constraint
Checker

Type
Checker

Code
Generator

User
Palette

Type
Mismatch
Handler

Graphics
Binding

Figure 5-4. Architecture of theDRADEL environment.
The architecture fully adheres to the rules of the C2 style.

81

CHAPTER 5

5.4.1DRADEL ’s Architecture

5.4.1.1 Repository

TheRepository component from Figure 5-4 stores architectures modeled inC2SADEL. Upon
request, the component broadcasts architectural descriptions via notifications. TheRepository is
currently ASCII-file based, resulting in its simplicity and cross-platform portability. This
implementation of theRepository also allows architects to editC2SADEL descriptions using
standard text editors. On the other hand, the flat-file organization of theRepository is not well
suited to maintaining “design palettes”, i.e., hierarchies of reusable architectural elements. For
this reason, another underlying implementation, such as a relational database, may be preferable.
Two implementations of theRepository component will be fully interchangeable inDRADEL, so
long as they export identical interfaces.

5.4.1.2 Parser

TheParser component receives via C2 messages specifications of architectures or sets of
components described inC2SADEL and parses each specification. If the specification is
syntactically correct, theParser requests that theInternalConsistency-Checker component check
the consistency of the specification; otherwise, theParser notifies theUserPalette component of
the syntax errors and aborts parsing. The architect must correct the errors and again invoke the
Parser.

5.4.1.3 InternalConsistencyChecker

TheInternalConsistencyChecker builds its own representation of the architecture and ensures
that components and connectors are properly specified (e.g., two interface elements in a
component cannot be identical), instantiated, and connected; that component interface elements
are correctly mapped to operations (as specified in Section 4.1); that variables referenced in an
operation are defined either as local variables for that operation or as component state variables;
and that operation pre- and postcondition expressions are type correct (e.g., aset variable is
never used in an arithmetic expression, although its cardinality may be). Furthermore, the
InternalConsistencyChecker computes communication links for every component in an
architecture: two components can interoperate if and only if they are on the opposite sides of the
same connector (e.g.,Repository andParser in Figure 5-4) or are on the opposite sides of two
connectors which are, in turn, connected by one or more connector-to-connector links (e.g.,
Repository andUserPalette in Figure 5-4).

Once the entire specification is parsed and its consistency ensured, its internal representation
is broadcast by theInternalConsistencyChecker to theTopologicalConstraintChecker,
TypeChecker, andCodeGenerator components.

5.4.1.4 TopologicalConstraintChecker

TheTopologicalConstraintChecker component receives a notification from the
InternalConsistencyChecker containing either (a representation of) an architecture or a set of
components. If the notification contains an architecture, theTopologicalConstraint-Checker
ensures that the topological rules of the C2 style are satisfied (see Chapter 2); if any topological
constraints are violated, the component notifies theUserPalette of the errors. If the notification

82

CHAPTER 5

received from theInternalConsistencyChecker contains a set of components, no topological
constraints are enforced.

5.4.1.5 TypeChecker

TheTypeChecker performs two kinds of analysis:
• given an architectural description, it analyzes each component instance to establish whether its

requirements are satisfied by the component instances along its communication links;
• given a set of component specifications, theTypeChecker ensures that their specified subtyping

relationships hold.

TheTypeChecker performs these functions by establishing the relationships, discussed in
Section 4.1, among component interface elements, invariants, and operations. It attempts to find
the appropriate matches among component state variables, operation variables, and interface
element parameters, as well as operation and interface element result types, such that the required
(implication) relationships hold. As required by the architectural type theory, in order to establish
the conformance of a required operation to a provided operation, theTypeChecker instantiates
variables of typeSTATE_VARIABLE in required operations with provided operations’ variables.
This is done repeatedly, until either a match is found that satisfies the conformance rules or no
further matches are possible.

Since our approach does not explicitly modelbasic types (see Section 4.1), theTypeChecker
essentially performs symbolic evaluation of logical expressions. For this reason, there are two
categories of cases in which theTypeChecker is unable to correctly determine whether the
implication indeed holds. The first category involves basic types that are conceptually related
(e.g.,Integer andNatural), but have not been declared as such inC2SADEL. TheTypeChecker
treats such types as unrelated and does not attempt to establish a relationship between variables of
those types during type checking.

The other category of cases occurs in expressions involving a single basic type. For example,
assume that one component’s operation precondition is

PRE1: n \eqless 10

and a candidatebehavior subtype’s corresponding operation precondition is

PRE2: n^2 \eqless 100

wheren in both expressions is declared to be of the basic typeNatural. To establish that the
behavior subtyping relationship holds,PRE1 must implyPRE2. This is obviously true: if a natural
number is less than or equal to10, its square will be less than or equal to100 . Note that this
would not be true of integers (e.g., ifn = -20). TheTypeChecker has no knowledge of the non-
negative property of natural numbers and cannot establish that the relationship between the two
preconditions is true. It ispessimistically inaccurate: it treats those cases for which it cannot
determine type conformance as errors.

Finally, there is another category of expressions that the current implementation of the
TypeChecker evaluates in a pessimistically inaccurate manner. However, unlike the previous two
categories, which are a direct result of our decision not to model the properties of basic types, the
TypeChecker can be evolved to support this class of expressions. These expressions involve
logical operators. For example, if one component’s operation precondition is

83

CHAPTER 5

PRE1: a \and c

and a candidatebehavior subtype’s corresponding operation precondition is

PRE2: b \implies c

thebehavior subtyping relationship will hold if the following implication is satisfied:
(a \and c) \implies (b \implies c)

Given the definitions of logical conjunction and implication, the above expression is true for all
values of variablesa, b, andc. However, truth tables for logical operators have not yet been
implemented in theTypeChecker. The current version of theTypeChecker therefore cannot
determine the truth value of this expression; instead, it informs the architect of the possible error
and leaves the final decision up to the architect.

5.4.1.6 CodeGenerator

TheCodeGenerator component generates application skeletons for the specified architecture
or set of components. LikeDRADEL itself, the application skeletons are built on top of the Java C2
implementation framework. The “main program,” containing the configuration (component and
connector instances and their interconnections), is automatically generated, as is the “make” file
for all of the generated files. For each specified component, theCodeGenerator creates the
corresponding C2 component with the canonical internal architecture, shown in Figure 5-5. The
InternalObject of every generated component is a Java class corresponding to theC2SADEL

specification of the component. For example, the generated internal object for theWellADT
component from Section 4.4 is shown in Figure 5-6: the state variables, state variable access
methods, and provided component service declarations are generated.

Each method corresponding to a component service (e.g.,GetTile in Figure 5-6) is
implemented as a null method in the generated class5, and is preceded by a comment containing
the method’s precondition and followed by one containing its postcondition. In general, these
individual, application-specific methods are the only parts of a component for which the
developers will have to provide an implementation. In the case of entirely new functionality, the
pre- and postcondition comments serve as an implementation guideline to the developer;

5. The exception are non-void functions: Java requires their results to be initialized and returned.DRADEL ini-
tializes the results to an arbitrary value.

Internal

Object
Dialog

re
q

u
e

st
s

n
o

tifi
ca

tio
n

s

1 2

3 4

Figure 5-5. Internal architecture of a canonical C2 component.
This figure is a slightly modified version of Figure 2-2. Message pathways are shown from the component’s
perspective and are explicitly labeled: (1) incoming notifications; (2) outgoing requests; (3) outgoing notifications;
and (4) incoming requests.

84

CHAPTER 5

package c2.KLAXSystem;
import java.lang.*;

public class WellADT extends Object {

// COMPONENT INVARIANT: num_tiles \eqgreater 0.0 \and num_tiles \eqless capacity

/***** State Variables *****/
private Integer num_tiles;
private Integer capacity;
private GSColor well_at_pos;

/***** Class Constructor *****/
public WellADT() {

num_tiles = null; // or: new Integer(<init val>);
capacity = null; // or: new Integer(<init val>);
well_at_pos = null; // or: new GSColor(<init val>);

}

/***** ADL Specified Methods *****/
// PRECONDITION: pos \greater 0.0 \and pos \eqless num_tiles
public GSColor GetTile(Natural pos) {

/*** METHOD BODY ***/
return well_at_pos;

}
// POSTCONDITION: \result = well_at_pos \and ~num_tiles = num_tiles - 1.0

// PRECONDITION: pos \greater 0.0 \and pos \eqless num_tiles
public Color GetTile(Integer pos) {

/*** METHOD BODY ***/
return well_at_pos;

}
// POSTCONDITION: \result = well_at_pos \and ~num_tiles = num_tiles - 1.0

/***** State Variable Access Methods *****/
public void SET_num_tiles(Integer new_value) {

num_tiles = new_value;
}

public Integer GET_num_tiles() {
return num_tiles;

}

public void SET_capacity(Integer new_value) {
capacity = new_value;

}

public Integer GET_capacity() {
return capacity;

}

public void SET_well_at_pos(GSColor new_value) {
well_at_pos = new_value;

}

public GSColor GET_well_at_pos() {
return well_at_pos;

}
}

Figure 5-6. Generated internal object class skeleton for theWellADT component.
Vertical spacing of the generated code has been altered to fit on the page.

85

CHAPTER 5

otherwise, they serve as an indicator of whether OTS functionality may be reused in the given
context, by replacing internal object skeletons with OTS components implementing the specified
methods.

Except for the Java defined types (e.g.,Integer or String), theCodeGenerator also supplies
class skeletons for all other basic types, which include constructors and access methods. The
actual data structures must be specified in these classes by the developers.C2SADEL set types are
currently implemented by subclassing from Java’sVector class, which provides a reasonable
abstraction of a set.

TheDialog portion of a C2 component from Figure 5-5 is responsible for all of the
component’s message-based interaction. TheCodeGenerator can generate a component’s dialog
almost completely from itsC2SADEL specification: the provided services correspond to the
notifications a component emits (message pathway3 in Figure 5-5) and the requests to which it is
capable of responding (pathway4), while the required services are used as a basis for specifying
the requests the component issues (pathway2). The parameters of a notification generated by a
component are determined from the specification of the corresponding operation’s postcondition:
any modified variables (marked with a~) and the operation’s result (in any) are reported; we are
currently assuming that it is not necessary to report variables whose values remain unchanged.6

The dialog class also contains a specification of the component’s message interface in the form
needed by the underlying implementation framework to support various protocols of
communication, e.g., message broadcast, registration, or point-to-point.

The only portion of the dialog that cannot be generated based on the information currently
modeled in aC2SADEL specification is what the dialog should do in response to the notifications it
receives (message pathway1 in Figure 5-5). This information could easily be specified in the
ADL, as was shown in the prototype design language for C2-style architecture that preceded
C2SADEL [53]; however, we have chosen to remove those constructs in the interest of language
simplicity.7

The dialog portion of theWellADT component is shown in Figure 5-7. Note that the modeled
portion ofWellADT does not have any required operations and, therefore, the dialog does not
generate any requests. Furthermore,WellADT is at the top of the KLAX architecture, thus it
receives no notifications from above.

Given that a component’s dialog is generated almost entirely from itsC2SADEL specification,
the internal object may, in fact, be completely replaced by an OTS component that does not
communicate via messages. Essentially, the OTS component is modeled inC2SADEL, so that
DRADEL can be used to check its compliance with the rest of the architecture and/or other
components in its type hierarchy, as well as to generate its C2 dialog, i.e., message wrapper. This
is one of the techniques for reusing OTS components discussed in Section 5.2 above.8

6. TheCodeGenerator could be easily extended to support any other policy for generating notification parame-
ters.

7. Another reason this information has been removed fromC2SADEL was discussed in Chapter 4:C2SADEL

embodies the architectural type theory, which is intended to be domain-, style-, and ADL-independent.
C2SADEL is thus designed to be largely a domain- and style-independent.DRADEL’s CodeGenerator, on the
other hand, is C2-specific, resulting in this (slight) mismatch.

8. Prior toDRADEL’s development, OTS component dialogs had to be implemented manually.

86

CHAPTER 5

package c2.KLAXSystem;
import c2.framework.*;
import java.lang.*;

public class WellADT_C2_Component extends ComponentThread {

private WellADT state_var;

/***** Class Constructor *****/
public WellADT_C2_Component(String name) {

create(name);
}

public void create(String name) {
super.create(name, FIFOPort.classType());
recordMessageInterface();
state_var = new WellADT();

}

/***** Notification Handling *****/
public void handle(Notification notif_msg) { }

/***** Request Handling *****/
public void handle(Request req_msg) {

if (req_msg.name().equals(“GetTile”)) {
Natural i = (Natural)req_msg.getParameter(“i”);
handleRequest_GetTile(i);

} else if (req_msg.name().equals(“GetTile”)) {
Integer location = (Integer)req_msg.getParameter(“location”);
handleRequest_GetTile(location);

}
}

private void handleRequest_GetTile(Natural i) {
GSColor result = state_var.GetTile(i);
notifyGetTile(state_var.GET_num_tiles(), result);

}

private void handleRequest_GetTile(Integer location) {
Color result = state_var.GetTile(location);
notifyGetTile(state_var.GET_num_tiles(), result);

}

/***** Notification Generating Methods *****/
private void notifyGetTile(Integer num_tiles, GSColor result) {

Notification notif_msg = new Notification(“GetTileCompleted”);
notif_msg.addParameter(“num_tiles”, num_tiles);
notif_msg.addParameter(“result”, result);
send(notif_msg);

}

private void notifyGetTile(Integer num_tiles, Color result) {
Notification notif_msg = new Notification(“GetTileCompleted”);
notif_msg.addParameter(“num_tiles”, num_tiles);
notif_msg.addParameter(“result”, result);
send(notif_msg);

}

/***** Recording Interface <<< DO NOT MODIFY BELOW THIS LINE>>> *****/
private void recordMessageInterface() {

addMessageToInterface(“bottom”, “in”, “GetTile”);
addMessageToInterface(“bottom”, “in”, “GetTile”);
addMessageToInterface(“bottom”, “out”, “GetTileCompleted”);
addMessageToInterface(“bottom”, “out”, “GetTileCompleted”);

}
}

Figure 5-7. Generated dialog for theWellADT component.
Vertical spacing of the generated code has been altered to fit on the page.

87

CHAPTER 5

5.4.1.7 User Interface Components

The remaining components inDRADEL’s architecture,UserPalette, TypeMismatch-Handler,
andGraphicsBinding (see Figure 5-4) handle the user’s interaction withDRADEL. TheUserPalette
component drives the entire environment. It also displays the current execution status. The
TypeMismatchHandler component informs the user of the results of all component subtype
matching and architectural type checking. Finally, as with any C2-style application, the
GraphicsBinding rendersDRADEL’s user interface on the screen. The user interface is shown in
Figure 5-8, with examples ofnam, int, andbeh type conformance violations in theKLAXSystem
architecture discussed and (partially) specified in Section 4.4.

Since each component in an architecture may have multiple other components along its
communication links, the type mismatch information in Figure 5-8 only specifies the “end result”
of type checking, rather than its pairwise breakdown. In other words, theTypeChecker searches
for a match for a given required service only until one is found. Thus, even if a component is
actually intended to interact with multiple other components in an architecture, theTypeChecker
ensures only that it can interact withat least one other component. Another alternative,
implemented in a previous version ofDRADEL, is to attempt to match every required service to
every component along the communication links, but this approach is much less efficient in terms
of execution speed. Note that this problem does not exist in the case of component evolution as
each component has an explicitly specified supertype component and need only be checked
against it, regardless of the size of the component hierarchy.

5.4.2 The Architecture-Based Development and Evolution Process

TheUserPalette component, rendered as the top and left panes of Figure 5-8, enforces the
high-level, “architecting” process encoded inDRADEL. Prior to parsing a file, theCheckConstr,

Figure 5-8.DRADEL environment’s user interface.

88

CHAPTER 5

TypeCheck, andGenCode buttons are grayed out. Only once an architectural description or a set
of components is successfully parsed and its internal consistency established can the user perform
other functions. If the parsed file contains an architecture, theCheckConstr button is enabled, and
the topological constraints must then be ensured. This must be done before either type checking
the architecture or generating the application skeleton. If one is evolving design elements (i.e.,
ensuring the specified subtyping relationships among components), theTypeCheck andGenCode
buttons are automatically enabled. This process is repeated every time the user decides to parse a
new file.

If any errors are found during parsing, consistency checking, or topological constraint
checking, a message will appear in theStatus window informing the user of the exact error and its
location. Errors encountered during any of these activities impact the subsequent operations: in
the case of parsing errors, an architecture’s internal model cannot be constructed and checked for
consistency; in the case of internal inconsistencies, the architecture cannot be type checked;
finally, in the case of violated topological constraints, an implementation of the architecture
cannot be generated on top of the current implementation infrastructure. Therefore, the user is not
allowed to proceed until all parsing, consistency, and topological errors are corrected.

This is not the case with architectural type checking: the user can still generate the
application, even if there are type errors (architect’s discretion), or the user may decide to skip the
type checking stage altogether. The reasons for this are twofold.

Unlike a programming language, which requires complete type conformance, architectures
may describe meaningful functionality even if there are interface or behavioral mismatches. This
has certainly been the case with C2-style applications, in which components communicate via
asynchronous messages and are substrate independent: C2 architectures are robust (hence the “R”
in “DRADEL”) in that a type mismatch may result in degraded functionality, or it may have no ill
effects on the system, if it affects a part of the system that is not used in a given setting. It is the
architect’s responsibility to decide whether a given type mismatch is acceptable.

The other reason for allowing generation of type-mismatched components and architectures is
theTypeChecker itself. To establish behavioral conformance between two components, the
TypeChecker attempts to find mappings between their variables such that the correct (implication)
relationships between their invariants, and pre- and postconditions hold. If the architect either
judges the type mismatch not to be critical or discovers that the error is a result ofTypeChecker’s
pessimistic inaccuracy, the architect has the choice to override theTypeChecker and proceed with
code generation.

5.4.3 Discussion

DRADEL has been designed to be easily evolvable. Its components can be replaced to satisfy
new requirements. For example, as already discussed, the file system-basedRepository can be
replaced with a database to keep track of design elements and architectures more efficiently.
AnotherParser can be substituted to support a different ADL, while a new
TopologicalConstraintChecker, e.g., Armani [55], can be used to ensure adherence to a different
architectural style. TheTypeChecker may be replaced with a component that supports a different
notion of architectural evolution and analysis; also, additional analysis tools may be added, even
at runtime, using techniques described in [61]. Finally, the existingCodeGenerator may be

89

CHAPTER 5

replaced or new generation components added to support different implementation
infrastructures.

DRADEL itself can be used reflexively to model and ensure the consistency of its own
evolution. As the diagrams in Figures 2-5 and 5-4 and their subsequent discussions indicate, there
areno fundamental differences betweenDRADEL and an application modeled, analyzed, evolved,
and implemented with its help. Indeed,DRADEL’s architecture can be specified inC2SADEL,
parsed, checked for internal consistency, type checked, and the environment itself partially
generated, as discussed above, usingDRADEL.

90

CHAPTER 6: Validation

Our approach to validating the claims of this dissertation is twofold: empiricaldemonstration
of the utility of each claim and their analyticalevaluation. To demonstrate our approach, we
present a series of exercises intended to explore and confirm our hypotheses. To evaluate the
results of this work, we discuss to what degree and in what manner the different exercises
demonstrate our evolution techniques, extrapolate from the experience of conducting the
exercises, and compare the techniques we have developed to their alternatives that represent the
state of the practice.

We have already discussed two examples that provide demonstration of this dissertation’s
concepts: KLAX and several of its variations, in Chapters 2 and 4, andDRADEL, in Chapter 5. The
next three sections describe in more detail additional exercises used to demonstrate our techniques
and claims. Section 6.4 presents our evaluation of these specific exercises and our work as a
whole.

