Web-Based De

Complex Inform

84

Want to launch a
virtual enterprise
using the Web as
your technology
infrastructure?
First learn
what’s missing
from today’s Web
architecture and
which extensions
are needed for
large-scale
collaboration.

August 1998/Vol. 41, No. 8 COMMUNICATIONS OF THE ACM

Roy T. FIELDING,

E. JAMES WHITEHEAD, JR.,
KENNETH M. ANDERSON,
GREGORY A. BOLCER,
PEYMAN ORELZy,

AND RICHARD N. TAYLOR

he World-Wide Web connects

islands of information, along with

the people seeking that information,

from within corporate intranets and

across the global Internet, easily and

effectively. Sharing information
without regard to physical location has prompted
new forms of virtual business and social endeavors.
A virtual enterprise is an organization uncon-
strained by geographic location, and a membership
intersecting multiple traditional organizations. Vir-
tual enterprises can be formed within large corpora-
tions (consisting of groups at distributed sites), as
parts of business alliances or task forces [4], and
even among individuals working independently of
any corporate connection. Indeed, all that is needed
to form a virtual enterprise is at least one common
goal, a shared information space, a means of coordi-
nating users’ efforts, and people willing to share the
work.

The Web provides the minimum for setting up
such enterprises by enabling identification of shared
goals and the people who share them, by providing a
standard mechanism for reading the shared informa-
tion space, and by supporting coordination via email
archives. However, the existing Web support infra-

velopment of
ation Products

structure requires specialized software installation
and nonstandard interfaces, and remains paltry in
regard to remote authoring and task coordination.
Our purpose here and in our work at the Univer-
sity of California, Irvine, is to identify those
aspects of the Web infrastructure that need
improvement and recommend specific ways to
improve them in order to realize the Web’s full
potential for all forms of virtual enterprise.

A typical goal for virtual enterprises is develop-
ment and maintenance of a complex information
product we define as a highly interconnected and
interdependent package of information. Example
information products include a gourmet recipe
collection, a book or journal article with multiple
authors, an advertising campaign, or the technical
documentation for some other complex product,
such as a maintenance manual for an airplane built
from components manufactured around the globe.
Although the focus of our research and of this arti-
cle is the example of a software engineering prod-
uct, the lessons described and the solutions
suggested are applicable to all forms of complex
information products and thus are usable in all
forms of virtual enterprise for which an informa-
tion product is a goal.

Goal Enabling technology missing from the Web

Links as first-class objects and a client architecture for hypermedia
communication between viewers of a multitude of data formats

Linking all artifacts and processes
(people and tasks)

Software Engineering As a
Virtual Enterprise
Software engineering is fundamentally about the
production and maintenance of complex information
products. The Web has the potential for providing
the infrastructure of a global software engineering
environment, seamlessly supporting evolution of a
software product from concept through implementa-
tion, deployment, and long-term maintenance,
regardless of location or number of people involved.
Such an environment supports the addition, subtrac-
tion, and migration of participants in the software
process without requiring changes to the infrastruc-
ture, thus limiting the effect of changes on the pro-
ject as a whole and providing a continuous source of
information for users of the software products. Such
an environment is precisely what is needed to sup-
port the communication and coordination of a vir-
tual enterprise, particularly when the enterprise
focuses on creating a complex information product.
The full benefit of a Web-based enterprise is not
apparent until one considers the options available at
each point in the product development process. The
exchange of ideas and the encouragement of partici-
pants can involve colleagues around the world.
Notes, diagrams, and sketches are available to any-

Table I.
Virtual
organization

Flexible interaction model and Component-based client architecture with hypermedia workspace goals and
hypermedia services manager and data-specific handlers; notification services related
Distributed annotation Remote linking and links as first-class objects supporting
- .) . technology
Visibility of artifacts over time Versioning of resources
currently
Distributed authoring Remote locking, linking, access control, and versioning of resources not available

