|CS 52: Introduction to Software
Engineering

Fall Quarter 2002
Professor Richard N. Taylor
Lecture Notes
Week 2: Principles and Requirements Engineering

http://www.ics.uci.edu/~taylor/ICS_52_FQO02/syllabus.html

Copyright 2002, Richard N. Taylor. Duplication of course

material for any commercial purpose without written permission is prohibited.

iCs

University of California, Irvine

Recurring, Fundamental Principles

+ Rigor and formality
& Separation of concerns
— Modularity
— Abstraction
+ Anticipation of change
¢ Generality
¢ Incrementality

These principles apply to all aspects of software engineering

T Iniver 7 of Califarnia Irvine

Rigor and Formality

+ Creativity often leads to imprecision and inaccuracy

— Software development is a creative process

— Software development can tolerate neither imprecision nor inaccuracy
+ Rigor helps to...

— ...produce more reliable products

— ...control cost

— ...iIncrease confidentiality in products
& Formality is “rigor -- mathematically sound”

— Often used for mission critical systems

University of California, Irvine

Separation of Concerns

+ Trying to do too many things at the same time often leads to mistakes
— Software development is comprised of many parallel tasks, goals, and
responsibilities
— Software development cannot tolerate mistakes
& Separation of concerns helps to...
— ...divide a problem into parts that can be dealt with separately

— ...create an understanding of how the parts depend on/relate to each
other

University of California, Irvine

Example Dimensions of Separation

¢ Time
— Requirements, design, implementation, testing, ...
— Dial, receive confirmation, connect, talk, ...
¢ Qualities
— Efficiency and user friendliness
— Correctness and portability
¢ Views
— Data flow and control flow
— Management and development

University of California, Irvine

Modularity

& Separation into individual, physical parts
— Decomposability
» Divide and conquer
— Composability
» Component assembly
» Reuse
— Understanding
» Localization
& Special case of separation of concerns
— Divide and conquer “horizontally”
— “Brick”-effect

University of California, Irvine

Modularity

Big

Small + Small + Small + Small

University of California, Irvine

Abstraction

& Separation into individual, logical parts

— Relevant versus irrelevant details
» Use relevant details to solve task at hand
» Ignore irrelevant details

& Special case of separation of concerns
— Divide and conquer “vertically”
— “lceberg’-effect

University of California, Irvine

Abstraction

Big

University of California, Irvine

Anticipation of Change

+ Not anticipating change often leads to high cost and unmanageable software
— Software development deals with inherently changing requirements

— Software development can tolerate neither high cost nor unmanageable
software

+ Anticipation of change helps to...
— ...create a software infrastructure that absorbs changes easily
— ...enhance reusability of components
— ...control cost in the long run

University of California, Irvine

Generality

& Not generalizing often leads to continuous redevelopment of similar
solutions

— Software development involves building many similar kinds of
software (components)

— Software development cannot tolerate building the same thing over
and over again

¢ Generality leads to...
— ...iIncreased reusability
— ...Increased reliability
— ...faster development
— ...reduced cost

University of California, Irvine

Incrementality

+ Delivering a large product as a whole, and in one shot, often leads to
dissatisfaction and a product that is “not quite right”

— Software development typically delivers one final product

— Software development cannot tolerate a product that is not quite right or
dissatisfies the customer

+ Incrementality leads to...
— ...the development of better products
— ...early identification of problems

— ...an increase in customer satisfaction
» Active involvement of customer

University of California, Irvine

Cohesion

VERSUS

University of California, Irvine

Coupling

-\ /

University of California, Irvine

A Good Separation of Concerns, 1

Provided Interface

Implementation

Required Interface

Provided Interface Provided Interface Provided Interface

Implementation Implementation Implementation

Required Interface Required Interface Required Interface

Provided Interface Provided Interface

Implementation || Implementation

Required Interface Required Interface

Provided Interface Provided Interface Provided Interface

Implementation || Implementation || Implementation

Required Interface Required Interface

Required Interface

Abstraction through the use of provided/required interfaces
Modularity through the use of components

Low coupling through the use of hierarchies

High cohesion through the use of coherent implementations

Universitv of Califordlia, Irvine

A Good Separation of Concerns, 2

Provided Interface

Implementation

Required Interface

Provided Interface

Provided Interface

Implementation Implementation

Required Interface Required Interface

Provided Interface

Provided Interface Implementation Provided Interface
Implementation Implementation
Required Interface