6.1 OTS Component Reuse

Several examples of OTS component reuse have been discussed either in this dissertation or in
our earlier work. These include GUI toolkit bindings (Chapter 5); two WWW browsers and a
persistent object manager [48]; ArchShell, a tool for run-time manipulation of architectures, and
Argo, a design environment [61]. We focus on the below series of exercises since it is
representative of the employed technique, incorporates a medium-size and a large OTS
component, and demonstrates additional issues, including partial communication, partial
component service utilization, and application families.

6.1.1 Background

The KLAX architecture from Chapter 2 is used as the demonstration platform for this series
of exercises. Specifically, we used the implementation of KLAX on top of the C++ version of the
implementation framework. Two OTS UI constraint solvers were selected for integration with
KLAX: SkyBlue, a medium-size solver [76], and Amulet, a large solver [45].1 In its form as
described in Chapter 2, KLAX does not necessarily need a constraint solver. Its constraint
management needs would certainly not exploit the full power of a solver such as SkyBlue, e.g.,
handling constraint hierarchies. On the other hand, it should be possible to use a powerful
constraint manager for maintaining a small number of simple constraints. Additionally, the main
purpose of this effort was to explore the architectural issues in integrating OTS components into a
C2-style architecture. We therefore opted not to unnecessarily expend resources to artificially
create a situation where a number of complex constraints needed to be managed. Instead, we
decided to integrate SkyBlue with KLAX to support its extant constraint management needs. If
we were unable to do so, there would be at least four possible sources of problems:
1. the C2 style,

1. The sizes of the tow OTS components do not reflect their relative constraint-solving power. SkyBlue, the
smaller of the two, provides more advanced constraint solving capabilities. Amulet, on the other hand, is a
complete GUI builder. We only used its one-way formula constraint manager, but this also required the
inclusion of Amulet’s object system, substantially adding to the extracted component’s size. For simplicity,
we refer to the solver as “Amulet” in the remainder of this chapter. The entire Amulet system will be referred
to as “the Amulet GUI builder.”

91

CHAPTER 6

2. our strategy for OTS integration (see Chapter 4),
3. the KLAX architecture, and
4. the OTS constraint solver.
In any case, we would learn a useful lesson.

We defined the following four constraints for management by a solver:
• Palette Boundary: The palette cannot move beyond the chute and well’s left and right

boundaries.
• Palette Location: Palette’s coordinates are a function of its location and are updated every time

the location changes.2

• Tile Location: The tiles which are on the palette move with the palette. In other words, thex
coordinate of the center of the tile always equals thex coordinate of the center of the palette.

• Resizing: Each game element (chute, well, palette, and tiles), is maintained in an abstract
coordinate system by its artist. This constraint transforms those abstract coordinate systems,
resizing the game elements to have the relative dimensions depicted in Figure 2-4 on page 12
before they are rendered on the screen. This constraint would be essential in a case where the
application is composed from preexisting components supplied by different vendors. A similar
constraint could also be used to accommodate resizing of the game window, and hence of the
game elements within it.

6.1.2 Integrating SkyBlue with KLAX

The four constraints were defined based on the needs of the overall application. Further
thought was still needed to decide the location of the constraint manager in the KLAX
architecture. There clearly were several possibilities. One solution would have been to include
SkyBlue within the appropriate components for thePalette Boundary, Palette Location, andTile
Location constraints, since they affect individual game elements (i.e., they are “local”). The
Resizing constraint pertains to several game elements, and would thus belong in a separate
component.

We initially opted for another solution: define all four constraints in a centralized constraint
management component. TheLayoutManager component was intended to serve as a constraint
manager in the original design of KLAX. However, in the initial implementation, the constraints
were solved with in-line code locally inPaletteADT andPaletteArtist and the sole purpose of
LayoutManager was to properly line up game elements on the screen. The implemented version
of LayoutManager also placed the burden of ensuring that the game elements have the same
relative dimensions on the developers of thePaletteArtist, ChuteArtist, andWellArtist
components. Incorporating constraint management functionality intoLayoutManager therefore
rendered an implementation more faithful to its original design.

The constraints were defined in the “dialog and constraints” part of theLayoutManager
component (see Figure 6-1), while SkyBlue became the component’s internal object. As such,
SkyBlue has no knowledge of the architecture of which it is now a part. It maintains the
constraints, while all the request and notification traffic is handled byLayoutManager’s dialog, as
shown in Figure 6-1.LayoutManager thus became a constraint management component in the C2
style that can be reused in other applications by only modifying its dialog to include new
constraints.3

2. Location is an integer between 1 and 5.

92

CHAPTER 6

PaletteADT, PaletteArtist, ChuteArtist, andWellArtist also needed to be modified. Their local
constraint management code was removed. Furthermore, their dialogs and message interfaces
were expanded to notifyLayoutManager of changes in constraint variables and to handle requests
from LayoutManager to update them.

It is important to note that it was not necessary to modify these four components in order for
the architecture containing the newLayoutManager to behave correctly. However, just like the
originalLayoutManager was modified to reflect its intent, these components’ implementations
were modified to mirror their intended behavior as well. As already discussed in the preceding
section, building this new version ofLayoutManager and inserting it into the architecture was not
motivated by the need for functionality that did not already exist in the architecture (the
application had already behaved as desired). Rather, the drivers were improved traceability of
architectural decisions to the implementation and vice versa, construction of a powerful UI
constraint management component in the C2 style, and investigation of issues in integrating OTS
components into C2-style architectures.

Eleven new messages were added to handle this modification of the original application and
there was no perceptible performance degradation. The entire exercise was completed by one
developer in approximately 45 hours.

6.1.3 Integrating Amulet with KLAX

C2 supports reuse through the internal component architecture, substrate independence, and
asynchronous communication via connectors. These features also support component
substitutability and localization of change. In general, two behaviorally equivalent components
can always be substituted for one another; behavior preserving modifications to a component’s
implementation have no architecture-wide effects (see Section 4.1). In the example discussed in
the previous section, this would mean that SkyBlue may be replaced with another constraint
manager by only having to modify the “dialog and constraints” portion ofLayoutManager to
define constraints as required by the new solver. The set of messages inLayoutManager’s
interface and the rest of the KLAX architecture would remain unchanged.

3. In the remainder of the paper, when we state that a constraint solver is “inside” or “internal to” a component,
the internal architecture of the component will resemble that ofLayoutManager from Figure 6-1.

SkyBlueDialog

Tile
Artist

Graphics
Binding

Layout
Manager

...

Figure 6-1. A C2-style UI constraint management component.
The SkyBlue constraint management system is incorporated into KLAX by placing it inside theLayoutManager
component.LayoutManager’s dialog handles all the C2 message traffic.

93

CHAPTER 6

To demonstrate this claim, we substituted SkyBlue with Amulet. This exercise required
identifying, extracting, and recompiling the needed portion of the Amulet GUI builder, a task that
was accomplished by a single developer in approximately 25 hours. This added effort was
necessitated by our inability to locate implementations of any other UI constraint solvers. It
resulted in a situation that is common when attempting software reuse: OTS systems may not
contain components that can be clearly identified or easily isolated and extracted [8], [24], [38].

Once the solver was extracted, it was successfully substituted for SkyBlue in the KLAX
architecture and tested by one developer in 75 minutes. As anticipated, no architecture-wide
changes were needed. Only the interior of theLayoutManager component needed to be modified:
its internal object was now Amulet instead of SkyBlue; the constraint variables updated by the
component’s dialog in response to incoming C2 messages were now defined in Amulet. The look-
and-feel of the application remained unchanged. There was again no performance degradation.

6.1.4 KLAX Component Library

Integrating SkyBlue and Amulet with KLAX provided an opportunity for building multiple
versions ofPaletteADT, PaletteArtist, ChuteArtist, WellArtist, andLayoutManager components.
Individual versions of each component would differ based on two criteria:
• constraints maintained — if two versions of a component maintain different constraints

internally, their message interfaces will also differ to account for that. Extreme cases are (1)
components that enforce all of their local constraints and (2) those that enforce no constraints.

• mechanism used for constraint maintenance — a component can maintain a constraint (1) with
in-line code, as in the original implementation, (2) in SkyBlue, (3) in Amulet, or (4) using a
combination of the three.

The two integrations described above resulted in three versions ofLayoutManager: the
original, SkyBlue, and Amulet versions. These are listed asLayoutManager versions 1, 2, and 3
in Table 6-1. Two versions each ofPaletteADT, PaletteArtist, ChuteArtist, andWellArtist were
created as well: original components maintaining local constraints with in-line code (versions 1 of
the four components in Table 6-1) and components whose constraints were managed elsewhere in
the architecture (versions 2 of the four components in Table 6-1).4

The two initial integrations also suggested other variations of these components, such as
replacing in-line constraint management code with SkyBlue and Amulet constraints in
PaletteADT andPaletteArtist (see Footnote 3). Also, a version ofLayoutManager was
implemented that maintained only theResizing constraint, in anticipation that other components
will internally manage their local constraints (this scenario was briefly described at the beginning
of Section 6.1.2). This resulted in a total of 18 implemented versions of the five components, as
depicted in Table 6-1.

6.1.5 Building an Application Family

The four versions ofPaletteADT andPaletteArtist, two versions ofChuteArtist andWellArtist,
and six versions ofLayoutManager, described in Table 6-1, could potentially be used to build 384
different variations of the KLAX architecture, i.e., members of the KLAX application family.
Three such variations were described in Chapter 2 (using versions 1 of all five components),

4. In the rest of the paper, a particular component version will be depicted by the component name followed by
its version number (e.g.,PaletteADT-2).

94

CHAPTER 6

Section 6.1.2 (using versions 2 of the five components), and Section 6.1.3 (replacing
LayoutManager-2 with LayoutManager-3 in the architecture from Section 6.1.2). In this section,
we discuss several additional implemented variations of the architecture that exhibit interesting
properties.

6.1.5.1 Multiple Instances of a Constraint Manager

In the architecture depicted in Table 6-2, thePalette Boundary, Palette Location, andTile
Location constraints are defined and maintained in SkyBlue insidePaletteADT andPaletteArtist,
while theResizing constraints are maintained globally byLayoutManager. Therefore, multiple
instances of SkyBlue maintain the constraints in different KLAX components. Since C2 separates
architecture from implementation, we were able to implement the three components that contain
their own logical copies of SkyBlue using a single physical instance of the constraint manager.

6.1.5.2 Partial Communication and Service Utilization

Particularly interesting are components that are used in an architecture for which they have
not been specifically designed, i.e., they can do more or less than they are asked to do. This is an

Table 6-1: Implemented Versions ofPaletteADT, PaletteArtist, ChuteArtist, WellArtist, and
LayoutManager KLAX Components

Version Number
Constraints
Maintained

Constraint Managers

P
al

et
te

A
D

T

1 Palette Boundary In-Line Code

2 None None

3 Palette Boundary SkyBlue

4 Palette Boundary Amulet

P
al

et
te

A
rti

st

1
Palette Location

Tile Location
Tile Size

In-Line Code

2 None None

3
Palette Location

Tile Location
SkyBlue

4
Palette Location

Tile Location
Amulet

C
hu

te
A

rti
st 1 Chute Size In-Line Code

2 None None

W
el

l
A

rti
st 1 Well Size In-Line Code

2 None None

La
yo

ut
M

an
ag

er

1 None None

2 All SkyBlue

3 All Amulet

4 Resizing SkyBlue

5 Resizing Amulet

6 All SkyBlue & Amulet

95

CHAPTER 6

issue of reuse: if components are built a certain way, are their users (architects) always obliged to
use them “fully”; furthermore, can meaningful work be done in an architecture if two components
communicate only partially, i.e., certain messages are lost? The architectures described below
represent a crossection of exercises conducted to better our understanding of partial
communication and partial component service utilization.
• A variation of the original architecture was implemented by substitutingLayoutManager-2

into the original architecture, as shown in Table 6-3.LayoutManager-2’s functionality remains
largely unused as no notifications are sent to it to maintain the constraints (see Section 6.1.2).
The application still behaves as expected and there is no performance penalty. Note that this
will not always be the case: ifLayoutManager-2 was substantially larger thanLayoutManager-
1 or had much greater system resource needs (e.g., its own operating system process), the
performance would be affected.

• Another variation of the architecture that was implemented is shown in Table 6-4. This
exercise was intended to explore heterogeneous approaches to constraint maintenance in a
single architecture: some components in the architecture maintain their constraints with in-line
code (WellArtist andChuteArtist), others maintain them internally using SkyBlue
(PaletteADT), whilePaletteArtist’s constraints are maintained by an external constraint
manager.LayoutManager-2 is still partially utilized, but a larger subset of its services is used
than in the preceding architecture.

• In the architecture shown in Table 6-5,PaletteADT expects that thePalette Boundary
constraint will be maintained externally by some other component. However, in this case,
LayoutManager-1 does not understand and therefore ignores the notifications sent by

Table 6-2: Multiple Instances of SkyBlue

Component Version Number Constraints Maintained Constraint Managers

PaletteADT 3 Palette Boundary SkyBlue

PaletteArtist 3
Palette Location

Tile Location
SkyBlue

ChuteArtist 2 None None

WellArtist 2 None None

LayoutManager 4 Resizing SkyBlue

Table 6-3: None ofLayoutManager’s Constraint Management Functionality is Utilized

Component Version Number Constraints Maintained Constraint Managers

PaletteADT 1 Palette Boundary In-Line Code

PaletteArtist 1
Palette Location

Tile Location
Palette Size

In-Line Code

ChuteArtist 1 Chute Size In-Line Code

WellArtist 1 Well Size In-Line Code

LayoutManager 2 All SkyBlue

96

CHAPTER 6

PaletteADT (partial communication). Movement of the palette is thereby not constrained and
the application behaves erroneously: the palette disappears when moved beyond its right
boundary; the execution aborts when the palette moves beyond the left boundary and the
GraphicsBinding component (see Section 5.1) attempts to render it at negative screen
coordinates.

The above examples appear to imply that partial service utilization generally has no ill effects
on a system, while partial communication does. This is not always the case. For example, an
additional version of each component from the original architecture was built to enable testing of
the application. These components would generate notifications that were needed by both
components below them in the architecture and a testing harness. If a “testing” component was
inserted into the original architecture, all of its testing-related messages would be ignored by
components below it, resulting in partial communication, yet the application would still behave as
expected. Clearly, the overhead of dispatching messages that ultimately get ignored may be
prohibitively expensive in certain situations. In general, a useful metric for determining the
possible negative effects of partial communication is the ratio of the number of lost messages to
the total number of messages in an architecture.

6.1.5.3 Multiple Constraint Managers in an Architecture

Combining multiple constraint solvers in a single application has recently been identified as a
potentially useful approach to constraint management [45], [76]. We investigated this issue by
using multiple constraint managers in different components in a single architecture. Such an
architecture was implemented using components shown in Table 6-6. In this architecture,Palette

Table 6-4:LayoutManager’s Constraint Management Functionality is Only Partially Utilized

Component Version Number Constraints Maintained Constraint Managers

PaletteADT 3 Palette Boundary SkyBlue

PaletteArtist 2 None None

ChuteArtist 1 Chute Size In-Line Code

WellArtist 1 Well Size In-Line Code

LayoutManager 2 All SkyBlue

Table 6-5:Palette BoundaryConstraint is not Maintained

Component Version Number Constraints Maintained Constraint Managers

PaletteADT 2 None None

PaletteArtist 1
Palette Location

Tile Location
Palette Size

In-Line Code

ChuteArtist 1 Chute Size In-Line Code

WellArtist 1 Well Size In-Line Code

LayoutManager 1 None None

97

CHAPTER 6

Boundary andResizing constraints are maintained by SkyBlue, andPalette Location andTile
Location by Amulet. The sets of constraint variables managed by the two solvers are disjoint, and
there are no interdependencies between SkyBlue and Amulet that would have required us to
account for their different type systems.5 Architectures built according to the C2 style will always
have this property: since C2 does not assume a single address space for its components, inter-
component constraint variable sets will always be disjoint. Hence, this modification to the
architecture was a simple one.

6.2 OTS Connector Reuse

In programming languages, connectors are primitive and implicit in, e.g., procedure calls and
global variables. Since software components at the architectural level may contain complex
functionality, it is reasonable to expect that their interactions will be complex as well. Modeling
and implementing software connectors with potentially complex protocols thus becomes a key
aspect of architecture-based development [3], [52], [82].

While practitioners are typically intimately familiar with “connecting” software modules via,
e.g., procedure calls, their understanding of other interconnection mechanisms, e.g., client-server
protocols and message routers, is often minimal. Several commercial and research off-the-shelf
(OTS) middleware software systems that explicitly implement such interconnection mechanisms
are available: Field [73], SoftBench [13], Tooltalk [34], Q [44], Polylith [72], DCE [78], CORBA
[62], ILU [97], COM/DCOM [80], and ActiveX [15]. Also, several object-oriented (OO)
programming languages provide remote procedure call (RPC) mechanisms. A representative
example is Java’s Remote Method Invocation (RMI) system [87]. Unfortunately, the applicability
of these mechanisms and tools to software architectures is not well understood [17]. They are
rarely used by architecture researchers in practice. With the exception of UniCon [82], the focus
of researchers has instead generally been on formal modeling of connector protocols with
implementation support for simple connections only.

To explore the use of OTS middleware packages with software connectors, we chose four
representative middleware technologies. These were Q, an RPC system [44], Polylith, a message
bus [72], RMI, a connection mechanism for Java objects [87], and ILU, a distributed objects
package [97]. Each middleware technology was integrated with the C2 implementation
infrastructure to create an additional implementation of a C2 connector. Each integration

5. The difference in the two solvers’ type systems requires special treatment if both are used inside a single
component, as discussed in [50].

Table 6-6:Palette BoundaryConstraint is not Maintained

Component Version Number Constraints Maintained Constraint Managers

PaletteADT 3 Palette Boundary SkyBlue

PaletteArtist 4
Palette Location

Tile Location
Amulet

ChuteArtist 2 None None

WellArtist 2 None None

LayoutManager 4 Resizing SkyBlue

98

CHAPTER 6

employed one of the techniques discussed in Section 4.3. The middleware technologies were
evaluated using the criteria specified in Section 5.3. The results of these integrations are discussed
below.

6.2.1 Q

The Q system, developed at the University of Colorado, is intended to provide interoperability
support for multilingual, heterogeneous component-based systems. Q presents a layer of
functionality between software components communicating across process boundaries. It is based
on remote procedure calls (RPC) and provides support for marshaling and unmarshaling of
arbitrarily complex type structures. Q also supports placement of components executing in a
single thread or in multiple threads of control inside a single process. It ensures the proper
communication of multi-threaded components with other parts of a system. Q addresses the issue
of performance by adding an asynchronous message interface on top of a standard RPC interface,
so that processor time is used for interprocess communication only when it is known that data is
pending.

Q uses a remote procedure call (RPC) mechanism for communication, which is dissimilar to
C2’s message-based style. Nonetheless, we easily emulated message passing using RPC by
passing serialized messages as parameters in remote calls. Q supports systems built in several
languages: C/C++, Ada, Java, Tcl, Lisp, and Prolog. It was originally built for the UNIX platform,
although its Java interface presents the potential for moving to other platforms. We have made use
of its support for C/C++ and Ada with the intent to exploit its support for Java in the near future.

Our approach to integrating Q with the C2 implementation infrastructure consisted of
encapsulating Q inside a C2 connector (we refer to it as a “Q-C2 connector” below). Q is not a
software bus, so it does not support typical connector-like features, such as event registration,
filtering, and routing. However, this layer of support is added easily in a Q-C2 connector.

