
ICS 221 Software Analysis & Testing 11/26/02: #1

ICS 221:
Software Analysis

and Testing

Debra J. Richardson
Fall 2002

ICS 221 Software Analysis & Testing 11/26/02: #2

The Importance of “Testing”:
the Ariane 501 explosion

On 4 June 1996, about 40 seconds after initiation of the flight sequence
at an altitude of about 3700 m the launcher veered off its flight path,
broke up and exploded.

The Inertial Reference System (IRS) computer, working on standby for
guidance and attitude control, became inoperative. This was caused
by an internal variable related to the horizontal velocity of the
launcher exceeding a limit which existed in the software of this
computer.

The backup IRS failed due to the same reason, so correct guidance and
attitude information could no longer be obtained.

The limit was imposed according to the specification of the Ariane 4,
when the software was ported to the Ariane 5 --whose flight
specifications could exceed the imposed limit-- the specification was
not changed and no test was performed using Ariane 5 actual
trajectory data.

ICS 221 Software Analysis & Testing 11/26/02: #3

Why analysis and testing?

• Software is never correct no matter which
developing technique is used

• Any software must be verified
• Software testing and analysis are

– important to control the quality of the product
(and of the process)

– very (often too) expensive
– difficult and stimulating

ICS 221 Software Analysis & Testing 11/26/02: #4

Testing vs. Analysis

• Testing, as dynamic analysis, examines
individual program executions
– Results apply only to the executions examined

• In contrast, static analysis examines the text
of the artifact under analysis
– Proof of correctness, deadlock detection,

safety/liveness/other property checking, etc.
– Results apply to all possible executions

ICS 221 Software Analysis & Testing 11/26/02: #5

Young & Taylor, “Rethinking the
Taxonomy of Fault Detection
Techniques.” Proc. ICSE, May 1989.

Young & Taylor, “Rethinking the
Taxonomy of Fault Detection
Techniques.” Proc. ICSE, May 1989.

Problems with “Static/Dynamic”

• Example: Model Checking
– Evaluates individual executions/states
– But is applied to all executions/states

• Example: Symbolic Execution
– Examines source text
– But summarizes individual executions/paths

• “Folding/Sampling” is a better
discriminator

ICS 221 Software Analysis & Testing 11/26/02: #6

State-Space Exploration Pyramid

Optimistic Inaccuracy Pessimistic Inaccuracy

Effort

Threshold of
Decidability

Threshold of
Tractability

Sampling Folding

Infallible
Prover

Exhaustive
Testing

Path
Coverage

Mutation
Testing

Branch
Coverage

Statement
Coverage

Reachability
Analysis

Dataflow
Analysis

Complexity
Measures

ICS 221 Software Analysis & Testing 11/26/02: #7

Software Qualities

Dependability
properties

safety

robustness
correctness

reliability

Process oriented
(internal) properties

....

maintainability reusability
External properties

(that can be validated)

....
usability

user-friendliness

External properties
(that can be verified)

....timeliness

interoperability

modularity

....

ICS 221 Software Analysis & Testing 11/26/02: #8

Validation vs. Verification

Actual
Requirements

Formal descriptions

System

Validation Verification
Includes usability
testing, user
feedback

Includes testing,
inspections, static
analysis

ABC, “Validation, Verification and
Testing of Computer Software.” ACM
Computing Surveys, June 1982.

ABC, “Validation, Verification and
Testing of Computer Software.” ACM
Computing Surveys, June 1982.

ICS 221 Software Analysis & Testing 11/26/02: #9

Verification or validation?
depends on the property

... if a user press a request button at floor i,
an available elevator must arrive at floor i
soon…
fi this property can be validated,
but NOT verified
(SOON is a subjective quantity)

1 2 3 4 5 6 7 8

Example: elevator response

... if a user press a request button at floor i, an available elevator
must arrive at floor i within 30 seconds…
 fi this property can be verified
(30 seconds is a precise quantity)

ICS 221 Software Analysis & Testing 11/26/02: #10

You can’t always get what you want

Correctness properties are undecidableCorrectness properties are undecidable
the halting problem can be embedded in almost

every property of interest

Decision
Procedure

Property

Program
Pass/Fail

ever

ICS 221 Software Analysis & Testing 11/26/02: #11

Getting what you need ...

We must make the problem of verification We must make the problem of verification ““easiereasier””
by permitting some kind of inaccuracyby permitting some kind of inaccuracy

Perfect
verification

Optimistic inaccuracy
(testing)

Pessimistic inaccuracy
(analysis, proofs)

“Easier” properties

Young & Taylor, “Rethinking the
Taxonomy of Fault Detection
Techniques.” Proc. ICSE, May 1989.

