
Component-Based Software

David S. Rosenblum
(ed. By Richard N. Taylor)

ICS 221
Fall 2002

Components and Reuse

n Develop systems of components of a
reasonable size and reuse them
n Repeated use of a component
n Adapting components for use outside their

original context

n Extend the idea beyond code to other
development artifacts

Goals of Reuse
n Goals of reuse are primarily economic

n Save cost/time/effort of redundant work, increase
productivity

n Decrease time to market
n Improve systems by reusing both the artifact and

the underlying engineering experience

n Economic goals achieved only when units of
reuse reach critical mass in size, capability
and uniformity

n But quality is another motivation

Historical Origins
n Idea originally due to Doug McIlroy

“Mass Produced Software Components”, 1968 NATO
Conference on Software Engineering

n Reusable components, component libraries

n Named as a potential “silver bullet” by Fred
Brooks (1987)

n Much research interest in the ’80s and ’90s
n Technical and managerial barriers have

prevented widespread success
n This led McIlroy to believe he had been wrong!

Musings on McIlroy…

n Granularity
n Degrees of variation
n Means of achieving specialization
n Means of composition, and reasoning

about composed systems

From Reuse to Component-
Based Development
n The term reuse is a misnomer

n No other engineering discipline uses the term
n Systematic design and use of standard

components is accepted practice in other
engineering disciplines

n The term will (eventually) become obsolete

n The important ideas behind reuse are
centered on the notion of components
n Design of components for use in multiple contexts
n Design of families of related components
n Design of components with standardized

packaging

Different Flavors of
Components
n (Reusable) Third-Party Software Pieces
n Plug-ins/Add-ins
n Applets
n Frameworks
n Open Systems
n Distributed Object Infrastructures
n Compound Documents
n Legacy Systems

Software Engineering
Implications

n Traditional software systems
n are developed by a single organization
n undergo a phased development process
n have a synchronized release schedule
n have a proprietary design and proprietary

component interfaces
n have a monolithic code base
n go through a painful evolution

Lifecycle Model of Traditional
Systems

RequirementsRequirements

DesignDesign

ImplementationImplementation

DeploymentDeployment

ValidationValidation

IntegrationIntegration

Component-Based
Development

A Possible Lifecycle Model for
Component-Based Software

System
Requirements

System
Requirements

System
Design

System
Design

System
Integration
System

Integration

Component
Validation

Component
Validation

…
…

“Integrate-Then-Deploy”
System

Validation
System

Validation

System
Deployment

System
Deployment

Another Possible
Lifecycle Model

System
Requirements

System
Requirements

System
Design

System
Design

System
Integration
System

Integration

Component
Deployment

Component
Deployment

…
…

“Deploy-Then-Integrate”

Implications of the Lifecycle
Models

A Challenge for Component-
Based Software: Testing

Unit testing alone won’t cut it

Nor will static analysis techniques

New dynamic analysis methods are
needed

Another View of the Problem

n Single vendor
n White-box artifacts

n code, specs, test cases,
analysis support, docs

n Multiple vendors
n Many black-box artifacts

n code, internal specs, test
cases, analysis support

Old-Style Development Component-Based Development

A (Partial) Solution:
Component Metadata

n Metadata = “data about data”
n Abstracted information about component internals and

development history
n Can be accessed via metamethods

n Component developer supplies metadata
n Application builder exploits metadata

n Design time and runtime

+

Component Developer Application
Builder

Development
Tools

Kinds of Metadata for
SE Tasks (I)
n Information on customizing the component

n Component properties
n Constraints on properties

n Information to integrate the component
n Interface syntax

n Java reflection, COM QueryInterface, CORBA DII
n Generated and consumed events

n Interface semantics
n Pre/post conditions and invariants
n Protocol specs

Many of these are “traditional” kinds of component metadata

Kinds of Metadata for
SE Tasks (II)
n Information to evaluate the component

n Static and dynamic metrics
n Cyclomatic complexity
n Test coverage achieved by developer

n QoS information
n Pricing/leasing information

n Information to test and debug the component
n Exported state machine representation
n Embedded test suite with coverage information
n Input/output dependencies at interface
n Dynamically computed coverage information

Kinds of Metadata for
SE Tasks (III)
n Information to analyze the component

n Summary flow information
n Control dependencies
n Data dependencies

n Graph models
n Call graph
n Control-flow graph

n Other information to support software
engineering tasks

An Example:
Program Slicing

n Suppose we want backward slice w.r.t. total at B
n Do saving, amount, and/or state of checking

influence balance at A?
n Dependency metadata for BankingAccount could tell us!

public boolean checkingToSavings (String cAccountCode
 String sAccountCode, float amount) {
 BankingAccount checking(cAccountCode);
 BankingAccount saving(sAccountCode);
 float balance, total;
 . . .
 checking.open();
 saving.open();
 . . .
 balance = checking.moveFunds(saving, amount); // A
 . . .
 total = balance + additionalFunds; // B
 . . .
}

Implementation Issues:
Metadata Format and Naming
n Need uniform format for text and non-text

metadata
n XML

n DTDs specify format

n Need uniform way of identifying purpose of
metadata to users
n MIME-like tags describe purpose

n Example: analysis/data-dependency for data flow
information

n Who establishes naming scheme?
n How do new metadata get established?

Implementation Issues:
Metadata Addition & Retrieval
n Need uniform way for a component to expose

its particular collection of metadata
n Two metamethods

n QueryMetadata
n Like QueryInterface in COM

n GetMetadata(tag, parameters)
n Selects metadata according to “tag”
n Returns statically-embedded or dynamically computed

value
n Could operate as an iterator for complex piecewise

metadata

Metadata and Testing of
Distributed Components
n Metadata can be used to aid application of

existing testing techniques in distributed
object systems

n But how should existing testing techniques be
changed for distributed components and
distributed object systems (and how can
metadata help)?
n Coverage criteria, reliability models
n Testing infrastructure
n Test monitoring and oracles

Conclusion

n Component-based software is the wave
of the future

n But there are many software
engineering challenges to address

n Metadata may provide a solution