A Q-C2 connector exports the same interface as a regular C2 connector, so architects attach
components to it in the usual manner. Internally, however, a Q-C2 connector provides a
mechanism for communicating across process boundaries via Q. At each process boundary, a
conceptual C2 connector is horizontally “broken up” into two or more Q-C2 connectors, one per
process, as shown in Figure 4-16b on page 64. When using Q-C2 connectors, all processes
containing C2 subarchitectures must register with a single “name server.” All links across process
boundaries are specified in the Q-C2 connector, by naming the attached connectors, and are
maintained by Q at execution time. Clearly, care must be taken to ensure that there are no naming
conflicts, i.e., that multiple Q-C2 connectors do not share a name.

Given that we can explicitly specify the connections among Q-C2 connectors in an
architecture, a single instance of Q is sufficient to support the needs of an architecture. Since Q is
UNIX-based, it supports addition and removal of processes at execution time. Any additional
support for dynamism, such as transactions, state preservation during change, or component (i.e.,
process) replacement, must be built on top of Q.

We used Q to generate a multi-process version of KLAX, shown in Figure 4-14 on page 62.
ConnectorsIPconn1 andIPconn2 were used at process boundaries. The rest of the application
remained identical to single-process KLAX. This three-process configuration allowed us to
explore issues in supporting multilingual applications in C2. For example, we were able to replace
the “middle” process in KLAX, where theTileArtist component and both connectors were

99

CHAPTER 6

initially implemented in C++, with their Ada implementations. This can be done at specification-
or run-time. If the change is made at run-time, a part of the game state is lost, as no one receives
the notifications issued by components in the “top” process or requests issued by the “bottom”
process components during the course of the change. The performance of this variation of KLAX
easily exceeded human reaction time if theClockLogic component used short time intervals.

6.2.2 Polylith

The Polylith software bus was developed at the University of Maryland. Polylith was built to
allow several parts of an application to communicate across process boundaries using messages
made up of arbitrarily complex type structures. Polylith uses messages for communication, which
made it well-suited for implementing C2-style connectors. Polylith can transfer messages among
processes running on a single machine or on multiple machines using the TCP/IP networking
protocol. The Polylith toolkit is implemented in C and runs on several variants of UNIX. Polylith
currently supports applications developed in C/C++.

Polylith is inherently built to communicate among UNIX processes. Although there is no
support for multithreading in Polylith, multiple threads within a process are allowed in principle.
Polylith has support for marshaling and unmarshaling of C basic types and structures. The
Polylith bus itself runs in its own process and acts as a message queue for other processes, which
are individually responsible for periodically sending and retrieving messages to and from the bus.

Like the Q-C2 connector, the “Polylith-C2” connector is an extension of the standard, in-
process C2 connector: at each process boundary, a conceptual connector is “broken up” vertically
into Polylith-C2 connectors, as shown in Figure 4-16a on page 64. All access to Polylith is done
within the C2 connector, and is transparent. Components can attach themselves to a Polylith-C2
connector in the usual manner.

The process-level structure of a C2 application that uses Polylith is defined statically, i.e., at
compile time, using a proprietary language called MIL. The MIL code can be generated
automatically in a fairly straightforward manner. As a software bus, Polylith has the ability to
route messages at the process level, but it is necessary to implement one’s own intra-process
routing mechanisms. There is no support for message filtering in Polylith.

The current Polylith toolkit uses the UNIX process scheduler for all process scheduling.
Polylith applications with specific scheduling needs must explicitly make system-level calls from
within the application. Such performance limitations became problematic when Polylith-C2 was
used in the implementation of the KLAX application. The implementation suffered from poor
performance due to the UNIX process scheduler giving large time slices to each process, resulting
in messages being handled in bursts rather than in a fluid manner. This may be unacceptable in a
real-time application such as KLAX.6

6.2.3 RMI

Java’s Remote Method Invocation (RMI) is a technology developed by Sun Microsystems to
allow Java objects to invoke methods of other objects across process and machine boundaries.

6. The authors of Polylith acknowledge this problem; an experimental, as yet unreleased version of Polylith
alleviates this shortcoming.

100

CHAPTER 6

RMI supports several standard distributed application concepts, namely registration, remote
method calls, and distributed objects. Currently, RMI only supports Java applications.7

Each RMI object that is to be shared in an application defines a public interface (a set of
methods) that can be called remotely. This is similar to the RPC mechanism of Q. These methods
are the only means of communication across a process boundary via RMI. Because RMI is not a
software bus, it has no concept of routing, filtering, or messages. However, Java’s built-in
serialization and deserialization capabilities handle marshaling of basic and moderately complex
Java objects, including C2 messages.

RMI is fully compatible with the multithreading capabilities built into the Java language, and
is therefore well suited for a multithreaded application. It allows communication among objects
running in different processes, which may be on different machines. Communication occurs
exclusively over the TCP/IP networking protocol.

We successfully applied to RMI all three strategies for providing distribution support to C2
architectures, discussed Section 4.3 and depicted in Figures 4-15 and 4-16. Like the Polylith- and
Q-integrated connectors, the RMI-C2 connector we developed has all the capabilities of a single-
process C2 connector. Additionally, it has the ability to register and deregister itself at run-time
with the Java-RMI name server, and to be linked to other registered connectors. All access to RMI
facilities is encapsulated within the connector and is transparent.

Minimal modification was required to convert the existing Java implementation of the C2
KLAX application into a multi-process application that uses RMI-C2 connectors. RMI supports
application modification at run-time, a capability enabled by Java’s dynamic class loading. The
performance of the three-process implementation of KLAX using RMI-C2 was satisfactory.
Another variation of the KLAX application built using RMI-C2 connectors was multiplayer
KLAX. This variation allowed players to remotely join a game already in progress and compete
against other participants.

RMI’s properties make it ideal for use within a Java C2 application. Its native support in Java
1.1 makes it more easily available to architecture implementors than third party alternatives. Also,
using software connectors that work with RMI does not preclude an application implemented
partially or completely in Java from using another middleware technology, such as Q or ILU, as
well.

6.2.4 ILU

Xerox PARC’s ILU (Inter-Language Unification) was developed as a free CORBA-compliant
object brokering system. Functionally, it is similar to RMI, allowing objects to call methods on
other objects across process or network boundaries. ILU is different from RMI in that it has wide
platform and language support: C, C++, Java, Python, LISP, Modula-3, Perl, and Scheme, on both
Windows and UNIX platforms. The current ILU implementation can be thought of as a CORBA
Object Request Broker (ORB), but ILU is not yet fully CORBA compliant.

Like RMI, each ILU object that is to be shared in an application defines a public set of
methods that can be called remotely. There is no inherent concept of messages in ILU, but
messages can be passed as parameters in remote method calls. Similarly to Q, ILU has the ability
to serialize moderately complex objects across language boundaries. As with other distributed

7. A forthcoming link between RMI and CORBA will remedy RMI’s exclusive support for Java.

101

CHAPTER 6

object systems, object references are not preserved across the serialization boundary. ILU does
not include a name server, but it facilitates object registration through a method called “simple
binding” that is part of the ILU package. Our integration of ILU with C2 was done using the
vertical “slicing” technique depicted in Figure 4-16a. The Java implementations of the C2
framework and the ILU package were used. The ILU-C2 connector thus created has all the
capabilities of an in-process C2 connector, but it is also capable of lateral connection to ILU-C2
connectors in other processes. Again, all access to ILU is done entirely within the connector, in a
manner that is transparent to architects and developers.

ILU takes full advantage of Java’s multithreading capabilities and works in multithreaded
applications implemented in other languages, even if such threading is provided by the operating
system rather than the language itself. This makes it well suited for real-time, asynchronous
message passing architectures, such as C2-style architectures. Minimal modification was required
when converting a single-process C2 application to a multi-process C2 application. ILU allows
objects to be registered and deregistered at run-time, therefore enabling dynamic application
construction at run-time. We utilized this feature to demonstrate a set of components and
connectors joining a larger, already executing application at run-time.

6.2.5 Simultaneous Use of Multiple Middleware Technologies

We combined our implementations of ILU-C2 and RMI-C2 connectors in a single application.
This was accomplished by combining the lateral welding technique with the horizontal slicing
technique, as discussed in Section 5.3. As anticipated, no modification was required to the C2
framework or the connectors themselves.

6.3 Architectural Subtyping and Type Checking

We use a logistics system for routing incoming cargo to a set of warehouses to demonstrate
component evolution via subtyping, architectural type checking, and implementation generation
from an architectural description. This example is a variant of the application first introduced in
[61]. Its architecture is shown in Figure 6-2. TheDeliveryPort, Vehicle,and Warehouse
component types are objects that keep track of the state of a port, a transportation vehicle, and a
warehouse, respectively. Each of them may be instantiated multiple times in a system. The
DeliveryPortArtist, VehicleArtist, andWarehouseArtist components are responsible for
graphically depicting the states of their respective sets of objects to the end-user. Each organizes
its depiction based on the actual number of its object instances. TheLayout Manager ensures that
artist depictions are correctly juxtaposed on the screen.SystemClock provides consistent time
measurement to interested components, while theMap component informs vehicles of routes and
distances. TheRouter component determines when cargo arrives at a port, keeps track of available
transport vehicles at each port, and tracks the cargo during its delivery to a warehouse.
RouterArtist allows entry of new cargo as it arrives at a port and informs theRouter component
when the end-user decides to route cargo. TheGraphicsBindingcomponent renders the drawing
requests sent from the artists using a GUI toolkit.

A screenshot of the Cargo Router application is given in Figure 6-3. From top to bottom, the
main window shows the current states of the delivery ports, vehicles, and warehouses,
respectively. The depicted version of the application has three delivery ports: two airport runways
and a train station. When cargo arrives at a port, an item is added to the port’s list box, containing

102

CHAPTER 6

the item’s name, weight, and the time elapsed since its arrival. The box in the center shows the
status of vehicles used to transport cargo from delivery ports to warehouses. Each vehicle has a
maximum speed and capacity. A vehicle is either idle or in transit. Finally, at the bottom of the
main window is a text box that displays the current status of the available warehouses: the
maximum capacity and the currently used portion of the warehouse. End-users route cargo by
selecting an item from a delivery port, an available vehicle, and a destination warehouse, and
clicking on the “Route” button.

Several extensions to this basic architecture were discussed in [61]. These extensions can be
added at specification-time or at run-time. One extension involves adding an artist to provide
more information about the exact status of vehicles in transit. The artist’s depiction is shown in
the right pane in Figure 6-3. In the architecture from Figure 6-2, this information is maintained by
theRouter component; an artist component can be easily added next to theRouterArtist in the
architecture to display the information. Another extension of the original architecture, not
modeled in the variation shown in Figure 6-2, involves adding an automatic planner component to
the architecture. This component automatically selects an item at a delivery port, a vehicle, and a
warehouse based on some set of heuristics (e.g., shipment with the longest wait time, the fastest
idle vehicle, and the emptiest warehouse); the user can “Route” the suggested selection or
override the planner. This functionality can be added to the shown version of the architecture
either by evolving theRouter component or by evolving the configuration to add a separate
Planner component alongside theRouter component.

Map
Component

System
Clock

Delivery
Porti-j

Delivery
Port Artist

Router

Router
Artist

Layout
Manager

Warehousei-j

Warehouse
Artist

Vehiclei-j

Vehicle
Artist

Figure 6-2. Architecture of the Cargo Router system in the C2 style.
TheDeliveryPort, Vehicle, andWarehouse components are instantiated multiple times in the architecture to keep
track of individual ports, vehicles, and warehouses, respectively. They are depicted by single artists
(DeliveryPortArtist, VehicleArtist, andWarehouseArtist, respectively).

Graphics
Binding

103

CHAPTER 6

6.3.1C2SADEL Specification

A C2SADEL specification of the Cargo Router architecture is shown in Figure 6-4. The figure
does not contain the descriptions of any of the components, all but one of which are specified
externally, in thePlanner directory. As already discussed in Chapter 4, theGraphicsBinding
component is modeled as a virtual component. The configuration shown in the figure is defined
with single instances ofDeliveryPort, Warehouse, andVehicle types, corresponding exactly to the
diagram in Figure 6-2.

6.3.1.1 Component Evolution

The Cargo Router system’s main entities—delivery ports, vehicles, and warehouses—share a
number of traits. As indicated in the screenshot in Figure 6-3, the ports and vehicles also require
access to a clock (modeled as a separate component in this application), while the warehouses do
not. We therefore specify a generalTimedCargo-RouteEntity type that contains the features of a
Cargo Router entity, shown in Figure 6-5. TheTimedCargoRouteEntity component has one
required service,clockTick . DeliveryPort andVehicle components are subtyped from
TimedCargoRouteEntity. To ensure that theWarehouse component and any similar components
that may be added to the application in the future are properly modeled,TimedCargoRouteEntity
is subtyped to form another general design element,CargoRouteEntity, which does not require
any services.8 Warehouse is, in turn, subtyped fromCargoRouteEntity. TheDeliveryPortArtist,
VehicleArtist, andWarehouseArtist components also have commonalities; they are subtyped from
the more generalCargoRouteEntityArtist type.

TheC2SADEL specification of theDeliveryPort component is shown in Figure 6-6.
TimedCargoRouteEntity is evolved such that both its interface and behavior are preserved. Note
that another conjunct, expressing an invariant property ofDeliveryPort’s internal timer, is added
to the component’s invariant expression. As inTimedCargoRouteEntity, theclockTick
interface element is required; the operation to whichclockTick is mapped models the

8. Recall from the specification of the type theory in Chapter 4 that a subtype must provideat least the appro-
priate elements (e.g., operations) of the supertype, but may requireat most those required by the supertype.

Figure 6-3. Cargo Router system’s user interface.
Accompanying the main window is the a graphical depiction of the vehicles’ current status (on the right).

104

CHAPTER 6

anticipatedClock component’s state variable as a genericSTATE_VARIABLE type, as discussed in
the preceding chapters. Currently implicit in the component specification is the fact that the value
of DeliveryPort’s internal_clock will be synchronized with the external clock, using the
TimeIncrement component service.9 This information can be added as a comment in the current
version ofC2SADEL.10

6.3.1.2 Type Checking the Architecture

To demonstrate type checking of the Cargo Router architecture, we model theClock component,
shown in Figure 6-7. Its provided operationop_1 ’s postcondition matches with the required
operationor_clktck ’s postcondition from theDeliveryPort component (Figure 6-6) when
or_clktck ’s variablet of typeSTATE_VARIABLE is instantiated withClock’s internal variable
time . However, note that as they are currently specified, the two relevant interface element
names do not match:Clock provides aTick , whileDeliveryPort requires aclockTick . This,
and a number of other mismatches, were discovered byDRADEL in the process of specifying the
Cargo Router architecture. In this case, the modification of theDeliveryPort component is trivial;
in more complex cases, a domain translator may be needed.

As another example of type checking, we show theDeliveryPortArtist component in Figure 6-8.
Its required services includeSelect andDeselect , provided byDeliveryPort. Note that
DeliveryPortArtist’s Deselect has a single parameter of typeNumber, whileDeliveryPort
providesDeselect with a parameter of typeInteger . SinceInteger is declared to be a
basic subtype ofNumber (see Figure 6-4), the provided and required interface elements match.
DeliveryPortArtist’s requiredor4 operation, which corresponds to theSelect interface
element, contains two placeholder variables (of typeSTATE_VARIABLE), selection and
cargo_size . To establishor4 ’s behavior conformance toDeliveryPort’s op_selshp
operation,selection must be instantiated withDeliveryPort’s internal variableselected and
cargo_size with the cardinality ofDeliveryPort’s set variablecargo .

Finally, DeliveryPortArtistis representative of artists currently modeled inC2SADEL.
AlthoughGraphicsBinding is treated as a virtual type and does not affect architectural type
checking, we can model an artist’s provided services such that its generated implementation will
adhere toGraphicsBinding’s interface. Specifically,InitVport ’s parameters in
DeliveryPortArtist are required by theGraphicsBinding to display a window. In this particular
architecture, only theLayoutManager component interacts directly with theGraphicsBinding
(see Figure 6-2) and is responsible for managing the entire application’s depiction. The
LayoutManager provides aCreateViewport service.DRADEL’s CodeGenerator will generate
aCreateViewportCompleted notification resulting from this service, which is, in turn,
expected by theGraphicsBinding.

9. The service refers to the interface element labeledip_timinc and its corresponding operation labeled
op_timinc .

10. As discussed in Chapter 5, a previous version ofC2SADEL did model this kind of information.

105

CHAPTER 6

PlannerSystem is {
basic_types {

Integer is basic_subtype Number;
Natural is basic_subtype Integer;

}
component_types {

component Map is extern { Planner/Map.c2; }
component Clock is extern { Planner/Clock.c2; }
component DeliveryPort is extern { Planner/InPort.c2; }
component Vehicle is extern { Planner/Vehicle.c2; }
component DeliveryPortArtist is extern { Planner/InPortArtist.c2; }
component VehicleArtist is extern { Planner/VehicleArtist.c2; }
component LayoutManager is extern { Planner/LayoutManager.c2; }
component CargoRouter is extern { Planner/CargoRouter.c2; }
component RouterArtist is extern { Planner/RouterArtist.c2; }
component Warehouse is extern { Planner/Warehouse.c2; }
component WarehouseArtist is extern { Planner/WarehouseArtist.c2; }
component GraphicsBinding is virtual { }

}
connector_types {

connector FilteringConn is { message_filter message_filtering; }
connector RegularConn is { message_filter no_filtering; }

}
architectural_topology {

component_instances {
SimClock : Clock; Runway : DeliveryPort;
RunwayArt : DeliveryPortArtist; Whouse : Warehouse;
WhouseArt : WarehouseArtist; Truck : Vehicle;
DistanceCalc : Map; VehicleArt : VehicleArtist;
Router : CargoRouter; RouteArt : RouterArtist;
LayoutArtist : LayoutManager; Binding : GraphicsBinding;

}
connector_instances {

UtilityConn : FilteringConn; RunwayConn : FilteringConn;
TruckConn : FilteringConn; WhouseConn : FilteringConn;
RouterConn : FilteringConn; RouterArtConn : FilteringConn;
LayoutArtistConn : FilteringConn; BindingConn : RegularConn;

}
connections {

connector UtilityConn
{ top SimClock, DistanceCalc; bottom Runway, Truck; }

connector RunwayConn { top Runway; bottom RunwayArt; }
connector TruckConn { top Truck; bottom VehicleArt; }
connector WhouseConn { top Whouse; bottom WhouseArt; }
connector RouterConn

{ top TruckConn, RunwayConn, WhouseConn; bottom Router; }
connector RouterArtConn { top Router; bottom RouteArt; }
connector LayoutArtistConn

{ top RunwayArt, VehicleArt, WhouseArt; bottom LayoutArtist; }
connector BindingConn

{ top LayoutArtist, RouteArt; bottom Binding; }
}

}
}

Figure 6-4.C2SADEL specification of the Cargo Router architecture.
All components are defined externally, exceptGraphicsBinding, which is virtual (see Section 4.4). All connectors
but one are instances of a filtering (point-to-point) connector type; the lone exception isBindingConn, which is a
broadcasting connector.