Young & Taylor, “Rethinking the
Taxonomy of Fault Detection
Techniques.” Proc. ICSE, May 1989.

as close as possible to

ICS 221 Software Analysis & Testing 11/26/02: #12

The dimensions
are not orthogonal

• Sufficient properties ~ pessimistic analysis
– Analysis “false alarms” are in the area between

desired property and checkable property
• Necessary properties ~ optimistic analysis

– Faults go undetected if necessary conditions are
satisfied

Perfect
verification

Optimistic inaccuracy
(testing)

Pessimistic inaccuracy
(analysis, proofs)

“Easier” properties

ICS 221 Software Analysis & Testing 11/26/02: #13

Impact of software
on testing and analysis

• The type of software and its characteristics
impact in different ways the testing and
analysis activities:
– different emphasis may be given to the same

properties
– different (new) properties may be required
– different (new) testing and analysis techniques

may be needed

ICS 221 Software Analysis & Testing 11/26/02: #14

Different emphasis
on different properties

Dependability requirements
• they differ radically between

– Safety-critical applications
• flight control systems have strict safety requirements
• telecommunication systems have strict robustness requirements

– Mass-market products
• dependability is less important than time to market

• can vary within the same class of products:
• reliability and robustness are key issues for multi-user operating

systems (e.g., UNIX) less important for single users operating systems
(e.g., Windows or MacOS)

ICS 221 Software Analysis & Testing 11/26/02: #15

Different type of software may
require different properties

• Timing properties
– deadline satisfaction is a key issue for real time systems,

but can be irrelevant for other systems
– performance is important for many applications, but not

the main issue for hard-real-time systems
• Synchronization properties

– absence of deadlock is important for concurrent or
distributed systems, not an issue for other systems

• External properties
– user friendliness is an issue for GUI, irrelevant for

embedded controllers

ICS 221 Software Analysis & Testing 11/26/02: #16

Different properties require
different A&T techniques

• Performance can be analyzed using statistical
techniques, but deadline satisfaction requires exact
computation of execution times

• Reliability can be checked with statistical based
testing techniques, correctness can be checked
with test selection criteria based on structural
coverage (to reveal failures) or weakest
precondition computation (to prove the absence of
faults)

ICS 221 Software Analysis & Testing 11/26/02: #17

Different A&T for checking the same
properties for different software

• Test selection criteria based on structural coverage
are different for
– procedural software (statement, branch, path,…)
– object oriented software (coverage of combination of

polymorphic calls and dynamic bindings,…)
– concurrent software (coverage of concurrent execution

sequences,…)
– mobile software (?)

• Absence of deadlock can be statically checked on
some systems, require the construction of the
reachability space for other systems

ICS 221 Software Analysis & Testing 11/26/02: #18

Principles

Principles underlying effective software
testing and analysis techniques include:

•Sensitivity: better to fail every time than
sometimes

•Redundancy: making intentions explicit
•Partitioning: divide and conquer
•Restriction: making the problem easier
•Feedback: tuning the development process

ICS 221 Software Analysis & Testing 11/26/02: #19

Sensitivity:
better to fail every time than sometimes

• Consistency helps:
– a test selection criterion works better if

every selected test provides the same
result, i.e., if the program fails with one
of the selected tests, it fails with all of
them (reliable criteria)

– run time deadlock analysis works better if
it is machine independent, i.e., if the
program deadlocks when analyzed on one
machine, it deadlocks on every machine

ICS 221 Software Analysis & Testing 11/26/02: #20

Redundancy:
 making intentions explicit

• Redundant checks can increase the capabilities
of catching specific faults early or more
efficiently.
– Static type checking is redundant with respect to dynamic

type checking, but it can reveal many type mismatches earlier
and more efficiently.

– Validation of requirements is redundant with respect to
validation of final software, but can reveal errors earlier and
more efficiently.

– Testing and proof of properties are redundant, but are often
used together to increase confidence

ICS 221 Software Analysis & Testing 11/26/02: #21

Partitioned:
 divide and conquer

• Hard testing and verification problems can
be handled by suitably partitioning the input
space:
– both structural and functional test selection criteria

identify suitable partitions of code or specifications
(partitions drive the sampling of the input space)

– verification techniques fold the input space
according to specific characteristics, thus grouping
homogeneous data together and determining
partitions

ICS 221 Software Analysis & Testing 11/26/02: #22

Restriction:
 making the problem easier

• Suitable restrictions can reduce hard
(unsolvable) problems to simpler (solvable)
problems
– A weaker spec may be easier to check: it is impossible (in

general) to show that pointers are used correctly, but the
simple Java requirement that pointers are initialized before
use is simple to enforce.