Distributed coordination and All of the above

change management

from the Web

COMMUNICATIONS OF THE ACM August 1998/Vol. 41, No. 8 85

one within the enterprise and accessible anytime, so
consideration of their value is not limited to meet-
ings with their authors. All project materials can be
examined, searched, and edited online; other bene-
fits include automated support for versioning
(retrieval of older editions of an artifact), establish-
ment of hypermedia relationships among work prod-
ucts and people and tasks, and the ability to track
the related dependencies as they change over time.
Plans, designs, specifications, and code can be
located and reused, partly or completely, from earlier
projects. Finally, end users are not left out of the
process; they can contribute
directly to development,
limited only by the access
restrictions assigned by the
development organization.
An example of how the
Web can help software engi-
neering projects is the
Apache Hypertext Transfer
Protocol (HTTP) server pro-
ject [7], founded in 1995 by
a group of Webmasters to
ensure the continued devel-
opment of a freely available
server implementation of
HTTP [6]. Starting with a
core group of eight volun-
teers, the Apache server has
been iteratively designed
and developed as a collabo-
rative project, using only
email and the Web for pro-
ject communication and
coordination and product
distribution. The Apache
server is now running on
more than 50% of all Inter-
net Web sites (more than 1
million hosts), competing
successfully against multi-
billion-dollar corporations. However, the Apache
Group collaborates effectively across the Internet
because the people involved are all Webmasters—
experts in network administration, installation of
new software, and communication via email, FTP,
and HTTP—and thus do their own tool integration
and coordination work, which is beyond the abilities
of most developers. However, the Apache Group has
encountered obstacles it has had to work around
manually, resulting in frustration and delays. Our
goal is to make the technology for remote collabora-
tion and coordination a standard part of the Web

86 August 1998/Vol. 41, No. 8 COMMUNICATIONS OF THE ACM

Our goal is to
make the
technology
for remote
collaboration and
coordination a
standard part of
the Web
infrastructure.

infrastructure, so the Web itself becomes an envi-
ronment for global software engineering and virtual
enterprises in general, and thus the ability to work
within a virtual enterprise will always be available
on a user’s desktop. Table 1 summarizes the changes
we recommend for the Web infrastructure and the
opportunities they would make possible.

First-Class Links

The core design consideration of any hypermedia
system is how it models relationships as links [8].
The Web today defines links according to the media
type of each node (docu-
ment), with HTML being
the dominant media type.
Links in HTML are unidi-
rectional and embedded
directly within a documen-
t’s markup. This approach
is the simplest method for
implementing links, and
since the links are distrib-
uted with each document,
it performs well in terms of
scalability and discon-
nected operation. However,
the embedded link model
generally hinders the abil-
ity to perform link mainte-
nance and prevents the
creation of links over docu-
ments that are read-only
or in a data type not hyper-
media-aware.

Link maintenance is a
primary concern for dis-
tributed hypermedia sys-
tems like the Web, in
which the nodes being
linked may be owned and
changed independently of
the nodes linking to them.
If the destination of a link is moved or deleted, the
source becomes a dangling link until it is updated.
In response to this problem, site management tools
like MOMspider [5] aid Webmasters in maintaining
anchor references. Unfortunately, these tools are hin-
dered in their support for intersite management due
to the lack of standard mechanisms for notifying
remote sites about changes to local sites and by their
inability to directly edit the source documents to
update the links automatically.

Open hypermedia systems have demonstrated
that making links first-class objects—separating the

link definitions from the hypermedia content and
providing an interface for link manipulation—solves
many of these problems. The separation provided by
this approach allows the links and anchors of a com-
plex information product to be manipulated and ana-
lyzed more easily. Changes to these structures can be
made independently of changes to hypermedia con-
tent, because they are stored separately, and the
external representation allows related nodes to be
updated automatically. In addition, this separation
enables creation of anchors and links in existing doc-
uments, even when access to these documents is
read-only. Annotation is readily supported by this
approach, because making an annotation is equiva-
lent to defining a link from an area of an existing
document to a separate note. Likewise, the link
server interface makes it easier for tools to automati-
cally generate overviews of hypermedia content and
guided tours. First-class links are typically modeled
as sets, enabling links with more than a single desti-
nation (z-ary links). Furthermore, typing can be
applied to links, allowing a variety of relationships to
be defined with distinct run-time semantics and the
ability to search for specific link types.