106

CHAPTER 6

component TimedCargoRouteEntity is {
state {

cargo : \set Shipment; cargo_val : \set String;
name : String; max_capacity : Integer;
capacity : Integer; internal_clock : Integer;

}
invariant

{ (capacity \eqgreater 0) \and (capacity \eqless max_capacity); }
interface {

prov ip_setcap: SetCapacity(c : Integer);
prov ip_getcap: GetCapacity() : Integer;
prov ip_plcshp: PlaceShipment(name : String; shp : Shipment);
prov ip_getshp: GetShipment(name : String; loc : Integer) : Shipment;
prov ip_remshp: RemoveShipment(name : String; loc : Integer);
prov ip_getcrg: GetContentInfo() : \set String;
req ir_clktck: clockTick();

}
operations {

prov op_setcap: {
let num : Integer;
post ~capacity = num;

}
prov op_getcap: {

post \result = capacity;
}
prov op_plcshp: {

let shp : Shipment; n : String; shp_size : Integer;
pre name = n;
post (shp \in ~cargo) \and (~capacity = capacity + shp_size);

}
prov op_getshp: {

let shp_loc : Integer; n : String; shp_by_loc : Shipment; //fn
pre name = n;
post (\result = shp_by_loc);

}
prov op_remshp: {

let shp_loc : Integer; n : String;
 shp_by_loc : Shipment; shp_size : Integer; // fn

pre (name = n) \and (shp_by_loc \in cargo);
post shp_by_loc \not_in ~cargo \and ~capacity = capacity - shp_size;

}
prov op_getcrg: {

post \result = cargo_val;
}
req or_clktck: {

let time : STATE_VARIABLE;
post ~time = time + 1;

}
}
map {

ip_setcap -> op_setcap (c -> num);
ip_getcap -> op_getcap ();
ip_plcshp -> op_plcshp (name -> n, shp -> shp);
ip_getshp -> op_getshp (name -> n, loc -> shp_loc);
ip_remshp -> op_remshp (name -> n, loc -> shp_loc);
ip_getcrg -> op_getcrg ();
ir_clktck -> or_clktck ();

}
}

Figure 6-5.C2SADEL specification of theCargoRouteEntity component type.
The portion of the specification that modifies and accesses the name and maximum capacity of the component has
been elided for brevity.

107

CHAPTER 6

component DeliveryPort is subtype TimedCargoRouteEntity (int \and beh) {
state {

cargo : \set Shipment; cargo_val : \set String;
name : String; max_capacity : Integer;
capacity : Integer; internal_clock : Integer;
selected : Integer;

}
invariant {

(capacity \eqgreater 0) \and (capacity \eqless max_capacity) \and
(internal_clock \eqgreater 0);

}
interface {

/*** several provided interface elements elided ***/
prov ip_timinc: TimeIncrement();
prov ip_selshp: Select(sel : Integer);
prov ip_dslshp: Deselect(sel : Integer);
req ir_clktck: clockTick();

}
operations {

/*** several provided operations elided ***/
prov op_dslshp: {

let num : Integer;
pre num = selected;
post ~selected = -1;

}
prov op_selshp: {

let num : Integer;
pre num \less #cargo;
post ~selected = num;

}
prov op_timinc: {

post ~internal_clock = internal_clock + 1;
}
req or_clktck: {

let t : STATE_VARIABLE;
post ~t = t + 1;

}
}
map {

/*** several maps elided ***/
ip_dslshp -> op_dslshp (sel -> num);
ip_selshp -> op_selshp (sel -> num);
ip_timinc -> op_timinc ();
ir_clktck -> or_clktck ();

}
}

Figure 6-6.C2SADEL specification of theDeliveryPort component type.
The portions of the component that have remained unchanged from the specification ofCargoRouteEntity in
Figure 6-5 have been elided for brevity, as indicated by comments.

108

CHAPTER 6

6.3.2 Code Generation

DRADEL currently generates implementations of architectures on top of the Java
implementation of our infrastructure. It generates class skeletons for all basic types. For example,
the skeleton for Cargo Router’s type \set Shipment is shown in Figure 6-9.

For each component type in the architecture,DRADEL generates an internal object skeleton and
a dialog. For example, the generated internal object of theClock component is shown in Figure 6-
10, while its dialog is shown in Figure 6-11. Since it is at the top of the Cargo Router architecture,
Clock does not respond to any notifications, nor does it generate requests. An example of requests
generated from theDeliveryPortArtist component’s specification is shown in Figure 6-12.

Given an architectural description,DRADEL also generates the “main” routine for the
application. The “main” routine of the Cargo Router architecture is shown in Figure 6-13. Finally,
DRADEL generates the “make” file that enables compilation of the generated skeleton. Although it
provides no application-specific functionality, the skeleton can be executed once it is compiled:
the implementation framework’s scheduler will allot execution time to each component (stub) in
the architecture.

component Clock is {
state {

time : Integer;
speed : Integer;

}
invariant {

speed \eqgreater 0;
}
interface {

prov ip1: Tick();
prov ip2: setClockSpeed(rate : Integer);

}
operations {

prov op1: {
post ~time = time + 1;

}
prov op2: {

let r : Integer;
post ~speed = r;

}
}
map {

ip1 -> op1 ();
ip2 -> op2 (rate -> r);

}
}

Figure 6-7.C2SADEL specification of theClock component type.

109

CHAPTER 6

component DeliveryPortArtist is subtype CargoRouteEntityArtist(int \and beh) {
state {

entity_name : String; contents : \set String;
vport_name : String; vport_xpos : Integer;
vport_ypos : Integer; vport_fg : String;
vport_bg : String; width : Integer;
height : Integer; selection : Integer;

}
invariant {

(width \eqgreater 0) \and (height \eqgreater 0) \and
(vport_xpos \eqgreater 0) \and (vport_ypos \eqgreater 0);

}
interface {

/*** several provided and required interface elements elided ***/
prov ip1: InitVport(n : String; x : Integer; y : Integer; h : Integer;

 w : Integer; fg : String; bg : String);
prov ip6: SelectItem(entity : String; item : Integer);
req ir4: Select(sel : Integer);
req ir5: Deselect(sel : Number);

}
operations {

/*** several provided and required operations elided ***/
prov op1: {

let n : String; x : Integer; y : Integer; h : Integer;
 w : Integer; fg : String; bg : String;

pre (x \eqgreater 0) \and (y \eqgreater 0) \and
(h \eqgreater 0) \and (w \eqgreater 0);

post (~vport_name = n) \and (~vport_xpos = x) \and
 (~vport_ypos = y) \and (~height = h) \and
 (~width = w) \and (~vport_fg = fg) \and (~vport_bg = bg);

}
prov op6: {

let name : String; item_loc : Integer;
pre (item_loc \eqless #contents) \and (name = entity_name);
post (~selection = item_loc) \and (~entity_name = entity_name);

}
req or4: {

let num : Integer;
 selection : STATE_VARIABLE; cargo_size : STATE_VARIABLE;

pre num \eqless cargo_size;
post ~selection = num;

}
req or5: {

let num : Number; sel : STATE_VARIABLE;
pre num = sel;
post ~sel = -1;

}
}
map {

/*** several maps elided ***/
ir4 -> or4 (sel -> num);
ir5 -> or5 (sel -> num);
ip1 -> op1 (n -> n, x -> x, y -> y, h -> h, w -> w, fg -> fg, bg -> bg);
ip6 -> op6 (entity -> name, item -> item_loc);

}
}

Figure 6-8.C2SADEL specification of theDeliveryPortArtist component type.
Several provided and required services (interface elements and their corresponding operations) have been elided
for brevity. The two required operations correspond to the twoDeliveryPort operations modeled in Figure 6-6.

110

CHAPTER 6

package c2.PlannerSystem;
import java.lang.*;

public class Shipment_SET extends java.util.Vector {
public Shipment_SET() { }

/*** Type-Specific Accessor Methods ***/

public Shipment getElementAt(int i) {
return (Shipment)super.elementAt(i);

}

public Shipment getFirstElement() {
return (Shipment)super.firstElement();

}

public Shipment getLastElement() {
return (Shipment)super.lastElement();

}
}

Figure 6-9. A basic type skeleton generated byDRADEL.

package c2.PlannerSystem;
import java.lang.*;

public class Clock extends Object {

// COMPONENT INVARIANT: speed \eqgreater 0.0

private Integer time;
private Integer speed;

public Clock() {
time = null; // or: new Integer(<init val>);
speed = null; // or: new Integer(<init val>);

}

/***** ADL Specified Methods *****/
// PRECONDITION:
public void setClockSpeed(Integer r) {

/*** METHOD BODY ***/
}
// POSTCONDITION: ~speed = r

// PRECONDITION:
public void clockTick() {

/*** METHOD BODY ***/
}
// POSTCONDITION: ~time = time + 1.0

/***** State Variable Access Methods *****/
public void SET_time(Integer new_value) {

time = new_value;
}

public Integer GET_time() {
return time;

}

public void SET_speed(Integer new_value) {
speed = new_value;
}

public Integer GET_speed() {
return speed;

}
}

Figure 6-10. Generated internal object class skeleton of Cargo Router’sClock component.
Vertical spacing of the generated code has been altered to fit on the page.

111

CHAPTER 6

package c2.PlannerSystem;
import c2.framework.*;
import java.lang.*;

public class Clock_C2_Component extends ComponentThread {

private Clock state_var;

public Clock_C2_Component(String name) {
create(name);

}

public void create(String name) {
super.create(name, FIFOPort.classType());
recordMessageInterface();
state_var = new Clock();

}

/***** Notification Handling *****/
public void handle(Notification notif_msg) { }

/***** Request Handling *****/
public void handle(Request req_msg) {

if (req_msg.name().equals(“setClockSpeed”)) {
Integer rate = (Integer)req_msg.getParameter(“rate”);
handleRequest_setClockSpeed(rate);

}
else if (req_msg.name().equals(“clockTick”)) {

handleRequest_clockTick();
}

}

private void handleRequest_setClockSpeed(Integer rate) {
state_var.setClockSpeed(rate);
notifysetClockSpeed(state_var.GET_speed());
}

private void handleRequest_clockTick() {
state_var.clockTick();
notifyclockTick(state_var.GET_time());

}

/***** Notification Generating Methods *****/
private void notifysetClockSpeed(Integer speed) {

Notification notif_msg = new Notification(“setClockSpeedCompleted”);
notif_msg.addParameter(“speed”, speed);
send(notif_msg);

}

private void notifyclockTick(Integer time) {
Notification notif_msg = new Notification(“clockTickCompleted”);
notif_msg.addParameter(“time”, time);
send(notif_msg);

}

/***** Recording Interface <<< DO NOT MODIFY BELOW THIS LINE>>> *****/
private void recordMessageInterface() {

addMessageToInterface(“bottom”, “in”, “setClockSpeed”);
addMessageToInterface(“bottom”, “in”, “clockTick”);
addMessageToInterface(“bottom”, “out”, “setClockSpeedCompleted”);
addMessageToInterface(“bottom”, “out”, “clockTickCompleted”);

}
}

Figure 6-11. Generated dialog for theClock component.
Vertical spacing of the generated code has been altered to fit on the page.

112

CHAPTER 6

private void requestDeselect(Integer sel) {
Request req_msg = new Request(“Deselect”);
req_msg.addParameter(“sel”, sel);
send(req_msg);

}

private void requestSelect(Integer sel) {
Request req_msg = new Request(“Select”);
req_msg.addParameter(“sel”, sel);
send(req_msg);

}

Figure 6-12. A fragment ofDeliveryPortArtist’s dialog depicts generated requests.

package c2.PlannerSystem;
import c2.framework.*;
import c2.comp.graphics.*;
import java.lang.*;

public class PlannerSystemArchitecture extends SimpleArchitecture {
static public void main(String argv[]) {

SimpleArchitecture PlannerSystem =
new SimpleArchitecture(“PlannerSystem”);

/*** several component declarations elided ***/
Clock_C2_Component SimClock = new Clock_C2_Component(“SimClock”);
DeliveryPort_C2_Component Runway =

new DeliveryPort_C2_Component(“Runway”);
DeliveryPortArtist_C2_Component RunwayArt =

new DeliveryPortArtist_C2_Component(“RunwayArt”);

/*** several connector declarations elided ***/
FilteringConn RunwayConn = new FilteringConn(“RunwayConn”);
FilteringConn UtilityConn = new FilteringConn(“UtilityConn”);

/*** several component instantiations elided ***/
PlannerSystem.addComponent(SimClock);
PlannerSystem.addComponent(Runway);
PlannerSystem.addComponent(RunwayArt);

/*** several connector instantiations elided ***/
PlannerSystem.addConnector(RunwayConn);
PlannerSystem.addConnector(UtilityConn);

/*** a part of the configuration specification elided ***/
PlannerSystem.weld(Runway, RunwayConn);
PlannerSystem.weld(RunwayConn, RunwayArt);
PlannerSystem.weld(SimClock, UtilityConn);
PlannerSystem.weld(UtilityConn, Runway);

// SET UP CONNECTOR MESSAGE FILTERS
/*** several connector message filters elided ***/
RunwayConn.enableFiltering(“message_filtering”);
UtilityConn.enableFiltering(“message_filtering”);

PlannerSystem.start();
}

}

Figure 6-13. “Main” routine for the Cargo Router system generated byDRADEL.
For brevity, only the declarations and instantiations ofDeliveryPort, DeliveryPortArtist, andClock components, and
the relevant connectors are shown.

113

CHAPTER 6

6.4 Evaluation

The examples discussed in the preceding sections of this chapter, as well as the C2
implementation infrastructure, discussed in Section 5.1, and theDRADEL environment, presented
in Section 5.4, represent a body of work that, as a whole, validates the claims of this dissertation.
Recall that the four main facets of our methodology are component evolution, connector
evolution, architectural configuration evolution, and support for mapping an architecture to its
implementation(s). We discuss below the manner and degree to which they are supported by our
development infrastructure, its extensions (specifically, OTS middleware-integrated connectors),
and example applications. This information is summarized in the matrix given in Table 6-7. Only
the two representative applications—KLAX and Cargo Router—are shown in the table;DRADEL

serves as both an example application and a development toolsuite.

6.4.1 Component Evolution

The specific technique we employ to support component evolution is heterogeneous subtyping
of component specifications, i.e. architectural types. Treating components as types also enables

Table 6-7: Coverage Matrix for the Different Aspects of Our Methodology
LEGEND:

✩ represents demonstration of a concept in an example
● represents implementation of or tool support for a concept
✪ represents both demonstration and implementation / tool support

*DRADEL is both a tool suite and an example application

Development Infrastructure OTS Middleware Example Apps

C2 Class
Framework

Graphics
Binding DRADEL * Q Polylith RMI ILU KLAX

Cargo
Router

C
om

po
ne

nt
E

vo
lu

tio
n

Heterogeneous Subtyping ● ✩ ✩

Type Checking ✪ ✩

Architect’s Discretion ● ✩

C
on

ne
ct

or
E

vo
lu

tio
n Context-Reflective Interfaces ● ✪ ● ● ● ● ✩ ✩

Information Filtering ● ● ● ● ● ● ✩

C
on

fig
ur

at
io

n
E

vo
lu

tio
n

Minimal Component Dependencies ● ✩ ✪ ● ● ● ● ✩ ✩

Heterogeneous Connectors ● ✪ ✩ ✩ ✩ ✩ ✩ ✩

Application Family ✪ ✩ ✩

Im
pl

em
en

ta
tio

n
of

 A
rc

hi
te

ct
ur

es

Implementation Infrastructure ● ● ✪ ● ● ● ● ✩ ✩

Implementation Generation ● ● ● ✩

Component Reuse ✩ ✪ ✩ ✩

Connector Reuse ● ✩ ✩ ✩ ✩ ✩ ✩

114

CHAPTER 6

analysis of architectures for type correctness. Finally, a key aspect of our approach is that, due to
the separation of architecture from its implementation, the course of action, if any, in the case of a
type mismatch is left to the architect’s discretion. Together, these techniques present a substantive
improvement over their existing alternatives.

6.4.1.1 Heterogeneous Subtyping

The motivation for heterogeneous subtyping in architectures arose from actual applications.
Specifically, the variations of the KLAX architecture clearly demonstrate the need for flexible
evolution of a component:
• Spelling KLAX, discussed in Chapter 2, contains examples of components that exported the

same interface, but different behaviors (e.g., theTileMatchLogic andSpellingLogic
components);

• Multi-lingual KLAX, discussed in Section 4.3, contains an example of a component
(TileArtist) whose two different implementations (in C++ and Ada) have identical interfaces
and behaviors;

• Finally, the integration of OTS constraint solvers, discussed in Section 6.1, represents
examples of OTS components whose behaviors were preserved, but whose interfaces were
changed to fit in an alternate domain of discourse. Similarly, C2’sGraphics-Binding
components are evolved OTS toolkits. The behaviors of the toolkits are preserved, while their
interfaces are altered to enable their reuse across C2-style architectures.

These initial observations were formally elaborated in our architectural type theory, which
then became the semantic basis ofC2SADEL. Automated tool support for the type theory is
provided in theDRADEL environment. The Cargo Router application was redesigned as another
demonstration of the concepts of heterogeneous subtyping. BothDRADEL itself and architectures
modeled, implemented, and evolved with its help can be type checked for correctness using
DRADEL. DRADEL grants the architect discretion in dealing with type mismatches, as was
demonstrated in the case of the Cargo Router application, discussed in Section 6.3.

The architectural type theory has enabled us to support component evolution in a systematic
way. This approach results in added simplicity over traditional subtyping techniques, without
sacrificing any of their power. The type theory allows us to identify the different directions in
which a component evolves. By isolating and focusing on each direction individually, we divide
the potentially complex subtyping relationships into a small set of simpler, sometimes trivial,
relationships; by combining the different directions as needed, we achieve the power of standard,
e.g., OOPL subtyping.

This approach to component evolution is also less error prone than manual component
adaptation techniques. The relationship between a supertype component and its subtype is always
explicitly specified; any expectations placed upon the subtype can be verified against the
supertype and this relationship. By evolving components via subtyping, we can also define their
substitutability criteria and avoid undesirable effects of ad-hoc evolution: component C1 can
always be used in the place of component C2 if they export identical interfaces and behaviors or if
C1 is anint and beh subtype of C2. At the same time, the flexibility of ad-hoc component
adaptation is not sacrificed. The architect still has the discretion to allow two components to be
interchanged in a given architecture even if they do not satisfy the substitutability criteria.

115

CHAPTER 6

Furthermore, a component can always be evolved inany direction if the intent is to expand one’s
palette of design elements and use the component in a future architecture.

6.4.1.2 Type Checking an Architecture

Treating components as types also enables type checking (i.e., analysis) of architectures in the
manner specified in Chapter 4. Our approach to architectural analysis introduces two novel
concepts: architect’s discretion (as with subtyping) and separation of provided from expected
behavior. No other approach allows the architect to make the final decision regarding whether a
potential error should be allowed to propagate into the implementation. We have demonstrated in
the examples of partial and no utilization of a component’s services in the KLAX architecture
(Section 6.1) that, depending on the implementation infrastructure, certain architecture-level
errors will have negligible effects on the resulting system. Forcing the architect to correct those
errors may be more expensive than allowing him to acknowledge the errors, but proceed with
system generation.

Several researchers have argued for the need to express a component’s expectations of its
environment; ADLs such as Wright and Rapide allow the specification of such information.
However, in order to meaningfully express the expected external behavior, support for making
reasonable guesses as to what that behavior may be is needed. This must be done in a manner that
does not result in unrealistic assumptions or violated abstractions. The only other approach that
explicitly models the behavior expected by a componentand provides the means to describe that
behavior in a generic way (à la ourSTATE_VARIABLE types) is CHAM [33]. Unlike CHAM,
however, we use the type theory as a vehicle for evolution, as well as analysis.

Finally, by employing first-order logic,C2SADEL currently focuses on expressing static aspects
of a component’s behavior. This may be viewed as a disadvantage in comparison to CHAM,
Rapide’s posets, and Wright’s CSP. However, our specific choice of formalism was guided by
practicality and usability of the approach as our primary goals, and simplicity and
understandability of architectural descriptions as a way of achieving these goals. The relevant
aspects of the type theory, i.e., behavioral conformance, are entirely independent of the actual
choice of formalism. Furthermore, our specification of component invariants presents the
potential for modeling dynamic component behavior, should we choose to focus on it in the
future.