– A stronger spec may be easier to check: it is impossible (in
general) to show that type errors do not occur at run-time in
a dynamically typed language, but statically typed
languages impose stronger restrictions that are easily
checkable.

ICS 221 Software Analysis & Testing 11/26/02: #23

Feedback:
 tuning the process

• Learning from experience:
– checklists are built on the basis of errors

revealed in the past
– error taxonomies can help in building better test

selection criteria

ICS 221 Software Analysis & Testing 11/26/02: #24

Goals of Testing

• Find faults (“Debug” Testing):
a test is successful if the program fails

• Provide confidence (Acceptance Testing)
– of reliability
– of (probable) correctness
– of detection (therefore absence) of particular

faults

ICS 221 Software Analysis & Testing 11/26/02: #25

Goals of Analysis

• Formal proof of software properties
– restrict properties (“easier” properties) or

programs (“structured” programs) to allow
algorithmic proof

• data flow analysis
• necessary ˜ sufficient conditions

– compromise between
• accuracy of the property
• generality of the program to analyze
• complexity of the analysis
• accuracy of the result

ICS 221 Software Analysis & Testing 11/26/02: #26

Analysis and Testing are Creative

• Testing and analysis are important, difficult, and
stimulating
– Good testing requires as much skill and creativity as

good design, because testing is design
• Testers should be chosen from the most talented

employees
– It is a competitive advantage to produce a high-quality

product at acceptable, predictable cost
• Design the product and process for test

– The process: for visibility, improvement
– The product: for testability at every stage

ICS 221 Software Analysis & Testing 11/26/02: #27

How to make the most of limited resources?

Fundamental “Testing” Questions

• Test Adequacy Metrics:
How much to test?

• Test Selection Criteria:
What should we test?

• Test Oracles:
Is the test correct?

ICS 221 Software Analysis & Testing 11/26/02: #28

Test Adequacy Metrics

• Theoretical notions of test adequacy are
usually defined in terms of adequacy
metrics/measures
– Coverage metrics
– Empirical assurance
– Error seeding
– Independent testing

• Adequacy criteria are evaluated with respect to
a test suite and a program under test

• The program under test is viewed in isolation

ICS 221 Software Analysis & Testing 11/26/02: #29

Test Selection Criteria

• Testing must select a subset of test cases that are likely to
reveal failures

• Test Criteria provide the guidelines, rules, strategy by
which test cases are selected
– requirements on test data -> conditions on test data -> actual test

data
• Equivalence partitioning

– a test of any value in a given class is equivalent to a test of any
other value in that class

– if a test case in a class reveals a failure, then any other test case in
that class should reveal it

– some approaches limit conclusions to some chosen class of faults
and/or failures

ICS 221 Software Analysis & Testing 11/26/02: #30

Test Oracles/Correctness

• A test oracle is a mechanism for verifying the
correct behavior of test execution
– extremely costly and error prone to verify
– oracle design is a critical part of test planning

• Sources of oracles
– input/outcome oracle
– tester decision
– regression test suites
– standardized test suites and oracles
– gold or existing program
– formal specification

ICS 221 Software Analysis & Testing 11/26/02: #31

Theory of Test Adequacy

• P is incorrect if it is inconsistent with S on some element of D
• T is unsuccessful if there exists an element of T on which P is

incorrect

Let
 P = program under test
 S = specification of P
 D = input domain of S and P
 T = subset of D, used as test set for P
 C = test adequacy criterion

Goodenough & Gerhart, “Toward a
Theory of Test Data Selection.” IEEE
TSE, Jan 1985.

Goodenough & Gerhart, “Toward a
Theory of Test Data Selection.” IEEE
TSE, Jan 1985.

ICS 221 Software Analysis & Testing 11/26/02: #32

Subdomain-Based Test Adequacy

• A test adequacy criterion C is subdomain-
based if it induces one or more subsets, or
subdomains, of the input domain D

• A subdomain-based criterion C typically
does not partition D (into a set of non-
overlapping subdomains whose union is D)

ICS 221 Software Analysis & Testing 11/26/02: #33

An Example: Statement Coverage

System Under
Test

Input Domain of
System Under Test

Adequate
Test Set

ICS 221 Software Analysis & Testing 11/26/02: #34

Elaine Weyuker, “Axiomatizing
Software Test Data Adequacy” IEEE
TSE, Dec 1986.