However, separating links from hypermedia con-
tent has drawbacks. Access to the external links
becomes dependent on a particular link server (in
which the links are stored), and disconnected opera-
tion is not possible without copying the associated
external links to a local link server. Attempting to
maximize the availability of links leads to scalability
problems due to the potential desire of Webmasters
to centralize control over shared sets of external links
and the need for distributed link servers to be aware
of each other and to communicate updates. Further-
more, any change to the hypermedia content made
by non-hypermedia-aware tools will result in the
same dangling-link problems as in the Web, if not
worse problems due to the loss of consistency
between content and the separate anchor specifica-
tions. However, the value of the features enabled by
first-class links far exceeds their risks. An appropri-
ate hybrid design would enable first-class links with-
out adversely affecting existing Web content and
embedded links.

Several approaches augment Web applications
with first-class links [1]. For example, clients could
be modified to access an open-hypermedia-system
service in parallel with each Web request. Alterna-
tively, each Web request could be filtered through a
link server using HTTP’s proxy support, as demon-
strated by Microcosm [3] and OzWeb [9], allowing
the link server to dynamically wrap or embed first-
class links within the normal HTTP response. How-

ever, these methods are inefficient, motivated pri-
marily by the desire of open hypermedia systems to
work with existing Web clients and servers. A more
drastic approach is to replace the Web protocols
entirely, as has been done with Hyper-G [11], and
provide substandard interfaces to clients using the
older protocols. The best, approach over the long
term is to use HTTP’s existing extensibility mecha-
nisms and incorporate the ability to identify link
servers and transfer first-class links directly within
the standard protocol, enabling future Web applica-
tions to take full advantage of these abilities without
requiring a separate interface for older applications.

Notification

HTTP, the Web’s primary information transfer pro-
tocol, is based on a strict client/server model. A typ-
ical HTTP server waits for client requests, locates the
requested resource, applies the requested method to
that resource, and sends the response back to the
client. Although this model of communication scales
well for simple retrieval tasks, it is not sufficient for
the complex interactions in software engineering (or
in any collaborative work process). A change in one
resource often necessitates other changes to maintain
dependencies between resources. In a strict
client/server model, the client has to poll the server
for changes to a resource, but polling is extremely
inefficient when the resource space is large or when
changes are infrequent. Needed is a means for clients
to register interest in a resource and for servers to
supply a notification when the resource changes.

Notification is not an entirely new concept for the
Web; third-party services monitor a given resource
(usually by periodic polling) and send email as noti-
fication when the resource changes. However, regis-
tering for such services is a manual process, as is
receipt and processing of the email responses. These
services improve efficiency only in terms of reducing
the number of clients performing the polling; the
Web needs greater flexibility in terms of the client
specifying the protocol and message format of the
notification, since the message granularity and deliv-
ery requirements vary by type of application and fre-
quency of change.

Support for notifications could be added within
the HTTP protocol as a form of first-class link. A
server supporting notification could observe a change
to the resource, check the resource for links of type
“notify,” and post a notification message to the link’s
destination (identified by a URL) in a format indi-
cated by the link attributes. Notification is therefore
enabled once support for remote link authoring ser-
vices is added to the Web.

COMMUNICATIONS OF THE ACM August 1998/Vol. 41, No. 8 87

Client Architecture
Software engineering involves a multitude of spe-
cialized data formats—source code, specifications,
test results, project plans, design diagrams, and
more—each introducing important relationships
and dependencies within an overall project. One of
our goals is to be able to manipulate all of this data
as hypermedia, including adding anchors and link-
ing relationships to the objects represented within
each data type, rather than to just an overlay of a par-
ticular rendition of that data. We need data-specific
handlers (viewers, editors, and other tools) with
equal access to hypermedia functionality, allowing
modes of interaction
that take advantage of
the properties of each
particular data type.
One example of how
data-specific handlers
can improve hyperme-
dia functionality is by
enabling implicit links
derived from the nature
of an artifact rather
than being explicitly
defined by an anchor or
external link specifica-
tion. For example, if a
program is written in
the C programming
language and we have
an indexed hypertext
language reference
manual for C, there is
an implicit relationship
between every C key-
word and operator in
the program and its
corresponding defini-
tion in the language
reference manual (LRM). While it is possible to
explicitly instantiate every one of these relationships
as an independent link, it is more efficient to define
the abstract relationship