6.4.2 Connector Evolution

Architecture-based software development approaches that lack explicit connectors require
components to possess knowledge about their context and thus decrease the malleability of a
system. At the same time, explicit connectors alone are not a guarantee of evolvability. If a
connector is rigid in its expectations of attached components, its support for the evolution of the
architecture is diminished. For example, a Wright connector explicitly specifies the number of
components it can serve (via its roles) and the nature of the interaction with each component (via
role protocols); adding or removing a component, or replacing an existing component with one
that adheres to a different communication protocol requires replacing the connector itself as well.
Connectors in this dissertation are inherently evolvable. Their evolution is enabled by context-
reflective interfaces and different information filtering protocols.

116

CHAPTER 6

6.4.2.1 Evolvable Interfaces

A connector’s context-reflective interface directly enables addition, removal, replacement, and
reconnection of components and other connectors. The implementation framework, OTS
middleware-based connectors, andDRADEL all provide support for development with such
connectors. Different variations of the KLAX and Cargo Router architectures demonstrate the
usage of flexible connectors: all changes to an architecture are localized to the relevant
connectors. Employing connectors that exhibit this degree of flexibility does not necessarily
hamper the analyzability of an architecture. For example, an architecture changing at run-time can
be analyzed for type correctness simply by taking a static “snapshot” at any point during its
evolution.

6.4.2.2 Information Filtering

A connector also evolves by employing different information filtering mechanisms. The C2
implementation framework, and middleware-based connectors as its extensions, implement
support for information (i.e., message) filtering.C2SADEL allows specification of different filtering
mechanisms in a connector, whileDRADEL’s CodeGenerator ensures that the connector is
instantiated properly in the implementation of the architecture. The Cargo Router architecture
demonstrates usage of connectors with multiple filtering mechanisms, while KLAX andDRADEL

employ broadcasting connectors only.

One of the benefits of message filtering is that it can improve the performance of an
application. Message traffic can be computationally very expensive, especially in distributed
applications; eliminating unnecessary traffic helps contain this cost. One of the reasons for
commonly employing broadcast connectors in C2-style applications is to support run-time
architecture evolution: unlike a broadcast connector, a connector that filters messages based on
the current configuration may in fact filter out the messages needed by a component added in the
future. The solution to this problem is to simply evolve the existing connector’s filtering
mechanism at run-time, rather than always allowing a potential flood of message traffic. However,
the support for run-time connector evolution currently does not exist in the environment for
dynamic manipulation of C2-style architectures, ArchStudio [61].

6.4.3 Configuration Evolution

Our support for evolving architectural configurations is based on minimizing component
interdependencies, providing heterogeneous connectors, and application families that result from
evolving configurations. While some of the resulting techniques have been explored by other
researchers (e.g., implicit invocation, asynchronous communication, concurrency, message
filtering), others are unique to our approach (substrate independence, connectors with context-
reflective interfaces, transparency of connector implementation mechanisms). As a whole, these
techniques provide a novel approach for evolving architectures both at specification- and run-
time.

6.4.3.1 Minimal Component Interdependencies

Implicit invocation has been employed by other systems quite extensively for its benefits in
separating modules. However, the C2 style extends this by providing a discipline for ordering
components which use implicit invocation, yielding substrate independence. The two example

117

CHAPTER 6

applications we discussed, KLAX and Cargo Router, demonstrate the benefits of asynchronous,
implicit invocation and substrate independence: KLAX was used as a basis of a large application
family, while Cargo Router was easily extended to support additional views of application state
and automatic planning; these modifications had minimal effect on other components in the
respective architectures. In both applications, the evolution can be performed at specification-
time, or while the application is executing.11

Without asynchronous, implicit invocation, the evolution of a configuration would require
modification of surrounding components. Component addition would require changes to existing
components in order to enable communication with the new component, since that
communication is explicit. Component removal, on the other hand, would result in compile-time
or run-time errors, e.g., when a method whose definition has been removed is invoked. Even if
implicit invocation were employed, such a call could block indefinitely, unless the interaction was
asynchronous. The effects of component addition and removal are further lessened in our
methodology by explicitly restricting dependencies among those components via the substrate
independence principle.

The C2 implementation framework and the middleware-integrated C2 connectors provide
support for achieving asynchronous, message-based communication. TheDRADEL environment
supports the construction of applications characterized by minimal component interdependencies,
via itsCodeGenerator component.DRADEL also demonstrates this property, in that it is
constructed according to C2 style rules.

6.4.3.2 Heterogeneous Connectors

Component interdependencies are further minimized by employing explicit connectors as
interaction intermediaries. In addition to connector evolution properties discussed in
Section 6.4.2, connectors aid configuration evolution by supporting different types of interaction
and degrees of concurrency. The C2 implementation framework andDRADEL provide support for
heterogeneous connectors, enabling architects and developers to adequately address the specific
application requirements (e.g., performance, distribution, interoperability with legacy
components, and so forth). The different middleware-based connectors, available as part of the
framework, are a demonstration of heterogeneous connector implementations. They support the
message passing and RPC types of interaction.DRADEL currently enables development with
single- or inter-thread message-passing connectors that employ different filtering policies.
DRADEL can be easily extended to support any type of interaction or degree of concurrency
provided by the connectors available in the framework. Different variations of the KLAX, Cargo
Router, andDRADEL architectures demonstrate the use of heterogeneous connectors.

6.4.3.3 Application Families

Finally, a direct by-product of evolution is creation of application families. Different
variations of a given architecture often represent members of the same application family. Such a
family can be formed in our approach by providing multiple variations of a set of components
(KLAX and DRADEL), adding or removing functionality to an existing architecture (KLAX and

11. C2’sGraphicsBinding components also represent examples of implicit, asynchronous invocation. Note that,
althoughGraphicsBinding is typically at the bottom of a C2 architecture and, as such, should have knowl-
edge of all components above it in the architecture, reusing it across applications mandates that it export a
standardized interface. This issue was discussed more extensively in Chapter 2.

118

CHAPTER 6

Cargo Router), or interchanging connectors with different implementations (KLAX, Cargo
Router, andDRADEL). Due to its reflexive nature,DRADEL is, again, both an enabler and an
example of this property.

6.4.4 Implementation of Architectures

The different facets of this dissertation’s support for transitioning architecture-level decisions
and properties into implementations are
• an implementation infrastructure that provides basic component and connector interoperation

services,
• reuse of existing components and connectors that provide the desired functionality, and
• automatic generation of an implementation from an architecture, aided by the infrastructure

and OTS components and connectors.

6.4.4.1 Implementation Infrastructure

The C2 class framework and GUI toolkit bindings are the basic elements of our
implementation infrastructure. The framework is extensible, e.g., by integrating middleware
technologies.DRADEL supports mapping of architectures to the class framework and utilizes the
toolkit bindings in implementing architectures; it is thus also a part of the implementation
infrastructure. KLAX, Cargo Router, andDRADEL represent examples of architectures that were
implemented using the class framework andGraphicsBindingcomponents. A variation of the
Cargo Router application was partially generated byDRADEL.

The infrastructure greatly simplifies the construction of C2-style applications, since it
eliminates from developers the responsibility of implementing the C2 concepts for each
application. Furthermore, the infrastructure forms a platform that bounds the implementation
space and directly enables automated code generation.

6.4.4.2 Component Reuse

Support for OTS component reuse is provided inDRADEL. DRADEL enables reuse and
evolution of existing functionality through subtyping. Furthermore, itsCodeGenerator separates
the dialog of a component from its (reusable) internal object. The most ubiquitous example of
component reuse in C2 style architectures are theGraphicsBinding components: they are used in
any C2 application that has a GUI front end, including KLAX, Cargo Router, andDRADEL.
Additionally, KLAX contains examples of reusing OTS UI constraint solvers. Other examples of
OTS component reuse are discussed in [48], [50], [61].

6.4.4.3 Connector Reuse

Reuse of OTS connectors is an alternative to expending resources to implement the support
for concurrency, distribution, and different types of interaction, already in existence. The four
middleware-based connectors represent examples of OTS connector reuse. Several variations of
the KLAX and Cargo Router architectures demonstrate reuse of (middleware-based) OTS
connectors. The implementation for a generic, single-thread, message broadcasting connector in
the implementation framework has been used as a basis of integrating OTS middleware (see
Figures 4-16 on page 64 and 5-3 on page 79).

119

CHAPTER 6

6.4.4.4 Implementation Generation

DRADEL supports systematic evolution and implementation generation of architectures. We
had demonstrated many of the facets and benefits of our approach to implementing an architecture
prior to DRADEL’s development. Our support consisted of the implementation infrastructure and
reused OTS components and connectors; we (manually) implemented a number of applications
and tools using the infrastructure. One advantage of usingDRADEL is its ability to automatically
generate application skeletons and/or provide wrappers for OTS components. This can be a
sizable task that also removes any chance of inadvertent interface and behavior mismatches and
focuses debugging and testing efforts on functionality internal to a component.

A more quantitative metric that can be used to assess the benefit of automatic application
generation is the ratio of the amount of generated code to the size of the completed
implementation. For example, the combined sizes of component dialogs in an application are
indicative of the overall amount of component interactions: construction of outgoing messages,
accessing information from incoming messages, and invocation of internal object methods in
response to incoming messages. The dialogs can represent a sizable fraction of a C2-style
application; being able to generate this code alone adds substantial value toDRADEL. In the
implementation of single-process KLAX, 47% (1,700 source lines of code, or SLOC) of the
application handles component interactions; in the Cargo Router it is 53% (1,500 SLOC). In
DRADEL itself, the percentage is lower, 14% (1,850 SLOC). Each component inDRADEL is a tool
that contains more complex internal functionality, while the flow of messages among the tools is
comparatively lighter.

This metric does not account for OTS component reuse. For example, only 9% (170 SLOC) of
KLAX’s LayoutManager implemented with SkyBlue (LayoutManager-2 in Table 6-1 on page 94)
handles message traffic. However, in this case the component’s internal object (SkyBlue) already
exists; automatic generation of the dialog only completes the component.

6.4.4.5 Discussion

Most of the facets of our support for implementing architectures have been explored quite
extensively by other researchers and their benefits are well understood. Component
interoperability models, e.g., JavaBeans, provide underlying support that is similar to our
implementation infrastructure. Similarly, DSSA approaches focus on specific implementation
platforms. Software engineering researchers and practitioners are continuously investigating
techniques for automatically generating implementations from specification and design artifacts.
Also, the arguments for the potential advantages of reusing existing functionality over
reimplementing it have been embraced by the community [8], [10], [24].

Our approach represents an improvement over existing work in that it addresses the issues of
providing an implementation infrastructure, OTS reuse (including the reuse of connectors), and
code generation in tandem and does so at the architectural level. With the partial exception of
DSSA, existing architecture work has largely neglected to provide techniques for transferring
architecture-level decisions to the implementation (see Chapter 3). As a result, the support for
OTS component reuse is sparse. Additionally, no existing research has addressed the reuse of OTS
connectors as a means of aiding interoperability and evolution. Solely focusing on reusing
components limits the effectiveness of a software development approach.

120

CHAPTER 7: Future Work

This dissertation has made a significant contribution to the body of work in software
architectures and, in particular, to architecture-based evolution of software systems. Our focus
spans individual software components, connectors, and entire architectures. We have provided a
collection of techniques that, individually and in concert, enable and support architecture-based
evolution at specification-time. Several issues still remain unresolved, however. This chapter
considers the open research questions and discusses our plans for future work.

This research will evolve in several different directions. We intend to expand the existing
methodology to provide additional architecture-based evolution support. We will also attempt to
apply the methodology to other application domains, architectural styles, ADLs, and
implementation platforms. The scope of certain aspects of our work to date has been deliberately
limited. For example, we have focused on two application domains: GUI-intensive systems, as the
primary domain, and software development tool suites. Such decisions enabled us to identify and
investigate the important properties of our methodology. Focusing on a well-defined (subset of
the) problem also allowed us to establish the utility of the methodology.

This strategy has resulted in several natural outgrowths of this work: integration of our support
for specification-time evolution with on-going work in supporting execution-time evolution of
C2-style architectures [61], extensions to the type theory, incorporation of additional kinds of
connectors, expansion of our treatment of and support for architectural refinement, and
investigation of new techniques for supporting OTS reuse. Each of them may, in turn, require
modifications toC2SADEL, DRADEL, or our implementation infrastructure.

7.1 Integrated Evolution Support

A task we will address in the most immediate future is integrating this dissertation’s support
for evolution of architectures at specification-time with the existing support for their evolution at
run-time. Architecture-based run-time software evolution has been an important aspect of the
work conducted in the C2 research group [61]. Current run-time support includes the ability to
add, remove, replace, and reconnect components, and to ensure topological constraints while the
application is executing. An environment, called ArchStudio, provides a graphical editor for
manipulating architectures, a WWW browser for locating OTS components, and an agent for
downloading remote components, determining their intended location in an architecture, and
inserting them into the architecture.

ArchStudio’s support for run-time evolution is based on manipulating C2-style architectures
implemented using the infrastructure described in Section 5.1. Therefore, there is a natural
connection between the research of this dissertation and ArchStudio: the output of the
specification-time architecture-based development “phase” becomes the input to the run-time
“phase.” We believe that the specification-time support can be employed at run-time to evolve an
existing component, model and generate a new component, or analyze the application’s
architecture for type conformance at any point during execution. ArchStudio can also employ any
of the connectors discussed in this dissertation to support addition of multi-lingual components or
distribution of the application. Our forthcoming work will investigate these issues and extend
ArchStudio andDRADEL to enable their interactions as discussed above.

121

CHAPTER 7

7.2 Type Theory

The intent behind the type theory is to identify and model important aspects of architectural
types. The larger and potentially more complex problem of evolving an entire type can thereby be
simplified by addressing only the type’s properties of interest. Thus far, we have successfully
applied this method to evolving components. In the future, we intend to apply this area of our
work to other architectural constructs—connectors and configurations—as well as to other ADLs.
We also intend to investigate possible extensions to the type theory to support modeling and
evolution of additional aspects of architectural types. These issues are discussed below. Finally,
we will work on applying the type theory to support the automatic generation of component
adaptors, i.e., domain translators, discussed in Chapter 2.

7.2.1 Applying the Type Theory to Connectors

Though their roles are quite different, software connectors are in certain regards similar to
components. Some aspects of the type theory may thus be used to complement our current
support for connector evolution. Like components, connectors arenamed and have an
implementation. Furthermore, a connector’sbehavior is reflected in its information filtering and
transaction mechanism. These three aspects of a connector can be modeled in the type theory and
used to support connector evolution. This would also allow us to specify more precisely the
conditions under which connectors using different filtering mechanisms may be interchanged in
an architecture.1

The remaining feature modeled in the type theory,interface, is fundamentally different
between components and connectors. Unlike components, connectors do not export a particular
interface; instead, their interfaces are context-reflective. Therefore, interface subtyping as defined
in Section 4.1 cannot be applied to connectors. This difference is not crucial, however, since
connector interfaces in this dissertation have been specifically designed to be evolvable.

7.2.2 Applying the Type Theory to Architectural Configurations

The method for evolving architectural configurations discussed in Section 4.3 exploited the
properties of individual components (e.g., substrate independence) and connectors (e.g., degree of
concurrency). Although a configuration is a top-level architectural constituent, no specific
techniques were provided by the type theory to support its evolution in a systematic manner; no
specific constructs currently exist inC2SADEL to model that evolution. Applying the type theory to
configurations and extendingC2SADEL to include configuration evolution information at
architecture specification-time would complement our current approach and remedy some of its
shortcomings. For example, it would enable us to explicitly represent and evolve application
families.

The concept that directly facilitates the application of the type theory to architectural
configurations is hierarchical composition. As discussed in Section 4.4.4, we allow an entire
architecture to be used as a single component in another architecture. This is also indicated in
Figure 5-1 on page 72: theArchitecture class is a subclass of theComponent class in the
implementation framework. As such, the architecture will have aname and export aninterface
andbehavior.2 The architecture will also (possibly) have animplementation.

1. Clearly, we expect the conformance rules for connector subtyping to be different from those specified for
components in Section 4.1.

122

CHAPTER 7

The configuration thus becomes acomposite architectural type. The internal architecture of a
composite type (see Figure 4-17 on page 69) is different from that of asimple architectural type
(see Figure 2-2 on page 6). Therefore, evolving an aspect of the architecture will differ from
evolving a simple component and may be accomplished by evolving one or more of the
architecture’s constituent components. For example, evolving the interface exported by the
configuration may require (partially) changing the interfaces of its externally accessible
components. Alternatively, an existing component could be retrieved from a repository and
substituted for a component in the configuration to satisfy the needed interface. This is an
unexplored area and we intend to investigate it further.

7.2.3 Applying the Type Theory to Additional ADLs

The structural features of architectures we model in the type theory are common across ADLs
[51], giving us confidence that the type theory can be applied to other ADLs. Moreover, the
constructs introduced specifically to support this dissertation—the internal component
architecture, topological rules imposed by the C2 style, explicit modeling of connectors,
separation of interface from behavior, and modeling semantics in first-order logic—are entirely
independent of type theory’s formal underpinnings. We employ the internal component
architecture only when mapping an architectural description to the implementation inDRADEL.
The rules of topological composition do differ across ADLs; however, as discussed in Section 4.1,
the type theory does not impose particular rules, only a requirement that they be explicitly
specified. Finally, certain ADLs, e.g., Rapide and Darwin, do not model connectors as top-level
constructs. The connectors in our type system were used only to determine communication
pathways; those pathways are already modeled explicitly in such ADLs.

Certain details of the type theory will have to be modified for use with a given ADL. For
example, we separate a component’s interface from its behavior; no other ADL does so.
Furthermore, our definition of type conformance is based on modeling component semantics via
invariants and operation pre- and postconditions expressed as first-order logic expressions. Other
ADLs use different formalisms (e.g., Rapide uses posets, Darwin usesπ calculus, and Wright uses
CSP). In order to apply the type theory to those ADLs, conformance rules specific to their
underlying formalisms must be specified. This is not an unreasonable requirement: notions of
type conformance have already been established in the case of Rapide and Wright, for example.

7.2.4 Evolving the Type Theory

The aspects of architectural types (components) represented thus far have been name,
interface, behavior, and implementation. As discussed in Chapter 4, this particular taxonomy was
motivated by OO type theories. It has proven useful and elegant in modeling, analyzing, and
evolving architectures. However, this set of concerns on which the type theory currently focuses is
very limited. The issues of importance in a given architecture may also be throughput, reliability,
security, schedulability, performance, and even non-technical, project-related concerns, such as
budgets and deadlines. It is our hypothesis that an approach similar to our current method can be
employed to model and evolve such aspects of architectures. As part of our future work, we will
investigate which additional properties of architectures can be used to expand the type theory,
develop new or adapt existing techniques for their modeling, establish conformance criteria for

2. Recall from Section 4.4.4 that the architecture’s interface and behavior are functions of its component and
connector interfaces and behaviors, respectively.

123

CHAPTER 7

their evolution and analysis, analogous to those defined in Section 4.1, and provide appropriate
tool support.

7.3 Connectors

The connectors introduced in this dissertation are uniquely suited to support architecture-
based evolution, via their context-reflective interfaces. We believe the connectors to be applicable
beyond C2. At the same time, our current support is essentially restricted to asynchronous
message passing connectors, limiting their applicability. As part of our future work, we intend to
expand the range of supported connectors. To this end, we will attempt to leverage connectors
provided by other architectural approaches. We also plan to further examine the utility of our
unique brand of connectors by applying it to other architectural approaches.

7.3.1 Expanding Our Support for Connectors

Section 4.3 discussed the variability of connectors based on types of interaction and degrees
of concurrency and information exchange. Connectors modeled and implemented as part of this
dissertation have provided extensive support for different degrees of concurrency and information
exchange. However, for the most part we have only supported asynchronous, message passing
connectors. The exceptions are the OTS middleware-integrated connectors that support RPC.
Even in those cases, the communication is asynchronous; our approach was essentially to
simulate message passing with RPC.