Elaine Weyuker, “Axiomatizing
Software Test Data Adequacy” IEEE
TSE, Dec 1986.

Test adequacy Axioms

• Applicability
– For every P, there is a finite adequate T

• Nonexhaustive applicability
– For at least one P, there is a non-exhaustive

adequate T
• Monotonicity

– If T is adequate for P and T Õ T¢, then T¢ is
adequate for P

• Inadequate Empty Set
– The empty set is not adequate for any P

ICS 221 Software Analysis & Testing 11/26/02: #35

Test Adequacy Axioms (cont.)

• Anti-extensionality
– There are programs P1 and P2 such that P1 º P2 and T is

adequate for P1 but not P2
• General Multiple Change

– There are programs P1 and P2 such that P2 can be
transformed into P1 and T is adequate for P1 but not P2

• Anti-decomposition
– There is program P with component Q such that T is adequate

for P, but the subset of T that tests Q is not adequate for Q
• Anti-composition

– There are programs P1 and P2 such that T is adequate for P1
and P1(T) is adequate for P2 but T is not adequate for P1;P2

ICS 221 Software Analysis & Testing 11/26/02: #36

Can do black-box testing of program by doing
white-box testing of specification

Functional and Structural
Test Selection Criteria

• Functional Testing
– Test cases selected based on specification
– Views program/component as black box

• Structural Testing
– Test cases selected based on structure of code
– Views program /component as white box

(also called glass box testing)

ICS 221 Software Analysis & Testing 11/26/02: #37

Black Box vs. White Box Testing

SELECTED
INPUTS

RESULTANT
OUTPUTS

INTERNAL
BEHAVIOR

DESIRED
OUTPUT

SOFTWARE
DESIGN

“BLACK BOX” TESTING

“WHITE BOX” TESTING

SELECTED
INPUTS

RESULTANT
OUTPUTS

DESIRED
OUTPUT

ICS 221 Software Analysis & Testing 11/26/02: #38

Objective: Cover the software structure

Structural (White-Box) Test Criteria

• Criteria based on
– control flow
– data flow
– expected faults

• Defined formally in terms of flow graphs
• Metric: percentage of coverage achieved
• Adequacy based on metric requirements for

criteria

ICS 221 Software Analysis & Testing 11/26/02: #39

Graph representation of control flow and
 data flow relationships

Flow Graphs

• Control Flow
– The partial order of statement execution, as

defined by the semantics of the language
• Data Flow

– The flow of values from definitions of a
variable to its uses

ICS 221 Software Analysis & Testing 11/26/02: #40

Subsumption and Covers

• C1 subsumes C2 if any C1-adequate T
is also C2-adequate
– But some T1 satisfying C1 may detect

fewer faults than some T2 satisfying C2
• C1 properly covers C2 if each

subdomain induced by C2 is a union of
subdomains induced by C1

ICS 221 Software Analysis & Testing 11/26/02: #41

all-statements

all-branches

boundary-interior
loop testing

min-max
loop testing

all-paths

all-defs

all-uses

all-DU-paths

all-p-uses all-c-uses

C1 C2
subsumes

Structural Subsumption Hierarchy
Clarke, Podgurski, Richardson, and
Zeil, “A Formal Evaluation of Data Flow
Path Selection Criteria”, IEEE TSE,
Nov 1989.

Clarke, Podgurski, Richardson, and
Zeil, “A Formal Evaluation of Data Flow
Path Selection Criteria”, IEEE TSE,
Nov 1989.

ICS 221 Software Analysis & Testing 11/26/02: #42

What makes a program Testable?

• Testing assumes existence of a test oracle
• Program is non-testable if it requires extra-

ordinary effort to determine test correctness
– Often the case

• One solution: specification-based test oracles
– Derive a test oracle from a specification

• Possibly only for critical properties
• Another argument for specification-based testing

Elaine Weyuker, “On Testing
Nontestable Programs” Computer
Journal, Nov 1982.

Elaine Weyuker, “On Testing
Nontestable Programs” Computer
Journal, Nov 1982.

D.J. Richardson, S.L. Aha, and
O.O’Malley, “Specification-based Test
Oracles…”, ICSE-14, May 1992.

D.J. Richardson, S.L. Aha, and
O.O’Malley, “Specification-based Test
Oracles…”, ICSE-14, May 1992.

ICS 221 Software Analysis & Testing 11/26/02: #43

Why Specification-based A&T?