{ keyword } —> http://site/LRM?keyword

and allow the actual link to be calculated only when
invoked by the user. Other implicit links commonly
found in source code include definition-use relation-
ships, begin-end bracketing, and next-statement
jumps, each of which can be calculated by a viewer
with knowledge of the source code language similar
to that of a compiler.

88 August 1998/Vol. 41, No. 8 COMMUNICATIONS OF THE ACM

The core design
consideration of
any hypermedia
system is how
it models
relationships
as links.

Current Web clients use a number of mechanisms
to allow hypermedia interaction with data formats
other than HTML. The most basic is the media-type
handler (sometimes called the mimecap interface)
consisting of a program to execute when a particular
data type is retrieved. Although media-type han-
dlers are the basis for most solutions, it does not by
itself include any hypermedia-aware interface, and
thus the handler has to invoke an additional inter-
face to do anything more than act as a read-only win-
dow. Current forms of this additional hypermedia
interface include the Inter-Client Communication
Protocol (ICCP) and the Netscape plug-in mecha-

nism. Though useful, these
interfaces do not support the full
range of hypermedia functional-
ity and require the constant
presence of the primary browser

application.
Coordinated tool interac-
tion and the hypermedia

workspace. Another mecha-
nism for data-specific handlers
involves applets that supply the
rendering and manipulation
code for a specific data type.
Although applets often provide
a hypermedia interface, these
interfaces are secluded from the
overall hypermedia workspace
for security reasons, and thus
two or more applets are gener-
ally prevented from cooperating
on a single task. Applets need to
be able to register interfaces
restricted to safe interactions, so
the security constraints of a
given application are enforced
with greater precision than a
blanket prohibition.

The Web client architecture has traditionally
been dominated by the monolithic browser, a huge
application acting as window manager, hypermedia
viewer, network request controller, and manager of
user preferences, bookmarks, and history. It is diffi-
cult for anyone to introduce new functions to such
an architecture, particularly for the multitude of
data-specific handlers needed for software engineer-
ing. The client architecture has to be replaced by an
architecture consisting of a dynamic collection of
small, communicating applications, similar to the
way Apple Computer’s Cyberdog client consists of a
collection of OpenDoc components. However, lack-
ing today is the glue—the interface specifications—

that can hold these components together to form a
consistent hypermedia workspace.

Software engineers use a diverse collection of tools
to support their activities, including editors, debug-
gers, version control systems, and static and dynamic
analyzers, that are not always operated in isolation;
rather, multiple tools are used together to solve a
particular task. However, tool coordination fre-
quently lacks an interface mechanism. Current
monolithic browsers serve that function internally
but only within the limited scope of their original
design. The problem is that in order to provide for
more flexible and extensible clients, the components
of the client need to be independent, yet they cannot
work effectively as a hypermedia workspace unless
something unifies their behavior in response to
hypermedia events and user actions. In other words,
a hypermedia workspace manager has to provide a
standard set of services that components can access to
register handlers and initiate external hypermedia
events.

For example, consider the communication pat-
terns of cooperating code editor, design viewer, and
run-time debugger tools. When executing, the run-
time debugger acts as a traversal engine; the link
being traversed is the implicit one between a com-
pleted code statement and the next statement as
determined by the program control flow. Each of
these traversals can be viewed as a hypermedia event,
and the code editor and the design viewer can both
register interest in these events, perhaps with differ-
ing granularity, in much the same way a hypertext
history-mapping tool registers interest in the traver-
sals of a typical browser. Likewise, the user may wish
to set a breakpoint by selecting a module in the
design viewer or a statement in the code viewer. Such
complex interaction is possible only in a hyperme-
dia-based software environment if the component
architecture does not artificially constrain the hyper-
media interface to actions typical of traditional
browser applications.