Asynchronous, message-based communication has proven very beneficial in the context of C2
work, enabling distribution, multi-lingual application development, specification- and execution-
time evolution, and so forth. On the other hand, in certain situations, message-based
communication, particularly intra-process, may be too inefficient. Also, some components may
not be able to communicate via messages and may assume that they will only engage in
synchronous communication. Thus far, our solution has been to build message wrappers for such
components (see Section 5.2). An alternative is to employ connectors that more naturally support
a component’s assumed type of interaction. Other ADLs, e.g., UniCon [82], model and implement
additional connector types. We will attempt to expand our support to include external connectors.
An issue we will need to address in the process of doing so is how to reconcile the different
connector modeling formalisms, and specifically how to modify third-party connectors to
implement context-reflective interfaces.

7.3.2 Applying Our Connectors to Other ADLs

We also believe that other architectural approaches can benefit from the connectors employed
in this dissertation. The utility of our connectors in facilitating execution-time evolution of
architectures has been recognized by other researchers [36]. The connectors may be used as a
complement to the evolution support already existing in ADLs that do not explicitly model
connectors, e.g., Darwin and Rapide. Other ADLs, such as Wright and UniCon, use connectors
with a more rigid structure. These ADLs introduce some flexibility, similar to our context-
reflective interfaces, via connector interface parameterization. However, they deliberately limit
the flexibility of connectors to maximize the analyzability of architectures. This dissertation has
shown that flexibility can be maximized without sacrificing analyzability ofC2SADEL

architectures. We intend to further test this hypothesis by applying our connectors to other ADLs.

124

CHAPTER 7

7.4 Refinement

This dissertation’s support for implementing an architecture rests on the assumption that the
mapping between an architecture-level component or connector and an implemented module will
be 1-to-1. Any deviation from this bijective relationship is masked by the internal component
architecture, where a component’s internal object may contain multiple modules, but the
component still provides a single dialog. Although this approach has proven successful, the
relationship between architectural and implementation modules is likely to be more complex in
general, so that, for example, connectors are not explicit in the implementation, but are
fragmented and distributed across components.

7.4.1 Refining Architectures across Levels of Abstraction

Moriconi and colleagues [57] provide an approach for refining an architecture across several
levels of abstraction, where a component at a given level may be represented by multiple
components at a subsequent lower level. One of the shortcoming of their technique is that it does
not eventually refine a low-level “architecture” into an implementation. However, their basic idea
is cogent and we intend to investigate refinement techniques that may be used in our research.

Our adoption of such a technique will introduce some unique problems. Refinement will
result in an abstraction hierarchy of architectural elements (components, connectors, and
configurations) that is largely orthogonal to their type hierarchy. A related issue is the existence
and maintenance of multiple repositories of architectural elements corresponding to the different
levels of abstraction. We will also have to solve the problem of correct maintenance of type
information and subtyping relationships across levels of refinement. Finally, we intend to
investigate how the evolution of a component at a given level of refinement (i.e., abstraction)
affects components in its preceding and subsequent refinements (i.e., above and below it in the
abstraction hierarchy).

7.4.2 Ensuring Architectural Properties in the Implementation

Another facet of our approach to implementing an architecture is ensuring architectural
properties in the implementation. Currently, this is accomplished by providingguidance to the
developers in the form of comments that contain operation pre- and postconditions, as discussed
in Section 5.4. However, there is noguarantee that a developer will properly implement an
operation. This can be remedied by promoting pre- and postcondition comments to assertions and
employing an assertion checking technique to ensure that they are satisfied during execution [75].
We will investigate the appropriate techniques for doing so.

A related issue is the modeling of basic types. Since architectures are intended to deal with
high-level interconnections and protocols, rather than low-level data structures [83], we have
decided not to model the properties of basic types. Section 5.4 discussed ourTypeChecker
component’s resulting pessimistic inaccuracy. Another potential problem is the lack of assurance
that developers will correctly implement the basic types. Since an architectural refinement will
eventually need to represent such low-level constructs, we intend to expand our support for basic
types. We will investigate existing theorem provers and model checkers that support basic types as
possible complements to theTypeChecker: NORA/HAMMR [79], Larch proof assistant (LP)
[30], VCR [18], and PVS [64].

125

CHAPTER 7

All three issues discussed in this section—architectural refinement, assertion checking, and
modeling of basic types—will also result in modifications to our support for implementation
generation, specifically toDRADEL’s CodeGenerator component.

7.5 Reuse

While this dissertation provides a method for incorporating OTS components into an
architecture in a systematic manner, the approach tolocating those components is largely ad-hoc.
Our component repository (see Section 5.4) is currently very simple. This simplicity came at the
expense of the repository’s support for reuse-driven, architecture-based development. The
repository only accepts components modeled inC2SADEL and represented as ASCII files.
Additional functionality is needed to link the architectural description of a component with the
component’s implementation(s). Moreover, the repository must be evolved to include support for
automated browsing and retrieval. We intend to use the type theory to develop this support in the
manner demonstrated by similar approaches [18], [99].

Our ultimate goal is to expand the kinds of components accessible through the repository. One
aspect of this task is being addressed by our work on integration with middleware platforms,
which will enable us to use middleware-compliant components. To enable such heterogeneous
components to interoperate in a single application, we must bridge across implementation
platforms, e.g., our class framework, CORBA [62], and JavaBeans [31]. Several of the concepts
embodied in theDRADEL environment make it a promising candidate for accomplishing this task.
We intend to extract a more general, “reference” architecture for environments for architecture-
based development and evolution and, in particular, for transferring architectural decisions to the
implementation. We plan to exploitDRADEL’s component-based nature and evolvability to
incrementally extend our support to multiple implementation platforms.

Another direction in which our support for reuse will evolve is the planned development of a
“virtual” repository that would include facilities for locating and retrieving components remotely,
e.g., over the Internet. Such components will likely be represented in standard (e.g., UML) or
proprietary modeling languages. In order to expand our support to multiple classes of OTS
components, we will need to address heterogeneous formalisms and relate them toC2SADEL’s
formalism. We intend to study the issues in applying the type theory to evolve components
represented in heterogeneous formalisms, automating the evolution of existing components to
populate partial architectures, and analyzing architectures composed of heterogeneous
components. This is a long-term task that will be aided by our work on applying the type theory to
additional ADLs, discussed above in Section 7.2.3.

126

CHAPTER 8: Conclusions

Software architectures show great promise for reducing development costs while improving
the quality of the resulting software. Architecture addresses an essential difficulty in software
engineering—complexity—via abstraction and its promise of supporting reuse. In a few short
years, software architecture research has produced credible, if not impressive, results. At the same
time, our in-depth survey of architecture research [46], [51], summarized in Section 3.9, indicates
a number of areas in which the current support is insufficient or lacking altogether. One such area
is evolution.

Architectures provide a fertile basis for supporting software evolution. However, architecture
is not a “silver bullet” [12], and simply introducing it into an existing development lifecycle will
not fulfill its potential. Improved evolvability cannot be achieved solely by explicitly focusing on
architectures, just like a new programming language cannot by itself solve the problems of
software engineering. A programming language is only a tool that allows (but does not force)
developers to put sound software engineering techniques into practice. Similarly, one can think of
software architectures as tools which also must be accompanied with specific techniques to
achieve desired properties.

This dissertation has discussed a set of techniques and tools for supporting specification-time
evolution of software architectures in a manner that preserves the desired architectural
relationships and properties. The combination of the tools and techniques comprises a
comprehensive methodology: it supports the evolution of individual architectural building
blocks—components and connectors—as well as their configurations in an architecture; it also
supports the systematic mapping of architectures to implementations.

One overarching characteristic of our methodology isflexibility. It has resulted from the
recognition that evolvability both implies and requires flexibility. Architectures are at a high level
of abstraction, where numerous decisions are deliberately delayed or only partially made. An
architecture should reflect the interests and requirements of numerous stakeholders, including
users, customers, managers, and developers. For these reasons, unlike, e.g., programming
languages, software architectures need not always be rigid in establishing properties such as
correctness, consistency, and completeness. Our objective has been to introduce flexibility in all
the facets of architecture-centered development addressed by this dissertation: components,
connectors, and configurations, as well as tool support for their modeling, analysis,
implementation, and evolution.

Flexibility in Components. The components in this dissertation separate their interface (dialog)
from behavior (internal object). This separation allows every component’s operation to export
multiple interfaces if needed, the interface and behavior to be evolved (or even entirely replaced)
independently of each other, and OTS components to be easily integrated. The architectural type
theory allows systematic evolution of components in a number of directions, by preserving a
component’s name, interface, behavior, implementation, or one of their combinations; this is not
the case with other existing type theories. The rules for substituting components in an architecture
are also flexible, as reflected in the notions of partial communication and partial component
service utilization.

127

CHAPTER 8

Flexibility in Connectors. The flexibility of connectors introduced in this dissertation is
manifested in their context-reflective interfaces. Another facet of flexibility is a connector’s ability
to support different information filtering mechanisms, allowing it to adapt and thus be usable in
numerous situations. The connectors of this dissertation give architects and developers an added
degree of flexibility in composing a system by encapsulating their support for different degrees of
concurrency and different implementation/middleware platforms. The appropriate connector can
be chosen, and later replaced, without having to make any modifications to other parts of an
application.

Flexibility in Configurations. This dissertation’s components and connectors employ
asynchronous, implicit invocation via messages, greatly simplifying their composition into an
architecture. Message-based communication is coupled with topological constraints introduced
by the C2 style, the notion of substrate independence, and the flexibility of connectors, to
minimize the effects of modifying a configuration: architectural elements can be easily added,
replaced, removed, or reconnected. Components that share a communication link in a
configuration may not always be able to communicate, e.g., because of an interface mismatch
(partial communication). This can be detected via type checking and prevented. However, even if
such a configuration is allowed to propagate into the implemented system, it will result in the loss
of communication messages, but still allow the rest of the system’s architecture to perform at least
in a degraded mode. Thus, informing the architect of the potential problem and leaving the
decision up to the architect (architect’s discretion) is often preferable to automatically rejecting
the configuration. Finally, configuration flexibility is also enhanced by hierarchical composition:
an entire configuration can become a single component in a larger configuration if needed.

Flexibility in Tool Support. This dissertation’s implementation infrastructure andDRADEL

environment have been constructed to be flexible. The implementation framework is simple,
consisting of relatively few classes, and has been designed to be adopted by developers with
minimal installation, understanding, or usage costs. The framework can be extended as desired to
include support for additional kinds of components (e.g., artists) and connectors (e.g., new
middleware). This is accomplished simply by using the subclassing mechanisms provided by the
underlying programming languages. At any point, any subset of the framework (e.g., only single-
thread components and connectors) can be used. TheGraphicsBinding components exploit the
internal architecture of C2 components to incrementally provide message-based access to GUI
toolkits. A simple binding to a new toolkit can be generated quickly and inexpensively; the
binding can then be extended as needed. Finally, the flexibility of theDRADEL environment is
embodied in its reflexive, component-based nature.DRADEL can evolve itself using the
methodology of this dissertation to support additional ADLs, repositories, analyses, evolution
techniques, and implementation platforms, as well as their different configurations.DRADEL also
adds flexibility to the “architecting” process by implementing the concept of architect’s
discretion.

The architecture-based evolution methodology of this dissertation is unquestionably its
biggest contribution. However, we feel that our quest for flexibility is, in many regards, just as
important, and certainly as unique when compared to existing architecture research. The early
notions of architecture, as articulated by, e.g., Perry and Wolf [70], treated architecture as a bridge
between software requirements and designs, i.e., customers and developers. As such, an
architecture needs to provide a balance between formality and accessibility. It also needs to be

128

CHAPTER 8

flexible enough to easily incorporate the changes imposed by the stakeholders as their collective
understanding of a system evolves.

Much of Perry and Wolf’s vision has been lost over time and the existing architecture research
efforts have been characterized by an increasing focus on formality. While well suited for
architecture-based analysis, formality can render an architecture too rigid to be evolvable. This
dissertation has demonstrated that a balance is possible, where formality and analyzability are
coupled with specific techniques to increase flexibility and enable the evolution of architectures.
The coupling of formality and evolvability has a great potential to fulfill the promise of software
architectures stated in the first sentence of this chapter. Our future work will further explore and
exploit this potential.

129

REFERENCES

1. M. Abadi and K. R. M. Leino. A Logic of Object-Oriented Programs. Digital Equipment
Corporation, Systems Research Center Technical Report 161, September 1998.

2. R. Allen and D. Garlan. Formalizing Architectural Connection. InProceedings of the
Sixteenth International Conference on Software Engineering, pp. 71-80, Sorrento, Italy,
May 1994.

3. R. Allen and D. Garlan. A Formal Basis for Architectural Connection.ACM Transactions
on Software Engineering and Methodology, vol. 6, no. 3, pp. 213-249, July 1997.

4. P. America. Designing an Object-Oriented Programming Language with Behavioral
Subtyping.Lecture Notes in Computer Science, vol. 489, Springer-Verlag, 1991.

5. D. Batory, L. Coglianese, S. Shafer, and W. Tracz. The ADAGE Avionics Reference
Architecture. InProceedings of AIAA Computing in Aerospace 10, San Antonio, 1995.

6. D. Batory and S. O’Malley. The Design and Implementation of Hierarchical Software
Systems with Reusable Components.ACM Transactions on Software Engineering and
Methodology, vol. 1, no. 4, pp. 355–398, October 1992.

7. T. J. Biggerstaff. The Library Scaling Problem and the Limits of Concrete Component
Reuse.IEEE International Conference on Software Reuse, November 1994.

8. T. J. Biggerstaff and A. J. Perlis.Software Reusability, vol. I and II. ACM Press/Addison
Wesley, 1989.

9. P. Binns, M. Engelhart, M. Jackson, and S. Vestal. Domain-Specific Software Architectures
for Guidance, Navigation, and Control.International Journal of Software Engineering and
Knowledge Engineering, vol. 6, no. 2, 1996.

10. B. W. Boehm and W. L. Scherlis. Megaprogramming. InProceedings of the Software
Technology Conference 1992, pp. 63-82, Los Angeles, April 1992.

11. K. Brockschmidt.Inside OLE 2. Microsoft Press, 1994.

12. F. P. Brooks, Jr. Essence and Accidents of Software Engineering.IEEE Computer, vol. 20,
no. 7, pp. 10-19, April 1987.

13. M. R. Cagan. The HP SoftBench Environment: An Architecture for a New Generation of
Software Tools.Hewlett-Packard Journal, vol. 1, no. 3, pp. 36–47, June 1990.

14. P. Chan and R. Lee.The Java Class Libraries: An Annotated Reference. Addison-Wesley,
1996.

15. D. Chappell.Understanding ActiveX and OLE. Microsoft Press, Redmond, WA, 1996.

16. K. K. Dhara and G. T. Leavens. Forcing Behavioral Subtyping through Specification
Inheritance. Technical Report, TR# 95-20c, Department of Computer Science, Iowa State
University, August 1995, revised March 1997.

17. E. Di Nitto and D. S. Rosenblum. Exploiting ADLs to Specify Architectural Styles Induced
by Middleware Infrastructures. To appear inProceedings of the 21st International
Conference on Software Engineering (ICSE’99), Los Angeles, CA, May 1999.

130

REFERENCES

18. B. Fischer, M. Kievernagel, and W. Struckmann. VCR: A VDM-Based Software
Component Retrieval Tool. Technical Report 94-08, Technical University of Braunschweig,
Germany, November 1994.

19. E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, Massachusetts, 1995.

20. D. Garlan, editor.Proceedings of the First International Workshop on Architectures for
Software Systems, Seattle, WA, April 1995.

21. D. Garlan. What is Style? InProceedings of the First International Workshop on
Architectures for Software Systems, pp. 96-100, April 1995.

22. D. Garlan. An Introduction to the Aesop System. July 1995.
http://www.cs.cmu.edu/afs/cs/project/able/www/aesop/html/aesop-overview.ps

23. D. Garlan, R. Allen, and J. Ockerbloom. Exploiting Style in Architectural Design
Environments. InProceedings of SIGSOFT’94: Foundations of Software Engineering, pp.
175–188, New Orleans, Louisiana, USA, December 1994.

24. D. Garlan, R. Allen, and J. Ockerbloom. Architectural Mismatch: Why Reuse Is So Hard.
IEEE Software, vol. 12, no. 6, pp. 17-26, November 1995.

25. D. Garlan, R. Monroe, and D. Wile. ACME: An Architecture Description Interchange
Language. InProceedings of CASCON’97, November 1997.

26. D. Garlan and D. Notkin. Formalizing Design Spaces: Implicit Invocation Mechanisms. In
Proceedings of VDM’91: Formal Software Development Methods, pp. 31-44,
Noordwijkerhout, The Netherlands, October 1991.

27. D. Garlan, F. N. Paulisch, and W. F. Tichy, editors.Summary of the Dagstuhl Workshop on
Software Architecture, February 1995. Reprinted inACM Software Engineering Notes, vol.
20, no. 3, pp. 63-83, July 1995.

28. C. Ghezzi, M. Jazayeri, D. Mandrioli.Fundamentals of Software Engineering. Prentice
Hall, 1991.

29. M. M. Gorlick and R. R. Razouk. Using Weaves for Software Construction and Analysis. In
Proceedings of the 13th International Conference on Software Engineering (ICSE13), pp.
23-34, Austin, TX, May 1991.

30. J. V. Guttag and J. J. Horning.Larch: Languages and Tools for Formal Specification.
Springer-Verlag, 1993.

31. G. Hamilton, editor. JavaBeans API Specification, version 1.01. Sun Microsystems, July
1997.

32. C. A. R. Hoare.Communicating Sequential Processes. Prentice Hall, 1985.

33. P. Inverardi, A. L. Wolf, and D. Yankelevich. Checking Assumptions in Component
Dynamics at the Architectural Level. InProceedings of the Second International
Conference on Coordination Models and Languages (COORD ‘97), Berlin, Germany,
September 1997.

131

REFERENCES

34. A. Julienne and B. Holtz.Tooltalk and Open Protocols: Inter-Application Communication.
SunSoft Press/Prentice Hall, April 1993.

35. R. Kadia (pen name for the authors involved). Issues Encountered in Building a Flexible
Software Development Environment. InProceedings of the Fifth Symposium on Software
Development Environments (SIGSOFT’92), pp. 169-180, Reston, VA, December 1992.

36. J. Kramer and J. Magee. Analysing Dynamic Change in Software Architectures: A Case
Study. InProceedings of the Fourth International Conference on Configurable Distributed
Systems, pp. 91-100, Annapolis, MD, May 1998.

37. G. E. Krasner and S. T. Pope. A Cookbook for Using the Model-View-Controller User
Interface Paradigm in Smalltalk-80.Journal of Object-Oriented Programming, vol. 1, no. 3,
pp. 26–49, August/September 1988.

38. C. W. Krueger. Software Reuse.Computing Surveys, vol. 24, no. 2, pp. 131-184, June 1992.

39. G. T. Leavens. Verifying Object-Oriented Programs that Use Subtypes. PhD thesis, MIT
Laboratory for Computer Science, February 1989. Available as Technical Report MIT/LCS/
TR-439.

40. B. H. Liskov and J. M. Wing. A Behavioral Notion of Subtyping.ACM Transactions on
Programming Languages and Systems, vol. 16, no. 6, pp. 1811-1841, November 1994.

41. D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W. Mann. Specification
and Analysis of System Architecture Using Rapide.IEEE Transactions on Software
Engineering, vol. 21, no. 4, pp. 336-355, April 1995.