Required Interface

Provided Interface Provided Interface

Implementation Implementation

Required Interface Required Interface

Abstraction through the use of provided/required interfaces
Modularity through the use of components

Low coupling through the use of a central "blackboard”
High cohesion through the use of coherent implementations

Universitv of Califordlia, Irvine

Benefit 1: Anticipating Change

Provided Interface

Implementation

Required Interface

Provided Interface

Implementation

Provided Interface

Implementation

Required Interface

Required Interface

Provided Interface
Implementation

Provided Interface Provided Interface

Implementation Implementation

Required Interface Required Interface

Provided Interface Provided Interface

Implementation Implementation

Required Interface Required Interface

Separating concerns anticipates change

niversity of California, Irvine

Benefit 1: Anticipating Change

Provided Interface

Implementation

Required Interface

T
Implementation Implementation

Required Interface Required Interface

Provided Interface
Implementation

Implementation
Required Interface

Provided Interface

Implementation

Required Interface

Provided Interface Provided Interface

Implementation Implementation

Required Interface Required Interface

Separating concerns anticipates change

niversity of California, Irvine

Benefit 2: Promoting Generality

Provided Interface Provided Interface

Implementation Implementation

Required Interface Required Interface

Provided Interface Provided Interface Provided Interface
Implementation Implementation Implementation

Required Interface Required Interface Required Interface

Provided Interface Provided Interface Provided Interface

Implementation || Implementation || Implementation

Required Interface Required Interface Required Interface

Provided Interface Provided Interface

Implementation || Implementation

Required Interface Required Interface

Separating concerns promotes generality

TTniw‘ﬂif\Jof California, Irvine

Benefit 3: Facilitating Incrementality

Provided Interface

Implementation

Required Interface
Provided Interface Provided Interface

Implementation Implementation

Required Interface Required Interface

Provided Interface

Provided Interface Implementation . Provided Interface
Implementation Implementation

Required Interface Required Interface

Provided Interface Provided Interface
Implementation Provided Interface Provided Interface Implgmentatlon
Required Interface Implementation Imblementation Required Interface

Required Interface Required Interface

Separating concerns facilitates incrementality

I Iniverqityv of lifomia, Irvine

Recurring, Fundamental Principles

+ Rigor and formality
& Separation of concerns
— Modularity
— Abstraction
+ Anticipation of change
¢ Generality
¢ Incrementality

These principles apply to all aspects of software engineering

T Iniver 7 of Califarnia Irvine

ICS 52 Life Cycle

Requirements
phase

Implementation

phase
Teéﬁng
phase

University of California, Irvine

Requirements Phase

¢ Terminology
—Requirements analysis/engineering
» Activity of unearthing a customer’s needs

—Requirements specification
»Document describing a customer’s needs

University of California, Irvine

Requirements Analysis

& System engineering versus software engineering
— What role does software play within the full solution?
— Trend: software is everywhere

& Contract model versus participatory design

— Contract: carefully specify requirements, then contract out the
development

— Participatory: customers, users, and software development staff work
together throughout the life cycle

University of California, Irvine

Techniques for Requirements Analysis

+ Interview customer

& Create use cases/scenarios

& Prototype solutions

¢ Observe customer

+ |dentify important objects/roles/functions
¢ Perform research

& Construct glossaries

¢ Question yourself

Use the principles

University of California, Irvine

Requirements Specification

& Serves as the fundamental reference point between customer and software
producer

& Defines capabilities to be provided without saying how they should be
provided

— Defines the “what”
— Does not define the “how”

& Defines environmental requirements on the software to guide the
implementers

— Platforms
— Implementation language(s)
+ Defines software qualities

University of California, Irvine

Requirements Specification (the Document)

¢ Purpose

— Serve as the fundamental reference point between builder and buyer/'consumer "
(contract)

— Define capabilities to be provided, without saying how they should be provided
— Define constraints on the software
» e.g. performance, platforms, language
& Characteristics

— Unambiguous
» Requires precise, well-defined notations

— Complete: any system that satisfies it is acceptable

— Consistent
» There should be no conflicts or contradictions in the descriptions of the system facilities

— Verifiable (testable)

— No implementation bias (external properties only)
» "One model, many realizations"

University of California, Irvine

Sysem cuslomers

Specify the requirements and
read them o check that they
meet ther needs. They
specdy changes o the
reguremenis

Munagers

LUse the requirememnis
document o plan a bid for
the system and o plan the
sy dem development process