Distributed Authoring and Versioning

An essential element differentiating a virtual enter-
prise from a traditional organization is the likelihood
that the participants are distributed across multiple,
remote locations. Likewise, all virtual enterprises
need at least one shared information space—for
recording decisions, exchanging ideas, and storing
work products. If the participants are distributed,
they need a mechanism for distributed write-access
to the shared space. Even when the enterprise begins
as a local project, the advantage of a system support-
ing later distribution is that the participants do not

need to change their working environment if the
project expands later. This scalability from local to
remote use is a notable advantage for virtual enter-
prises engaged in software engineering, since a suc-
cessful software product is almost always used
beyond the original development team, and it is
often difficult to determine just how successful a
product will be before much of the original design
information is lost.

HTTP provides the bare essentials for distrib-
uted authoring of a virtual organization’s Web-
based content, with its PUT (write a resource)
method and entity tags [7]. Unfortunately, these
abilities do not represent the complete set of fea-
tures required by users when performing distrib-
uted authoring. Existing HTML authoring tools
supporting a remote “publish” operation often use
custom extensions to HTTP or a manually operated
Common Gateway Interface (CGI, a standard for
running external programs from a Web HTTP
server) to meet their needs. To date, the vast major-
ity of authoring practices assume direct access (typ-
ically via a file system) to the underlying storage
medium for Web content. When direct access is not
available, as in remote authoring, many of the
Web’s innate weaknesses become evident, including
the inability to version a resource, get a directory
listing, make a new directory, copy or move a
resource, set attributes, or create relationships
between resources.

Authentication and access control. A prerequi-
site to enabling distributed authoring and versioning
is the ability to perform authentication, by which the
recipient of a message verifies the identity of the
sender (both as an individual and in terms of his or
her group memberships), and access control, which
associates a request for the particular resource that is
the object of the request with the people allowed to
make that type of request. The Web provides some
weak forms of authentication suitable only for a con-
trolled network environment; access control is gener-
ally defined within the internal configuration of
Web servers. We hope that stronger forms of authen-
tication will be developed and adopted by the gen-
eral Web community. (Many solutions have already
been proposed.) Once authentication is enabled,
remote authoring of access control configurations
will also be possible.

Locking. A common problem with remote
authoring, called the lost update problem, occurs
when two people collaborating on a single document
overwrite each other’s work in successive requests.
One solution is to temporarily exclude access to a
resource; if a resource is to be edited, the author first

COMMUNICATIONS OF THE ACM August 1998,/Vol. 41, No. 8 89

requests a write lock, thus preventing others from
writing to the same resource. Such long-term pes-
simistic locking necessitates the ability to query a
resource for its current locks and provides a means
for lock management. An alternative solution, called
short-term optimistic locking, is to copy the
resource(s) being edited to a separate workspace, per-
form the editing within that workspace, and then
lock the resource during the short period required to
commit all the changes at once. Both solutions
require verification that the resource has not
changed during editing, as well as the ability to
obtain a write-lock during the period between the
beginning of the verification process and the com-
pletion of the edits.

Versioning. The Web today
supports only one version of a
document—the current one.
However, saving and retrieving
past versions of a document are
critical in software development.
The ability to store and access
previous document versions,
retrieve the history of a docu-
ment, branch and merge revision
paths, annotate document revi-
sions with comments about the
changes, and retrieve information
about the differences among doc-
ument versions are all useful in
any shared information space, and
thus for any virtual enterprise.