42. D. C. Luckham and J. Vera. An Event-Based Architecture Definition Language.IEEE
Transactions on Software Engineering, vol. 21, no. 9, pp. 717-734, September 1995.

43. J. Magee and J. Kramer. Dynamic Structure in Software Architectures. InProceedings of
ACM SIGSOFT’96: Fourth Symposium on the Foundations of Software Engineering (FSE4),
pp. 3-14, San Francisco, CA, October 1996.

44. M. J. Maybee, D. H. Heimbigner, and L. J. Osterweil. Multilanguage Interoperability in
Distributed Systems: Experience Report. InProceedings of the Eighteenth International
Conference on Software Engineering, Berlin, Germany, March 1996.

45. R. McDaniel and B. A. Myers. Amulet’s Dynamic and Flexible Prototype-Instance Object
and Constraint System in C++. Technical Report, CMU-CS-95-176, Carnegie Mellon
University, Pittsburgh, PA, July 1995.

46. N. Medvidovic. A Classification and Comparison Framework for Software Architecture
Description Languages. Technical Report, UCI-ICS-97-02, Department of Information and
Computer Science, University of California, Irvine, February 1997.

47. N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N. Taylor. Using Object-Oriented Typing to
Support Architectural Design in the C2 Style. InProceedings of ACM SIGSOFT’96: Fourth
Symposium on the Foundations of Software Engineering (FSE4), pp. 24-32, San Francisco,
CA, October 1996.

48. N. Medvidovic, P. Oreizy, and R. N. Taylor. Reuse of Off-the-Shelf Components in C2-Style
Architectures. InProceedings of the 1997 Symposium on Software Reusability (SSR’97), pp.

132

REFERENCES

190-198, Boston, MA, May 1997. Also inProceedings of the 1997 International
Conference on Software Engineering (ICSE’97), pp. 692-700, Boston, MA, May 1997.

49. N. Medvidovic and D. S. Rosenblum. Domains of Concern in Software Architectures and
Architecture Description Languages. InProceedings of the USENIX Conference on
Domain-Specific Languages, pp. 199-212, Santa Barbara, CA, October 1997.

50. N. Medvidovic and R. N. Taylor. Exploiting Architectural Style to Develop a Family of
Applications.IEE Proceedings Software Engineering, vol. 144, no. 5-6, pp. 237-248,
October-December 1997.

51. N. Medvidovic and R. N. Taylor. A Framework for Classifying and Comparing Architecture
Description Languages. InProceedings of the Sixth European Software Engineering
Conference together with the Fifth ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pp. 60-76, Zurich, Switzerland, September 1997.

52. N. Medvidovic, R. N. Taylor, and D. S. Rosenblum. An Architecture-Based Approach to
Software Evolution. InProceedings of the International Workshop on the Principles of
Software Evolution, Kyoto, Japan, April 20-21, 1998.

53. N. Medvidovic, R. N. Taylor, and E. J. Whitehead, Jr. Formal Modeling of Software
Architectures at Multiple Levels of Abstraction. InProceedings of the California Software
Symposium 1996, pp. 28-40, Los Angeles, CA, April 1996.

54. R. Milner, J. Parrow, and D. Walker.A Calculus of Mobile Processes, Parts I and II. vol. 100
of Journal of Information and Computation, pp. 1-40 and 41-77, 1992.

55. R. Monroe. Armani Language Reference Manual, version 0.1. Private communication,
March 1998.

56. R. T. Monroe and D. Garlan. Style-Based Reuse for Software Architecture. InProceedings
of the Fourth International Conference on Software Reuse, Orlando, FL, April 1996.

57. M. Moriconi, X. Qian, and R. A. Riemenschneider. Correct Architecture Refinement.IEEE
Transactions on Software Engineering, vol. 21, no. 4, pp. 356-372, April 1995.

58. R. Natarajan and D. S. Rosenblum. Extending Component Interoperability Standards to
Support Architecture-Based Development. Technical Report, UCI-ICS-98-43, Department
of Information and Computer Science, University of California, Irvine, December 1998.

59. K. Ng, J. Kramer, and J. Magee. Automated Support for the Design of Distributed Software
Architectures.Journal of Automated Software Engineering (JASE), Special Issue on CASE-
95, vol. 3, no. 3-4, pp. 261-284, 1996.

60. O. Nierstrasz. Regular Types for Active Objects. InProceedings of the ACM Conference on
Object-Oriented Programming: Systems, Languages, and Applications (OOPSLA’93), pp.
1-15, Washington, D.C., USA, October 1993.

61. P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-Based Runtime Software
Evolution. InProceedings of the 20th International Conference on Software Engineering
(ICSE’98), pp. 177-186, Kyoto, Japan, April 1998.

62. R. Orfali, D. Harkey, and J. Edwards.The Essential Distributed Objects Survival Guide.
John Wiley & Sons, Inc., 1996.

133

REFERENCES

63. OVUM. OVUM Evaluates Middleware. Technical Report, OVUM Ltd., 1996.

64. S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. K. Srivas.PVS:Combining
specification, proof checking, and model checking. In R. Alur and T. A. Henzinger, eds.,
Computer-Aided Verification (CAV ‘96), vol. 1102 of Lecture Notes in Computer Science,
July/August 1996, Springer-Verlag.

65. J. Palsberg and M. I. Schwartzbach. Three Discussions on Object-Oriented Typing.ACM
SIGPLAN OOPS Messenger, vol. 3, num. 2, pp. 31-38, 1992.

66. ParcPlace Systems Inc.VisualWorks 2.0 User’s Guide. Sunnyvale, California, 1994.

67. H. Partsch and R. Steinbruggen. Program Transformation Systems.ACM Computing
Surveys, vol. 15, no. 3, pp. 199-236, September 1983.

68. D. E. Perry. The Inscape Environment. InProceedings of the 11th International Conference
on Software Engineering, pp. 2-11, Pittsburgh, PA, May 1989.

69. D.E. Perry. Software Architecture and its Relevance to Software Engineering, Invited Talk.
Second International Conference on Coordination Models and Languages (COORD ‘97),
Berlin, Germany, September 1997.

70. D. E. Perry and A. L. Wolf. Foundations for the Study of Software Architectures.ACM
SIGSOFT Software Engineering Notes, vol. 17, no. 4, pp. 40-52, October 1992.

71. G. E. Pfaff, editor.User Interface Management Systems, Seeheim, FRG, Eurographics,
Springer-Verlag, November 1983.

72. J. Purtilo. The Polylith Software Bus.ACM Transactions on Programming Languages and
Systems, vol. 16, no. 1, pp. 151-174, January 1994.

73. S. P. Reiss. Connecting Tools Using Message Passing in the Field Environment.IEEE
Software, vol. 7, no. 4, pp. 57–66, July 1990.

74. J. E. Robbins, D. M. Hilbert, and D. F. Redmiles. Extending Design Environments to
Software Architecture Design. InProceedings of the 1996 Knowledge-Based Software
Engineering Conference (KBSE), pp. 63-72, Syracuse, NY, September 1996.

75. D. S. Rosenblum. A Practical Approach to Programming with Assertions.IEEE
Transactions on Software Engineering, vol. 21, no. 1, pp. 19-31, January 1995.

76. M. Sannella. SkyBlue: A Multi-Way Local Propagation Constraint Solver for User Interface
Construction. InProceedings of the Seventh Annual ACM Symposium on User Interface
Software and Technology, pp. 137-146, Marina del Ray, CA, November 1994.

77. R. W. Scheifler and J. Gettys. The X Window System.ACM Transactions on Graphics, vol.
5, no. 2, pp. 79-109, April 1986. Actually appeared June 1987.

78. A. Schill, editor.DCE — The OSF Distributed Computing Environment. Proceedings of the
International DCE Workshop, Karlsruhe, Germany, Springer Verlag, October 1993.

79. J. Schumann and B. Fischer. NORA/HAMMR: Making Deduction-Based Software
Component Retrieval Practical. InProceedings of Automated Software Engineering (ASE-
97), Lake Tahoe, November 1997.

134

REFERENCES

80. R. Sessions.COM and DCOM: Microsoft’s Vision for Distributed Objects. John Wiley &
Sons, New York, NY, 1997.

81. M. Shaw. Architectural Issues in Software Reuse: It’s Not Just the Functionality, It’s the
Packaging. InProceedings of IEEE Symposium on Software Reusability, pp. 3-6, Seattle,
WA, April 1995.

82. M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik. Abstractions
for Software Architecture and Tools to Support Them.IEEE Transactions on Software
Engineering, vol. 21, no. 4, pp. 314-335, April 1995.

83. M. Shaw and D. Garlan.Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall, April 1996.

84. J. M. Spivey.The Z Notation: A Reference Manual. Prentice Hall, New York, 1989.

85. K. J. Sullivan and D. Notkin. Reconciling Environment Integration and Software Evolution.
ACM Transactions on Software Engineering and Methodology, vol. 1, no. 3, pp. 229–268,
July 1992.

86. K. J. Sullivan.Mediators: Easing the Design and Evolution of Integrated Systems. Ph.D.
thesis, University of Washington, 1994. Available as technical report UW-CSE-TR-94-08-
01.

87. Sun Microsystems, Inc. Remote Method Invocation.
http://java.sun.com:80/products/jdk/rmi/index.html

88. R. N. Taylor. Generalization from domain experience: The superior paradigm for software
architecture research? InProceedings of the Second International Software Architecture
Workshop (ISAW-2), San Francisco, CA, October 1996.

89. R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead, Jr., J. E. Robbins, K. A.
Nies, P. Oreizy, and D. L. Dubrow. A Component- and Message-Based Architectural Style
for GUI Software.IEEE Transactions on Software Engineering, vol. 22, no. 6, pp. 390-406,
June 1996.

90. R. N. Taylor, K. A. Nies, G. A. Bolcer, C. A. MacFarlane, K. M. Anderson, and G. F.
Johnson. Chiron-1: A Software Architecture for User Interface Development, Maintenance,
and Run-Time Support.ACM Transactions on Computer-Human Interaction, vol. 2, no. 2,
pp. 105–144, June 1995.

91. W. Tracz. DSSA (Domain-Specific Software Architecture) Pedagogical Example.ACM
SIGSOFT Software Engineering Notes, vol. 2, no. 4, pp. 49-62, July 1995.

92. The UIMS Tool Developers Workshop. A Metamodel for the Runtime Architecture of an
Interactive System.SIGCHI Bulletin, vol. 24, no. 1, pp. 32–37, January 1992.

93. S. Vestal. A Cursory Overview and Comparison of Four Architecture Description
Languages. Technical Report, Honeywell Technology Center, February 1993.

94. S. Vestal. MetaH Programmer’s Manual, Version 1.09. Technical Report, Honeywell
Technology Center, April 1996.

95. E. J. Whitehead, Jr., J. E. Robbins, N. Medvidovic, and R. N. Taylor. Software Architecture:
Foundation of a Software Component Marketplace. InProceedings of the First

135

REFERENCES

International Workshop on Architectures for Software Systems, pp. 276-282, Seattle, WA,
April 1995.

96. A. L. Wolf, editor.Proceedings of the Second International Software Architecture Workshop
(ISAW-2), San Francisco, CA, October 1996.

97. Xerox Palo Alto Research Center. ILU — Inter-Language Unification.
ftp://ftp.parc.xerox.com/pub/ilu/ilu.html

98. D. M. Yellin and R. E. Strom. Interfaces, Protocols, and the Semi-Automatic Construction
of Software Adaptors. InProceedings of OOPSLA’94, Portland, OR, USA, October 1994.

99. A. M. Zaremski and J. M. Wing. Specification Matching of Software Components.ACM
Transactions on Software Engineering and Methodology, vol. 6, no. 4, pp. 333-369, October
1997.

136

APPENDIX A: Formal Definition of the C2 Style

A.1 Summary of the Z Notation

The Z notation is a language for modeling mathematical objects developed at the
Programming Research Group at the University of Oxford. Z is based on first-order logic and set
theory. It uses standard logical connectives (, , , etc.) and set-theoretic operations (, , ,
etc.) with their standard semantics. In this appendix, we outline the aspects of the Z notation used
in this dissertation. For a complete Z reference, see [84].

A Z specification is a collection of types and predicates that must hold on the types’ values. Z
provides basic types, such as for natural numbers and for integers. Other basic types can be
introduced by enclosing them in square brackets. For example, the types for person names and
addresses are specified as follows:

[NAME, ADDRESS]

To declare that a particularperson is of typeNAME, we write person : NAME. If person has
already been declared, the above predicate is expressed asperson NAME.

Composite types in Z are constructed from basic types using the following type constructors:
• X is the powerset ofX, i.e., the set of all subsets ofX,
• X Y is the cross-product ofX andY, i.e., a set of all ordered pairs(x,y)such thatx X andy Y,
• X Y, the set of all partial functions betweenX andY. A partial function need not be defined

over the entire domain, and
• X Y, the set of all total functions. Total functions are defined on all elements of the domain

type.

An abbreviation or type synonym in Z allows introduction of new global constants. For
example, a function that returns the names of all people residing at a given address is defined as:

INHABITANTS == ADDRESS NAME

Other Z operations and notational conventions used in the dissertation are:
• If f is a function, then domf is the domain off and ranf is the range off.
• decl | pred1 pred2 is read “for all variables indecl satisfyingpred1, we have thatpred2

holds.”
• decl | pred1 pred2 is read “there exist variables indecl satisfyingpred1, such thatpred2

holds.”

Z has a special type constructor, called theschema. A schema is a collection of variables with
a set of constraints over that collection. For example,Town is a schema for a town with the set of
residences and people residing in them:

To select the residents oft : Town, we writet.residents.

∨ ∧ ⇒ ∈ ∪ ∩

∈

× ∈ ∈
→

→

→

∀

∃

Town

residences : �ADDRESS

residents : INHABITANTS

137

APPENDIXA

A schema can also specify invariants, written under the dividing line, that must hold between
the values of variables. To model the invariant that the set ofresidents in typeTown includes only
those whose residence is in the givenTown, we state thatresidences is the domain of theresidents
function.

Z allows for schema inclusion to facilitate a more modular approach to specification. The
invariant above can also be specified as

Finally, if Schema is a schema type, thenSchema represents twoSchema states, one before
and the other after an operation. The state after the operation is denoted with “’ ”. Hence,

is equivalent to

A.2 Z Types in the C2 Specification

We define four unelaborated Z types to describe C2 concepts: a component name type, a
(component and connector) communication port type, a message type, and a type that corresponds
to the state of a component, connector, or architecture.

A.3 C2 Components

The canonical C2 component type is formally defined below. Since a component’s dialog can
decide when and whether to handle a particular message (or sequence of messages) that it receives
at its top and bottom ports, themsg_to_handle function is defined to select one or more messages
at a port. Astate_transition in a component, whose properties are specified in the last formula in
the schema, is defined as processing messages received at either the top or the bottom port and
possibly generating outgoing messages. For each incoming message it processes, a component
may generate multiple outgoing messages at each port.

SingleTown

residences : �ADDRESS

residents : INHABITANTS

residences = dom residents

SingleTown

Town

residences = dom residents

∆

TownGrowth

�Town

TownGrowth

Town

Town
0

[COMP NAME ;COMM PORT ;COMM MSG ;OBJ STATE]

NEXT MSG == �COMM MSG ! COMM MSG

138

APPENDIXA

In order to be able to properly specify component instances, two component types in a C2-
style architecture cannot share names.

C2Component

name : COMP NAME

top port ; bot port : COMM PORT

top in; top out ; bot in; bot out :

COMM PORT � �COMM MSG

top domain; bot domain : �COMM MSG

dialog in : �COMM MSG � OBJ STATE

wrapper ; dialog top out : OBJ STATE � �COMM MSG

msg to handle : NEXT MSG ;

domain trans : �COMM MSG � �COMM MSG

internal states : �OBJ STATE

start state : OBJ STATE

state transitions : (OBJ STATE � (COMM PORT � �COMM MSG))!

(OBJ STATE � f (COMM PORT � �COMM MSG);

(COMM PORT � �COMM MSG) g)

top port 6= bot port

dom top in = f top port g

dom top out = f top port g

dombot in = f bot port g

dombot out = f bot port g

top domain = top in(top port) [top out(top port)

bot domain = bot in(bot port)[bot out(bot port)

8 state1; state2 : OBJ STATE ;

ps1; ps2; ps3 : COMM PORT � �COMM MSG �

((state1; ps1); (state2; f ps2; ps3 g)) 2 state transitions)

state1 2 internal states

^ state2 2 internal states

^ (domps1 = f top port g _ domps1 = f bot port g)

^ (domps2 = f top port g)

^ (domps3 = f bot port g)

^ (ps1(top port) � top in(top port) _

ps1(bot port) � bot in(bot port))

^ ps2(top port) � top out(top port)

^ ps3(bot port) � bot out(bot port)

ComponentNameUniqueness

components : �C2Component

8 comp1; comp2 : components �

comp1:name = comp2:name , comp1 = comp2

139

APPENDIXA

A component’s state is defined by its current state and the incoming and outgoing data
currently at its top and bottom ports.

A component handles messages by removing them from either its top or bottom port and
processing them, as shown below. The substrate independence principle is reflected in the below
schemas. A component must utilize the domain translator for the messages it both receives and
sends on its top side. At the same time, it has no knowledge and makes no assumptions about its
substrate, so that the wrapper around the internal object emits messages in the component’s
domain of discourse on its bottom side unbeknownst to the internal object.

For clarity, the expressions defining the new values fortop_out_data andbot_out_data above
(denoted with “’ ”) have been broken across several lines. Going from the bottom of each
expression upward, every line represents a step in processing messages from selecting a sequence
of incoming messages to producing outgoing messages. For example,top_out_data’ is obtained
by the following five steps:
1. select a set of incoming messages from the top_port: comp.msg_to_handle(top_in_data(...)),
2. perform domain translation on those messages:comp.domain_trans (1),
3. interpret the translated messages in the dialog and invoke the appropriate internal object meth-

ods:comp.dialog_in(2),
4. interpret the values returned by the internal object’s methods and generate a set of outgoing

messages:comp.dialog_top_out(3), and
5. perform domain translation on the outgoing messages:comp.domain_trans(4).

C2ComponentState

comp : C2Component

current state : OBJ STATE

top in data; top out data; bot in data; bot out data :

COMM PORT � �COMM MSG

current state 2 comp:internal states

dom top in data = f comp:top port g

dom top out data = f comp:top port g

dombot in data = f comp:bot port g

dombot out data = f comp:bot port g

top in data(comp:top port) � comp:top in(comp:top port)

top out data(comp:top port) � comp:top out(comp:top port)

bot in data(comp:bot port) � comp:bot in(comp:bot port)

bot out data(comp:bot port) � comp:bot out(comp:bot port)

140

APPENDIXA

6.

HandleMessageFromAbove

�C2ComponentState

comp0 = comp

((current state; top in data);
(current state0

; f top out data 0
; bot out data0 g)) 2

comp:state transitions

top out data0(comp:top port) =
top out data(comp:top port) [
f comp:domain trans(

comp:dialog top out(
comp:dialog in(
comp:domain trans(

comp:msg to handle(
top in data(comp:top port)))))) g

bot out data0(comp:bot port) =
bot out data(comp:bot port) [
f comp:wrapper(

comp:dialog in(

comp:domain trans(
comp:msg to handle(

top in data(comp:top port))))) g

top in data(comp:top port) =

top in data 0(comp:top port) [
f comp:msg to handle(top in data(comp:top port)) g

bot in data0(comp:bot port) = bot in data(comp:bot port)

HandleMessageFromBelow

�C2ComponentState

comp0 = comp

((current state; bot in data);
(current state0

; f top out data 0
; bot out data0 g)) 2

comp:state transitions

top out data0(comp:top port) =

top out data(comp:top port) [
f comp:domain trans(

comp:dialog top out(

comp:dialog in(
comp:msg to handle(
bot in data(comp:bot port))))) g

bot out data0(comp:bot port) =
bot out data(comp:bot port) [
f comp:wrapper(

comp:dialog in(

comp:msg to handle(
bot in data(comp:bot port)))) g

top in data0(comp:top port) = top in data(comp:top port)

bot in data(comp:bot port) =
bot in data 0(comp:bot port) [
f comp:msg to handle(bot in data(comp:bot port)) g

ComponentMessageHandling b=

HandleMessageFromAbove ^ HandleMessageFromBelow

141

APPENDIXA

A.4 C2 Connectors

A C2 connector can have multiple components and connectors on its top and bottom sides.
The messages emitted on the bottom side of a connector are a subset of those that come in from
above and the messages emitted on its top side are a subset of those that come in from below. It is
thus possible to define filtering functionsFilter_TB andFilter_BT that determine for each port
whether a particular message will be filtered out or propagated.

