
No Silver Bullet

Kenneth M. Anderson

Foundations of Software Engineering

CSCI 5828 - Spring Semester, 2001

Guest Lecture

March 14, 2001 © Kenneth M. Anderson, 2001 2

Today’s Lecture

• Discuss the No Silver Bullet paper

• Brook’s reflections on it after nine years

March 14, 2001 © Kenneth M. Anderson, 2001 3

No Silver Bullet

“There is no single development, in either
technology or management technique,
which by itself promises even one order-of-
magnitude improvement within a decade in
productivity, in reliability, in simplicity.”

-- Fred Brooks, 1986
i.e. There is no magical cure for the “software crisis”

March 14, 2001 © Kenneth M. Anderson, 2001 4

Why? Essence and Accidents

• Brooks divides the problems facing
software engineering into two categories
– essence

• difficulties inherent in the nature of software

– accidents
• difficulties related to the production of software

• Brooks argues that most techniques attack
the accidents of software engineering



March 14, 2001 © Kenneth M. Anderson, 2001 5

An Order of Magnitude

• In order to improve the development
process by a factor of 10
– the accidents of software engineering would

have to account for 9/10ths of the overall effort
– tools would have to reduce accidents to zero

• Brooks
– doesn’t believe the former is true and
– the latter is highly unlikely, even if it was true

March 14, 2001 © Kenneth M. Anderson, 2001 6

The Essence

• Brooks divides the essence into four
subcategories
– complexity

– conformity

– changeability

– invisibility

• Lets consider each in turn

March 14, 2001 © Kenneth M. Anderson, 2001 7

Complexity

• Software entities are amazingly complex
– No two parts (above statements) are alike

• Contrast with materials in other domains

– They have a huge number of states
• Brooks claims they have an order of magnitude

more states than computers (e.g. hardware) do

– As the size of the system increases, its parts
increase exponentially

March 14, 2001 © Kenneth M. Anderson, 2001 8

Complexity, continued

• Problem
– You can’t abstract away the complexity

• Physics models work because they abstract away
complex details that are not concerned with the
essence of the domain; with software the complexity
is part of the essence!

– The complexity comes from the tight
interrelationships between heterogeneous
artifacts: specs, docs, code, test cases, etc.



March 14, 2001 © Kenneth M. Anderson, 2001 9

Complexity, continued

• Problems resulting
from complexity
– difficult team

communication

– product flaws

– cost overruns

– schedule delays

– personnel turnover
(loss of knowledge)

– unenumerated states
(lots of them)

– lack of extensibility
(complexity of
structure)

– unanticipated states
(security loopholes)

– project overview is
difficult (impedes
conceptual integrity)

March 14, 2001 © Kenneth M. Anderson, 2001 10

Conformity

• A significant portion of the complexity
facing software engineers is arbitrary
– Consider a system designed to support a

particular business process

– New VP arrives and changes the process

– System must now conform to the (from our
perspective) arbritrary changes imposed by the
VP

March 14, 2001 © Kenneth M. Anderson, 2001 11

Conformity, continued

• Other instances of conformity
– Non-standard module or user interfaces

• Arbitrary since each created by different people
– not because a domain demanded a particular interface

– Adapting to a pre-existing environment
• May be difficult to change the environment
• however if the environment changes, the software

system is expected to adapt!

• It is difficult to plan for arbitrary change!

March 14, 2001 © Kenneth M. Anderson, 2001 12

Changeability

• Software is constantly asked to change
– Other things are too, however

• manufactured things are rarely changed
– the changes appear in later models
– automobiles are recalled infrequently
– buildings are expensive to remodel

• With software, the pressures are greater
– software = functionality (plus its malleable)

• functionality is what often needs to be changed!



March 14, 2001 © Kenneth M. Anderson, 2001 13

Invisibility

• Software is invisible and unvisualizable
– In contrast to things like blueprints

• here geometry helps to identify problems and optimizations of
space

– Its hard to diagram software
• We find that one diagram may consist of many overlapping

graphs rather than just one
– flow of control, flow of data, patterns of dependency, etc.

• This lack of visualization deprives the engineer
from using the brain’s powerful visual skills

March 14, 2001 © Kenneth M. Anderson, 2001 14

What about X?

• Brooks argues that past breakthroughs solve
accidental difficulties
– High-level languages
– Time-Sharing
– Programming Environments

• New hopefuls
– Ada, OO Programming, AI, expert systems,

“automatic” programming, etc.

March 14, 2001 © Kenneth M. Anderson, 2001 15

Promising Attacks on Essence

• Buy vs. Build
– Don’t develop software at all!

• Rapid Prototyping
– Brooks buys in

• Incremental Development
– grow, not build, software

• Great designers

March 14, 2001 © Kenneth M. Anderson, 2001 16

No Silver Bullet Refired

• Brooks reflects on the “No Silver Bullet”
paper, ten years later
– Lots of people have argued that there

methodology is the silver bullet
• If so, they didn’t meet the deadline of 10 years!

– Other people misunderstood what Brooks calls
“obscure writing”

• For instance, when he said “accidental”, he did not
mean “occurring by chance”



March 14, 2001 © Kenneth M. Anderson, 2001 17

The size of “accidental” effort

• Some people misunderstood his point with
the “9/10ths” figure
– Brooks doesn’t actually think that accidental

effort is 9/10th of the job
• its much smaller than that

– As a result, reducing it to zero (which is
probably impossible) will not give you an order
of magnitude improvement

March 14, 2001 © Kenneth M. Anderson, 2001 18

Obtaining the Increase

• Some people interpreted Brooks as saying
that the essence could never be attacked
– That’s not his point however; he said that no
single technique could produce an order of
magnitude increase by itself

• He argued that several techniques in tandem
could achieve that goal but that requires
industry-wide enforcement and discipline

March 14, 2001 © Kenneth M. Anderson, 2001 19

Obtaining the Increase, continued

• Brooks states
– “We will surely make substantial progress over

the next 40 years; an order of magnitude over
40 years is hardly magical…”