Collections. The Web today
gives inadequate support for col-
lections, or groupings, of related
resources. Collections can be
used to organize the resource
namespace, automate guided
tours through a set of resources,
represent version histories, and enable moving,
copying, and deletion of multiple resources in a sin-
gle action. An immediate need for collections is in
remote authoring applications requiring support for
aSave As. .. dialog box providing a list of the
current contents of a hierarchical region of the
resource namespace in much the same way a file sys-
tem directory provides a list of filenames. Collec-
tions of resources on the Web would not be limited
to operating system directories, a single resource
might belong to multiple collections, and a collec-
tion could include resources from multiple sites.

Copy and move. File systems, configuration
management systems, and document management
systems all permit users to copy documents and

90 August 1998/Vol. 41, No. 83 COMMUNICATIONS OF THE ACM

Interfaces must
allow a user’s
favorite tools

to become
part of the
hypermedia
workspace.

change document names without altering their con-
tents. There are compelling reasons for the incorpo-
ration of this functionality into the Web as well. A
copy function can be used to duplicate a document
before a modification sequence is started. A move
function allows expansion of naming conventions as
a project grows. Names acceptable for a small set of
documents are often too informal for a larger set; a
move function bridges the old and new naming
schemes. While these operations could be supported
by the Web as it is today by loading and resaving the
contents of a document, this loading and resaving
operation is extremely inefficient for large docu-
ments and recursive copies (such as copying a URL
hierarchy).

Metadata. Resources on the
Web consist of both data rep-
resentations and metadata, or
information describing the
attributes of the representa-
tions. Although HTTP sup-
ports the transfer of metadata
as message header fields, dis-
tributed authoring has to be
able to create, modify, and
delete metadata. Providing
simple attribute-value pairs
would allow the recording of
many valuable aspects of a doc-
ument (such as author, title,
subject, organization, and key-
words). These attributes have
many uses, including support
for searches on attribute con-
tents and creation of catalog
entries as placeholders for doc-
uments not yet available in
electronic form. In addition,
first-class links and externally
specified anchors are most naturally implemented as
metadata within HTTP, so distributed authoring of
first-class links requires the same distributed author-
ing of metadata.

All of these enhancements to HTTP and the Web
infrastructure are being pursued through the Inter-
net Engineering Task Force’s working group on
World-Wide Web Distributed Authoring and Ver-
sioning (see www.ics.uci.edu/pub/ietf/webdav) [12].

Coordination

The most significant problems caused by the dis-
tributed nature of virtual enterprises involve coordi-
nation. Malone and Crowston [10] define
coordination as “the act of managing interdependen-

cies between activities performed to achieve a goal.”
Because participants may not be in the same geo-
graphic location and may have working schedules
that never overlap, people in virtual enterprises can-
not observe and anticipate the factors that affect the
interdependencies among tasks. A virtual enterprise
typically lacks opportunities for informal conversa-
tions, like those in traditional organizations during
coffee breaks and hallway exchanges, that help pro-
vide the big picture needed by employees and man-
agement alike to anticipate coordination problems.
Likewise, the time cost in asking what everyone is
working on (to avoid duplicated effort) may exceed
the time it takes to simply perform the task at hand.

Coordination within a virtual enterprise is charac-
terized by several modes:

e Matching resources, including people, equip-
ment, and documents, with tasks and negotiating
their roles within the tasks

e Forming and identifying constraints, responsibili-
ties, deliverables, plans, and interdependencies

e Carrying out the process, including scheduling,
handoff, and sharing of data

e Establishing completion criteria

These modes occur continuously throughout an
enterprise, with many iterations and at varying lev-
els of task granularity.

The Web supports limited coordination through
provision of shared information spaces. But to fully
participate in a virtual enterprise, people need to be
able not only to exchange data but to negotiate the
policies governing their collaboration. This negotia-
tion requires a task-oriented view of the project,
rather than just the data-oriented view provided by
the Web. Virtual enterprises like the Apache Group
generally use email lists and manually updated agen-
das to minimally support their coordination activi-
ties. Although we can build tools to support a
task-oriented view, implementing these tools on top
of the Web infrastructure first requires implementa-
tion of the improvements we've cited in this article.