Unlike a component, a C2 connector does not perform any system functionality and is thus
modeled as not having any “internal” state. Instead, its state is entirely determined by the
incoming and outgoing data at its top and bottom ports.

A connector routes a message by removing it from one of its ports’ incoming queues, filtering
it as appropriate, and placing it on its opposite-side ports’ outgoing queues. For simplicity, the
FilterTB andFilterBT functions are assumed to filter out a message by propagating a null
message.

C2Connector

top ports; bot ports : �COMM PORT

top in; top out ; bot in; bot out :

COMM PORT � �COMM MSG

Filter TB : CONN FILTER

Filter BT : CONN FILTER

top ports \ bot ports = �

dom top in = top ports

dom top out = top ports

dombot in = bot ports

dombot out = bot ports
S
(ran bot out) �

S
(ran top in)S

(ran top out) �
S
(ran bot in)

C2ConnectorState

conn : C2Connector

top in ow ; top out ow ; bot in ow ; bot out ow :

COMM PORT � �COMM MSG

dom top in ow [dom top out ow � conn:top ports

dombot in ow [dombot out ow � conn:bot ports

8 port : conn:top ports �

top in ow(port) � conn:top in(port) ^

top out ow(port) � conn:top out(port)

8 port : conn:bot ports �

bot in ow(port) � conn:bot in(port) ^

bot out ow(port) � conn:bot out(port)

142

APPENDIXA

A.5 Rules of Architectural Composition

We define a communication link as a relation between two ports. Communication links are
bidirectional.

The properties that a component may only be attached to single connectors on its top and
bottom sides, while a connector may be attached to multiple components and other connectors are
expressed below. These, and all subsequent definitions involving components assume that they are
internal components, i.e., they are neither top- nor bottom-most in an architecture. However, the
top- and bottom-most components are easily described as special cases of the given definitions by
omitting from the schemas references to their sides, top or bottom, that are outermost in an
architecture.

RoutMessageFromAbove

�C2ConnectorState

conn0 = conn

8msg : COMM MSG ; port1 : conn:top ports j msg 2 top in ow(port1) �
8 port2 : conn:bot ports �

top in ow(port1) = top in ow 0(port1) [f msg g

^ top out ow 0(port1) = top out ow(port1)
^ bot in ow 0(port2) = bot in ow(port2)
^ bot out ow 0(port2) =

bot out ow(port2) [f conn:Filter TB(port2; msg) g

RoutMessageFromBelow

�C2ConnectorState

conn0 = conn

8msg : COMM MSG ; port1 : conn:bot ports j msg 2 bot in ow(port1) �
8 port2 : conn:top ports �

top in ow 0(port2) = top in ow(port2)
^ top out ow 0(port2) =

top out ow(port2) [f conn:Filter BT (port2; msg) g
^ bot in ow(port1) = bot in ow 0(port1) [f msg g

^ bot out ow 0(port1) = bot out ow(port1)

ConnectorMessageRouting b=

RoutMessageFromAbove ^ RoutMessageFromBelow

C2Link

Link : LINK

8 port1; port2 : COMM PORT �

(port1; port2) 2 Link , (port2; port1) 2 Link

LINK == COMM PORT $ COMM PORT

143

APPENDIXA

A.6 Communication among Components and Connectors

C2 connectors’ interfaces arecontext reflective: a connector’s domain of discourse is
determined (dynamically) by the domains of the components attached to it at a given time. Hence
a connector will accept and process every message sent by the components attached to it.

ComponentToConnectorLinks

C2Link

components : �C2Component

connectors : �C2Connector

8 comp : components �

9
1
conn1; conn2 : connectors; tport ; bport : COMM PORT j

tport 2 conn2:top ports ^ bport 2 conn1:bot ports ^ conn1 6= conn2 �

(comp:top port ; bport) 2 Link ^ (comp:bot port ; tport) 2 Link

ConnectorToComponentLinks

C2Link

components : �C2Component

connectors : �C2Connector

8 conn : connectors; tport ; bport : COMM PORT j

tport 2 conn:top ports ^ bport 2 conn:bot ports �

9
1
comp1; comp2 : components j comp1 6= comp2 �

(tport ; comp1:bot port) 2 Link ^ (bport ; comp2:top port) 2 Link

ConnectorToConnectorLinks

C2Link

components : �C2Component

connectors : �C2Connector

8 conn : connectors; tport ; bport : COMM PORT j

tport 2 conn:top ports ^ bport 2 conn:bot ports �

9
1
conn1; conn2 : connectors; c2tport ; c1bport : COMM PORT j

c2tport 2 conn2:top ports ^ c1bport 2 conn1:bot ports ^

conn 6= conn1 ^ conn 6= conn2 ^ conn1 6= conn2 �

(tport ; c1bport) 2 Link ^ (bport ; c2tport) 2 Link

ValidC2Connections b=

ComponentToConnectorLinks ^

ConnectorToComponentLinks ^

ConnectorToConnectorLinks

ConnectorDomains

vc : ValidC2Connections

components : �C2Component

connectors : �C2Connector

8 conn : connectors; comp : components; conn port : COMM PORT �

conn port 2 conn:bot ports ^ (comp:top port ; conn port) 2 vc:Link)

comp:top out(comp:top port) � conn:bot in(conn port)

^ conn port 2 conn:top ports ^ (comp:bot port ; conn port) 2 vc:Link)

comp:bot out(comp:bot port) � conn:top in(conn port)

144

APPENDIXA

Message passing is modeled as a simple exchange between connector and/or component
ports.

TransmitMessageDownFromComponentToConnector

�ValidC2Connections

�C2ComponentState
�C2ConnectorState

8msg : COMM MSG ; top conn port : conn:top ports �

(comp:bot port ; top conn port) 2 Link ^

msg 2 bot out data(comp:bot port))
(bot out data(comp:bot port) =

bot out data 0(comp:bot port) [f msg g

^ top in ow 0(top conn port) =
top in ow(top conn port)[f msg g

^ conn0 = conn

^ top out ow 0 = top out ow

^ bot in ow 0 = bot in ow

^ bot out ow 0 = bot out ow

^ comp 0 = comp

^ current state0 = current state

^ top in data 0 = top in data

^ top out data 0 = top out data

^ bot in data 0 = bot in data)

TransmitMessageUpFromComponentToConnector

�ValidC2Connections
�C2ComponentState
�C2ConnectorState

8msg : COMM MSG ; bot conn port : conn:bot ports �

(comp:top port ; bot conn port) 2 Link ^

msg 2 top out data(comp:top port))
(top out data(comp:top port) =

top out data 0(comp:top port) [f msg g
^ bot in ow 0(bot conn port) =

bot in ow(bot conn port) [f msg g
^ conn0 = conn

^ top in ow 0 = top in ow

^ top out ow 0 = top out ow

^ bot out ow 0 = bot out ow

^ comp 0 = comp

^ current state0 = current state

^ top in data 0 = top in data

^ bot in data 0 = bot in data

^ bot out data 0 = bot out data)

145

APPENDIXA

TransmitMessageDownFromConnectorToConnector

�ValidC2Connections
from conn; to conn : �C2ConnectorState

8msg : COMM MSG ;
from port : from conn:conn:bot ports; to port : to conn:conn:top ports �

(from port ; to port) 2 Link ^

msg 2 from conn:bot out ow(from port))
(from conn:bot out ow(from port) =

from conn:bot out ow 0(from port) [f msg g
^ to conn:top in ow 0(to port) =

to conn:top in ow(to port) [f msg g
^ from conn:conn0 = from conn:conn

^ from conn:top in ow 0 = from conn:top in ow

^ from conn:top out ow 0 = from conn:top out ow

^ from conn:bot in ow 0 = from conn:bot in ow

^ to conn:conn0 = to conn:conn

^ to conn:top out ow 0 = to conn:top out ow

^ to conn:bot in ow 0 = to conn:bot in ow

^ to conn:bot out ow 0 = from conn:bot out ow)

TransmitMessageUpFromConnectorToConnector

�ValidC2Connections
from conn; to conn : �C2ConnectorState

8msg : COMM MSG ;

from port : from conn:conn:top ports; to port : to conn:conn:bot ports �

(from port ; to port) 2 Link ^

msg 2 from conn:top out ow(from port))
(from conn:top out ow(from port) =

from conn:top out ow 0(from port) [f msg g
^ to conn:bot in ow 0(to port) =

to conn:bot in ow(to port)[f msg g
^ from conn:conn0 = from conn:conn

^ from conn:top in ow 0 = from conn:top in ow

^ from conn:bot in ow 0 = from conn:bot in ow

^ from conn:bot out ow 0 = from conn:bot out ow

^ to conn:conn0 = to conn:conn

^ to conn:top in ow 0 = to conn:top in ow

^ to conn:top out ow 0 = to conn:top out ow

^ to conn:bot out ow 0 = from conn:bot out ow)

146

APPENDIXA

Unlike a connector, a component has explicitly defined top and bottom interfaces, and will
accept only those messages it understands.

TransmitMessageUpFromConnectorToComponent

�ValidC2Connections

�C2ComponentState
�C2ConnectorState

8msg : COMM MSG ; top conn port : conn:top ports �

(comp:bot port ; top conn port) 2 Link ^

msg 2 top out ow(top conn port))
(top out ow(top conn port) =

top out ow 0(top conn port) [f msg g

^ msg 2 comp:bot in(comp:bot port))
bot in data 0(comp:bot port) =

bot in data(comp:bot port) [f msg g
^ msg =2 comp:bot in(comp:bot port))

bot in data 0(comp:bot port) = bot in data(comp:bot port)

^ conn0 = conn

^ top in ow 0 = top in ow

^ bot in ow 0 = bot in ow

^ bot out ow 0 = bot out ow

^ comp 0 = comp

^ current state0 = current state

^ top in data 0 = top in data

^ top out data 0 = top out data

^ bot out data 0 = bot out data)

TransmitMessageDownFromConnectorToComponent

�ValidC2Connections
�C2ComponentState

�C2ConnectorState

8msg : COMM MSG ; bot conn port : conn:bot ports �

(comp:top port ; bot conn port) 2 Link ^

msg 2 bot out ow(bot conn port))
(bot out ow(bot conn port) =

bot out ow 0(bot conn port) [f msg g
^ msg 2 comp:top in(comp:top port))

top in data 0(comp:top port) =
top in data(comp:top port) [f msg g

^ msg =2 comp:top in(comp:top port))

top in data 0(comp:top port) = top in data(comp:top port)
^ conn0 = conn

^ bot in ow 0 = bot in ow

^ top in ow 0 = top in ow

^ top out ow 0 = top out ow

^ comp 0 = comp

^ current state0 = current state

^ bot in data 0 = bot in data

^ bot out data 0 = bot out data

^ top out data 0 = top out data)

147

APPENDIXA

TheServiceUtilization schemas represent the communication between a component and a
connector from the component’s perspective. In other words, they represent the usage of the
component’s provided services. An informal discussion of the below schemas is given in
Chapter 2.

C2MessageTransmition b=

TransmitMessageUpFromComponentToConnector ^

TransmitMessageDownFromComponentToConnector ^

TransmitMessageUpFromConnectorToConnector ^

TransmitMessageDownFromConnectorToConnector ^

TransmitMessageUpFromConnectorToComponent ^

TransmitMessageDownFromConnectorToComponent

FullServiceUtilization

vc : ValidC2Connections

components : �C2Component

connectors : �C2Connector

8 comp : components; conn : connectors; conn port : COMM PORT �

(conn port 2 conn:top ports ^ (comp:bot port ; conn port) 2 vc:Link)

comp:bot in(comp:bot port) � conn:top out(conn port))

^ (conn port 2 conn:bot ports ^ (comp:top port ; conn port) 2 vc:Link)

comp:top in(comp:top port) � conn:bot out(conn port))

PartialServiceUtilization

vc : ValidC2Connections

components : �C2Component

connectors : �C2Connector

8 comp : components; conn : connectors; conn port : COMM PORT �

(conn port 2 conn:top ports ^ (comp:bot port ; conn port) 2 vc:Link)
conn:top out(conn port) \ comp:bot in(comp:bot port) 6= �

^ comp:bot in(comp:bot port) \ conn:top out(conn port) �
comp:bot in(comp:bot port))

^ (conn port 2 conn:bot ports ^ (comp:top port ; conn port) 2 vc:Link)
conn:bot out(conn port) \ comp:top in(comp:top port) 6= �

^ comp:top in(comp:top port) \ conn:bot out(conn port) �
comp:top in(comp:top port))

148

APPENDIXA

Finally, theCommunication schemas represent the communication between a component and
a connector from the connector’s perspective. In other words, these schemas represent the
fulfillment of the requests submitted by a connector. Their informal discussion is given in
Chapter 2.

FullCommunication

vc : ValidC2Connections

components : �C2Component

connectors : �C2Connector

8 comp : components; conn : connectors; conn port : COMM PORT �

(conn port 2 conn:top ports ^ (comp:bot port ; conn port) 2 vc:Link)

conn:top out(conn port) � comp:bot in(comp:bot port))

^ (conn port 2 conn:bot ports ^ (comp:top port ; conn port) 2 vc:Link)

conn:bot out(conn port) � comp:top in(comp:top port))

PartialCommunication

vc : ValidC2Connections

components : �C2Component

connectors : �C2Connector

8 comp : components; conn : connectors; conn port : COMM PORT �
(conn port 2 conn:top ports ^ (comp:bot port ; conn port) 2 vc:Link)

conn:top out(conn port) \ comp:bot in(comp:bot port) 6= �

^ comp:bot in(comp:bot port) \ conn:top out(conn port) �

conn:top out(conn port))

^ (conn port 2 conn:bot ports ^ (comp:top port ; conn port) 2 vc:Link)
conn:bot out(conn port) \ comp:top in(comp:top port) 6= �

^ comp:top in(comp:top port) \ conn:bot out(conn port) �
conn:bot out(conn port))

NoInteraction

vc : ValidC2Connections

components : �C2Component

connectors : �C2Connector

8 comp : components; conn : connectors; conn port : COMM PORT �

(conn port 2 conn:top ports ^ (comp:bot port ; conn port) 2 vc:Link)

conn:top out(conn port) \ comp:bot in(comp:bot port) = �)

^ (conn port 2 conn:bot ports ^ (comp:top port ; conn port) 2 vc:Link)

conn:bot out(conn port) \ comp:top in(comp:top port) = �)

ComponentServiceUtilization b=

FullServiceUtilization _ PartialServiceUtilization _ NoInteraction

ConnectorToComponentCommunication b=

FullCommunication _ PartialCommunication _ NoInteraction

149

APPENDIX B: C2SADEL Syntax Summary

This Appendix contains the complete BNF specification ofC2SADEL. For simplicity, all
literals, including single-character literals (e.g., ‘}’ or ‘;’) are displayed in bold type. Single-
character literals are displayed without quotation marks.Unless bolded, curly braces (‘{’ and ‘}’)
represent repetition of the enclosed expression. “{...}*” represents zero or more occurrences,
while “{...}+” denotes one or more occurrences.

arch_component_set ::=
(arch_component_type)*

arch_component_type ::=
component identifier is arch_component_type_decl

arch_component_type_decl ::=
component_type_decl | virtual_comp_type

arch_component_types ::=
component_types { arch_component_set }

arch_connector_type ::=
connector identifier is
{

message_filter filtering_policy ;
}

arch_connector_types ::=
connector_types { (arch_connector_type)* }

arch_topology ::=
architectural_topology
{

component_inst
connector_inst
attachments

}

attachments ::=
connections { (connection_decl)* }

basic_subtype ::=
identifier is basic_subtype identifier ;

basic_subtype_decl ::=
basic_types { (basic_subtype)* }

behavior_decl ::=
operations { (operation_decl)* }

binary_operator ::=
= | <> | + | - | * | / | ^ |
\implies | \equivalent |
\and | \or |
\union | \intersection | \in | \not_in
\greater | \less | \ eqgreater | \eqless

150

APPENDIXB

C2_architecture ::=
architecture identifier is
{

[basic_subtype_decl]
arch_component_types
arch_connector_types
arch_topology

}

C2_component_set ::=
[basic_subtype_decl]
(component_type)+

C2_SADEL_spec ::=
C2_architecture | C2_component_set

component_inst ::=
component_instances { (instance_decl)* }

component_type ::=
component identifier is component_type_decl

component_type_decl ::=
extern_comp_type | local_comp_type

connection_decl ::=
[component | connector] identifier
{

top [connection_list] ;
bottom [connection_list] ;

}

connection_list ::=
identifier , connection_list | identifier

connector_inst ::=
connector_instances { (instance_decl)* }

digit ::=
0 | 1 | ... | 9

dir_indicator ::=
prov | req

extern_comp_type ::=
extern { filename ; }

filtering_policy ::=
no_filtering |
notification_filtering |
message_filtering |
prioritized |
message_sink

function_decl ::=
identifier : identifier -> identifier ;

identifier ::=
letter { | letter | digit}*

instance_decl ::=
identifier : identifier ;

151

APPENDIXB

integer ::=
(digit)+

interface_decl ::=
interface { (interface_element_decl)* }

interface_element_decl ::=
dir_indicator identifier :

identifier (param_decl) [: [\set] identifier] ;

invariant_decl ::=
invariant { [logic_expr ;] }

let_decl ::=
let {var_decl ; }* [pre_decl | post_decl]

letter ::=
A | B | ... | Z | a | b | ... | z

local_comp_type ::=
[subtype_decl]
{

state_decl
invariant_decl
interface_decl
behavior_decl
map_decl

}

logic_expr ::=
subexpr [\and subexpr]

map_decl ::=
map { (single_map)* }

numeric_literal ::=
[-] integer [. integer] [^ integer]

operand ::=
[\not | #] identifier |
numeric_literal |
subexpr |
(subexpr)

operation_decl ::=
dir_indicator identifier :
{ let_decl | pre_decl | post_decl }

param_decl ::=
var_decl ; param_decl | var_decl

param_to_var ::=
identifier -> identifier , param_to_var |
identifier -> identifier

post_decl ::=
post [post_logic_expr] ;

post_logic_expr ::=
post_subexpr [\and post_subexpr]

152

APPENDIXB

post_operand ::=
[\not | #] [~] identifier |
numeric_literal |
post_subexpr |
(post_subexpr)

post_subexpr ::=
post_operand binary_operator post_operand |
\result = post_operand

pre_decl ::=
pre [logic_expr] ; [post_decl]

single_map ::=
identifier -> identifier (param_to_var) ;

state_decl ::=
state { (var_decl ; | function_decl ;)* }

subexpr ::=
operand binary_operator operand

subtype_decl ::=
subtype identifier (subtype_rel_expr)

subtype_rel ::=
nam | int | beh | imp

subtype_rel_expr ::=
[\not] subtype_rel { \and [\not] subtype_rel}*

var_decl ::=
identifier : [\set] identifier

virtual_comp_type ::=
virtual { }