Syshem engmecrs

Use the requirements bo
understind what system 1x o
be developed

Jysbem test
EnEmEers

LUse the requirements to
develop valdubon fesis for
the sy=lem

Svsbem
i ke mia e
Empmeers

©lan Sommerville 2000

Use the requiremenis o help
undastand the svem and
the relationships between its

pirts

Software Engineering, 6th edition. Chapter 5

Users of a
requirements
document

Lifecycle Considerations

+ Serve as basis for future contracts
& Reduce future modification costs
— ldentify items likely to change
— Identify fundamental assumptions
+ Structure document to make future changes easy
— e.g. have a single location where all concepts are defined

University of California, Irvine

Recurring, Fundamental Principles

+ Rigor and formality
& Separation of concerns
— Modularity
— Abstraction
+ Anticipation of change
¢ Generality
¢ Incrementality

These principles apply to all aspects of software engineering

T Iniver 7 of Califarnia Irvine

Requirements Volatility

Customer Customer Cares
Doesn’t Care Measurable | Unmeasurable
Observable Requirement Requirement
to Users likely to change q
Goal
Not Observable | Implementation :
: Constraint
to Users detail

Figure 4-1: Matrix of Requirements Terminology

Source: David Alex Lamb, Software Engineering, Planning for Change
Prentice Hall, 1988 University of California, Irvine

Structure of a Requirements Specification

Introduction

Executive summary
Application context
Functional requirements
Environmental requirements
Software qualities

Other requirements
Time schedule

Potential risks

Future changes
Glossary

Reference documents

® & 6 6 6 6 6 6 O 6 0

University of California, Irvine

Content of a Requirements Specification

& Application context

— Describe the situations in which the software will be used. How will the
situation change as a result of introducing the software system?

— ldentify all things (objects, processes, other software, hardware, people)
that the system may, or will, affect.

— Develop an abstraction for each of those things, characterizing their
properties/behavior which are relevant to the software system. ("World
model.")

. siS
— How might this context change? Object.oﬂellted AnaIY
& Functional requirements ("features")
— Identify all concepts (objects) that the system provides to the users.

— Develop an abstraction for each of those concepts, characterizing their
properties and functions which are relevant to the user.
» What is the system supposed to do?
» What is supposed to happen when something goes wrong?

University of California, Irvine

Contents of a
Requirements Specification, cont..

+ Performance requirements: speed, space

+ Environmental requirements: platform, language, ...
& Subsets/supersets

+ Expected changes and fundamental assumptions

¢ Definitions; reference documents

University of California, Irvine

Non-functional requirement types

Mon-functional

recir ements

Proidud

requircmenls

O wanizatiomal
reqair ements

Exlermal

recuire meeks

Usubilny
requircments

Effsciency
W QUITCmE s

requircments

‘ Ferdomunce I

Spaue
FEQuEremends

©lan Sommerville 2000

Relibility

requiremenis

Paabiity
requiremerts

Inberoperability
reguirements

Ethzcal
reguirements

Deelavery
requEremyents

Implenmyentation
reir ements

Software Engineering, 6th edition. Chapter 5

Standands
regairemenks

Legislutive
rEqpirements

regairemenks

=

Sufeby
reqpirements

University of California, Irvine

World Model (OOA) versus Simple Input/Output
Characterizations as Reqt.s Specs

& The application context may change because of extrinsic factors
& The software system modifies the usage context

+ |/O is only meaningful in a specific context
+ "Input" and "output" may not be simple concepts

— Cruise control systems: many sensors, complex conditions, and timing
constraints only understandable in the application context

University of California, Irvine

Techniques for Requirements Analysis

¢ Conduct interviews
+ Build and evaluate prototypes
& Construct glossaries
& Separate concerns
& Focus on structure
— Abstraction and hierarchical decomposition
& Use precise notation (be careful with diagrams!)
& Ask yourself:
— Is it testable? Complete? Consistent?

University of California, Irvine

Canonical Diagram for Requirements Objects

Object Nam&

Description/Attributes

Operations it can be asked to perform /
*opl

e 0p2 Requests made of other objects

b e \
Nested objects (hierarchical structure)

Note: this will not be the appropriate notation for all application contexts!

University of California, Irvine

Mailing List Manager

Mailing Address

A place where mail can be delivered.
Name, Title, Street, City, State, ZipCode.