• Specification states what system should do
– this information should be used to drive testing
– code-based testing detects errors of omission only by chance
– specification-based testing is more likely to detect errors of

omission
• Specifications enable formalized automation
• Specification-based analysis and testing

should augment code-based testing

J. Chang and D.J. Richardson, “Structural Specification-
based Testing…”, ESEC/ FSE’99, Sept 1999.
D.J. Richardson, O.O’Malley, and C. Tittle, “Approaches to
Specification-based Testing”, TAV-3, Dec 1989.

J. Chang and D.J. Richardson, “Structural Specification-
based Testing…”, ESEC/ FSE’99, Sept 1999.
D.J. Richardson, O.O’Malley, and C. Tittle, “Approaches to
Specification-based Testing”, TAV-3, Dec 1989.

To detect, diagnose, and eliminate defects
as efficiently and early as possible

ICS 221 Software Analysis & Testing 11/26/02: #44

Why Software Architecture-based A&T?

• SA-based A&T supports architecture-based and component-
based software development

• Software Quality Assurance:
– quality of the components and of their configurations
– analysis in the context of connections and interactions between

components
• Architecture Level of Abstraction:

– components, connectors and configurations are better understood and
intellectually tractable

– analysis may address both behavioral and structural
qualities, such as functional correctness, timing, performance, style,
portability, maintainability, etc

Analysis at a higher level of abstraction
makes the problem less complex

ICS 221 Software Analysis & Testing 11/26/02: #45

Specification-based Testing
Applied to Software Architecture

• During Requirements
– specify critical system behaviors requiring highest assurance

• Architecture-based Testing
– test structure for conformance to architectural design
– test system and/or components against specified properties

• Component-based Testing
– test components without knowing where they will be used
– test component-based system consisting of OTS components

• Operational testing
– monitoring of deployed software to perpetually verify behavior

against residual test oracles and assumptions made during
development-time analysis and testing

ICS 221 Software Analysis & Testing 11/26/02: #46

Argus-I: All-Seeing Architecture-based Analysis

• Iterative, evolvable analysis during architecture
specification and implementation

• Specification-based architecture analysis
– structural and behavioral analysis
– component and architecture levels
– static and dynamic techniques

• Current version
– architectures in the C2-style (structure specification)
– component behavior specification described by statecharts

• Future versions
– generalize to other architectural styles and ADLs

M. Vieira, M. Dias, D.J. Richardson,
“Analyzing Software Architectures with
Argus-I”, ICSE 2000, June 2000.

M. Vieira, M. Dias, D.J. Richardson,
“Analyzing Software Architectures with
Argus-I”, ICSE 2000, June 2000.

ICS 221 Software Analysis & Testing 11/26/02: #47

Coordinated Architectural Design and
Analysis with Argus-I

Architecture / Configuration Specification

Analysis

Interface Consistency

Simulation

Dependency Analysis

Create / Evolve
Reuse / Import

Model Checking

Argo/C2

ArchStudio

Architectural Element / Component Specification

Analysis

Reachability Analysis

Simulation

Create / Evolve
Reuse / Import

Consistency Analysis

Model Checking

Argo/UML

ArchStudio

Component Implementation

Analysis

State-Based Testing (DAS-BOOT)

Develop /
Deploy

Argo/UML

Architecture Implementation

Analysis

Monitoring & Debugging

Conformance Verification

Compose /
Integrate

ArchStudio

Post-Deployment Assessment
Monitoring (EDEM)

Data
Integration
(Knowledge

Depot)

Critiquing

Component Usage Analysis
(Retrospectors)

ICS 221 Software Analysis & Testing 11/26/02: #48

Selected Current Work

• Component-Based Dependence Analysis
– Static Analysis
– Based on Architecture Specification and Component

Implementation
– For testing, maintenance and evolution

• Software Architecture Monitoring
– Dynamic Analysis
– Based on Architecture Specification and Implementation
– For performance, conformance checking, understanding and

visualization

M. Vieira, D.J. Richardson, “Analyzing
Dependencies in Large Component-Based
Systems”, ASE 2002, Sept 2002.

M. Vieira, D.J. Richardson, “Analyzing
Dependencies in Large Component-Based
Systems”, ASE 2002, Sept 2002.

M. Dias, D.J. Richardson,” Architecting
Dependable Systems with xMonEve, an
extensible event description language for
monitoring”, ICSSEA 2002), Dec 2002.

M. Dias, D.J. Richardson,” Architecting
Dependable Systems with xMonEve, an
extensible event description language for
monitoring”, ICSSEA 2002), Dec 2002.