Support for matching resources with tasks and for
negotiating the roles within tasks requires distrib-
uted authoring and annotation capabilities.
Although the Web supports distribution of read-
only agendas, task and interest lists, and similar
forms of organizational data, such data is useful for
coordination only when it is kept up to date, mir-
roring the enterprise’s actual state. Keeping up in
turn requires equal access and unfiltered input from
those participating or desiring to participate in the
tasks.

Formation and identification of constraints,
responsibilities, deliverables, plans, and interdepen-
dencies requires the linking of people, tasks,
processes, and the artifacts created by these processes.
A hypermedia system can effectively model the
interdependencies within a virtual enterprise but
only if the resources used and created by the enter-
prise are represented as nodes within the hypermedia
system. Although this type of modeling was part of
Berners-Lee’s original vision for how the Web would
be used within organizations [2], the infrastructure
to support it has been neglected. Hypermedia capa-
bilities need to be equally available to formats other
than HTML, with data-specific handlers for operat-
ing on those formats—implying the need for first-
class links and component-based client architectures.
Likewise, accurate planning and identification of
existing resources often require the continued visi-
bility of older versions of artifacts and historical
plans, explaining the need for the versioning of
resources.

Support for execution of the process requires a
flexible interaction model and hypermedia ser-
vices unlimited by the traditional role of read-only
browsers. Participants in the process cannot be
expected to give up their favorite editors, compil-
ers, debuggers, or analogous tools in exchange for
an interface emasculated for the sake of generic-
ness. Instead, interfaces must allow a user’s
favorite tools to become part of the hypermedia
workspace.

Finally, establishing completion criteria requires
notification services. Completion of an activity today
can be indicated only by the appearance of a new
link, creation of a new artifact, or some external noti-
fication mechanism, such as email. Other partici-
pants might obtain status information by polling for
the existence of the artifact or link but become
entangled in a “keep checking back” syndrome.
With notification support built into the Web via
remote link authoring and first-class links, an event-
driven, task-oriented model is possible; participants
can be notified directly of key project events, as
needed and when appropriate. Similar to the way
some systems allow controlled exchanges by “grant-
ing the floor” to the current speaker, such events
could be broadcast, synchronized, and scheduled to
create policies for controlled information sharing
between distributed sites.

Conclusion

Just as the Web eliminated the barriers to personal
publishing, virtual enterprises have the potential to
eliminate many barriers between people working

COMMUNICATIONS OF THE ACM August 1998/Vol. 41, No. 8 91

toward a common goal. If initiating a collaborative
activity becomes as simple as exchanging authenti-
cation credentials, anyone with access to a Web
server could create a project with global scope. And,
due to the number of people with access to the Web,
almost any project could attract a sufficient number
of people sharing the same goal. Naturally, none of
these potential benefits will be realized easily; there
are many technical and social pitfalls associated with
improving the infrastructure of a system as large as
the Web. Nevertheless, we already see the powerful
abilities of virtual enterprises in examples like the
Apache project. People’s natural desire to collaborate
with one another will only increase as new opportu-
nities for collaboration develop.

The infrastructure improvements we described
are applicable to any virtual enterprise that includes
creation of complex information products as one of
its goals. We are especially motivated by their
potential to change the practice of software engi-
neering, which is fundamentally about the princi-
ples, methods, and processes involved in producing
complex information products. The Web could
enable these products and their associated processes
to be dispersed globally, while remaining highly
interconnected and dynamic. Software products
could be better designed and constructed, since
globally dispersed teams of specialists—designers,
analysts, programmers, testers, and others—could
be assembled in cyberspace. Chosen to fit the partic-
ular needs of a development task, such teams could
be assembled, even for short-term collaboration.
Enabling their products to stay linked to their devel-
opment environment would improve the quality of
both the software and its support organizations.
Moreover, such links could support optimization
based on observed usage patterns, in-field updates,
and ongoing quality assessment. Training in product
use and system maintenance and evolution could be
facilitated through links to process support in the
development environment. Software reuse could also
be greatly increased, as a convenient worldwide mar-
ketplace of software components develops.