Operations:

(1) change any of the specified
attributes to have a particular value.
(2) read any or all of the attributes
(3) create/delete address

Note: are the values to the “puts” or received
from the “gets” strings? Only strings?

Mailing List

A list of Mailing_Address objects.
Name (of list)

Operations:

(1) Add Mailing_Address to list

(2) Delete Mailing_Address from list
(3) Sort list

(4) “Print” list

Note: What about querying the list to
see if a particular address --- or part of
one -- is already a member?

Note: requests between objects not shown. Neither the application
context nor the customer imposes any constraints on how these

objects may interact.

Storage

ASCII data can be stored. Number of
indices, size of data currently stored in
each index

An indexed set of places where chunks of

Operations:
(1) Fetch data at index
(2) Store data at index

Mailing List Set Ops

Supports manipulation of multiple
mailing lists.

Operations:

(1) Union of two lists

(2) Intersection of two lists

(3) Subtraction of one list from another

User Interface

What the human user interacts with in
order to manipulate or obtain any info.
Attributes: media and modes

Operations:
(1) Login (authenticate user)
(2) Parse and execute command

User Interface

What the human user interacts with in

M ailing List M anager, T ake 2 order to manipulate or obtain any info.

Is this better, or worse?

Mailing List

Attributes: media and modes

Operations:
(1) Login (authenticate user)
(2) Parse and execute command

A list of Mailing_Address objects.
Name (of list)

Operations:

(1) Add Mailing_Address to list

(2) Delete Mailing_Address from list
(3) Sort list

(4) “Print” list

(5) Combine (union) two lists

(6) Intersection of two lists --> list
(7) List2 = List1 - ListO

(8) Store list

(9) Retrieve list

Mailing Address

A place where mail can be delivered.
Name, Title, Street, City, State, ZipCode.

Storage

Operations:

(1) change any of the specified
attributes to have a particular value.
(2) read any or all of the attributes
(3) create/delete address

An indexed set of places where chunks of
ASCII data can be stored. Number of
indices, size of data currently stored in
each index

Operations:
(1) Fetch data at index
(2) Store data at index

Brake Controller

Cruise Control System

Determines state of braking system

Operations:
(1) Brake pedal depressed?
(2) ABS active?

Cruise Controller

Cruise Control Interface

Determines state of CC buttons and levers
under driver’s control

Operations:
(1) Get button state 1
(2) Get button state 2

hrottle Controlle

\ Operations:

Controls vehicle throttle

Operations:

(1) Apply throttle x%

(2) Get current throttle setting?
(3) Throttle pedal depressed?

3)...
Notes:
1. No transmission status?
2. CC doesn’t access axle
sensors directly
Vehicle Speed

Determine vehicle speed

Operations:

(1) Get speed

Front axle sensor

Determine rate of rotation of front axle

Operations:
(1) Get rotation rate

\

ear axle Sensor

Determine rate of rotation of rear axle

Operations:
(1) Get rotation rate
(2) Get rotation direction

Different Circumstances,
Different Techniques

+ Finite state machines
—telephony examples

—http://www.uclan.ac.uk/facs/destech/compute/s
taff/casey/integ/mscfsm.htm

+Numerical systems

—e.g. matrix inversion package

University of California, Irvine

Acceptance Test Plan

& An operational way of determining consistency between the requirements
specification and the delivered system

+ If the system passes the tests demanded by this plan, then the buyer has no
(legal) basis for complaint

& Develop a plan for conducting test to examine
— Functional properties
— Performance properties
— Adherence to constraints
— Subsets

¢ Representative technique: Property/test matrix: for each test case, what
properties/behaviors will be demonstrated?

University of California, Irvine

V-Model of
Development and Testing Activities

Specify Requirements

\

Requirements Review

Execute System Tests

System/Acceptance Tests Review

Design

Develop System/Acceptance Tests /

Design Review

Execute Integration Tests

Integration Tests
Review/Audit

Code

Develop Integration Tests /

Execute Unit Tests

Code Review

Unit Tests _/

Review/Audit

Develop Unit Tests

University of California, Irvine

Incremental Development of Tests

+ Acceptance test plan (and tests): develop during
requirements analysis

+Integration test plan (and test): develop during
system architecture and detailed design
specification

+Unit test plan (and tests): develop during
Implementation

University of California, Irvine

ICS 52 Requirements Analysis Exercise

+Develop a requirements specification and
acceptance test plan for the class project

¢ [As are the customer

University of California, Irvine