While the Web has already proven its value in
many application domains and situations, the
changes we recommend will help yield an infra-
structure rich enough to support creation and main-
tenance of complex information products and
thereby the flourishing of virtual enterprises.

REFERENCES
1. Anderson, K. Integrating open hypermedia systems with the World-
Wide Web. In Proceedings of the 8th ACM Conference on Hypertext
(Southampton, England, Apr. 6-11). ACM Press, New York, 1997,

pp. 157-166.

92 August 1998/Vol. 41, No. 8 COMMUNICATIONS OF THE ACM

2. Berners-Lee, T. WWW: Past, present, and future. Computer 29, 10
(Oct. 1996), 69-77.

3. Carr, L., Hill, G., De Roure, D., Hall, W., and Davis, H. Open infor-
mation services. Comput. Networks ISDN Syst. 28, 7-11 (May 1996),
1,027-1,036.

4. Cutkosky, M., Tenenbaum, J., and Glicksman, J. Madefast: Collabora-
tive engineering over the Internet. Commun. ACM 39, 9 (Sept. 1996),
78-87.

5. Fielding, R. Maintaining distributed hypertext infostructures: Wel-
come to MOMspider’s web. Comput. Networks ISDN Syst. 27, 2 (Nov.
1994), 193-204.

6 Fielding, R., and Kaiser, G. The Apache HTTP server project. [EEE
Interner Comput. 1, 4 (July—Aug. 1997), 88-90.

7. Fielding, R., Gettys, J., Mogul, J., Nielsen, H., and Berners-Lee, T.
Hypertext Transfer Protocol — HTTP/1.1. Internet Proposed Stan-
dard RFC 2068, Univ. of California, Irvine, DEC, MIT/LCS, Jan.
1997.

. Gronbaek, K., and Trigg, R. Design issues for a Dexter-based hyper-
media system. Commun. ACM 37, 2 (Feb. 1994), 41-49.

9. Kaiser, G., Dossick, S., Jiang, W., and Yang, J. An architecture for
WWW-based hypercode environments. In Proceedings of the 19th Inter-
national Conference on Software Engineering (Boston, May 17-23). ACM
Press, New York, 1997, pp. 3-13.

10. Malone, T., and Crowston, K. What is coordination theory and how can
it help design cooperative work systems? In Proceedings of the Conference
in Computer-Supported Cooperative Work (Los Angeles, Oct. 7-10). ACM
Press, New York, 1990, pp. 357-370.

11. Maurer, H. HyperWave: The Next-Generation Web Solution. Addison-
Wesley, Harlow, England, 1996.

12. Slein, J., Vitali, F., Whitehead, E., and Durand, D. Requirements for a
distributed authoring and versioning protocol for the World-Wide
Web. Internet Informational RFC 2291, Xerox Corp., Univ. of
Bologna, Univ. of California, Irvine, Boston Univ., 1998.

o]

Roy T. FIELDING (fielding@ics.uci.edu) is a Ph.D. student in
information and computer science at the University of California,
Irvine, a coauthor of the proposed Internet standards for HTTP and
URL, and a cofounder of the Apache project.

E. JAMES WHITEHEAD, JR. (ejw@ics.uci.edu) is a Ph.D.

student at the University of California, Irvine, and chair of the Web
distributed authoring and versioning working group of the Internet
Engineering Task Force.

KENNETH M. ANDERSON (kanderso@ics.uci.edu) is a

member of the research staff in the Department of Information and
Computer Science at the University of California, Irvine, and the
designer and developer of the Chimera open hypermedia system.
GREGORY A. BOLCER (gbolcer@ics.uci.edu) is a Ph.D. student
in information and computer science at the University of California,
Irvine, and founder of Endeavors Technology, Inc.

PEYMAN OREIZY (peymano@ics.uci.edu) is a Ph.D. student in
information and computer science at the University of California,
Irvine.

RiICHARD N. TAYLOR (taylor@ics.uci.edu) is a professor of
information and computer science and director of the Irvine
Research Unit in Software at the University of California, Irvine.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 1998 ACM 0002-0782/98/0800 $5.00

