
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 12, DECEMBER 1998 1089

Inferring Declarative Requirements
Specifications from Operational Scenarios

Axel van Lamsweerde, Member, IEEE, and Laurent Willemet

Abstract—Scenarios are increasingly recognized as an effective means for eliciting, validating, and documenting software
requirements. This paper concentrates on the use of scenarios for requirements elicitation and explores the process of inferring
formal specifications of goals and requirements from scenario descriptions. Scenarios are considered here as typical examples of
system usage; they are provided in terms of sequences of interaction steps between the intended software and its environment.
Such scenarios are in general partial, procedural, and leave required properties about the intended system implicit. In the end such
properties need to be stated in explicit, declarative terms for consistency/completeness analysis to be carried out.

A formal method is proposed for supporting the process of inferring specifications of system goals and requirements inductively
from interaction scenarios provided by stakeholders. The method is based on a learning algorithm that takes scenarios as
examples/counterexamples and generates a set of goal specifications in temporal logic that covers all positive scenarios while
excluding all negative ones.

The output language in which goals and requirements are specified is the KAOS goal-based specification language. The paper
also discusses how the scenario-based inference of goal specifications is integrated in the KAOS methodology for goal-based
requirements engineering. In particular, the benefits of inferring declarative specifications of goals from operational scenarios are
demonstrated by examples of formal analysis at the goal level, including conflict analysis, obstacle analysis, the inference of higher-
level goals, and the derivation of alternative scenarios that better achieve the underlying goals.

Index Terms—Scenario-based requirements elicitation, inductive inference of specifications, goal-oriented requirements
engineering, specification refinement and analysis, lightweight formal methods.

——————————���F���——————————

1 INTRODUCTION

EQUIREMENTS ENGINEERING (RE) is concerned with the
elicitation of high-level goals to be achieved by the

envisioned system, the refinement of such goals and their
operationalization into specifications of services and con-
straints, and the assignment of responsibilities for the re-
sulting requirements to agents such as humans, devices,
and software.

One frequent problem requirements engineers are faced
with is that stakeholders may have difficulties expressing
goals and requirements in abstracto. Typical scenarios of
using the hypothetical system are sometimes easier to get in
the first place than some goals that can be made explicit
only after deeper understanding of the system has been
gained. This fact has been recognized in cognitive studies
on human problem solving [4] and in research on inquiry-
based RE [58]. We experienced it during the elicitation of
several systems, including a well-known RE benchmark
[12], [42], [14]. A recent study on a broader scale has con-
firmed scenarios as important design artifacts that are used
for a variety of purposes, in particular in cases when ab-
stract modeling fails [72].

A scenario is defined in this paper as a temporal sequence
of interaction events among different agents in the re-
stricted context of achieving some implicit purpose(s). The

agents are either environmental or software agents that
form the composite system to be developed [19], [22]. A sce-
nario captures just one particular, fragmentary instance of
behavior of such a system; it is internal or external depend-
ent on whether the agents are all software agents or involve
environmental agents as well. We will sometimes make a
distinction between positive and negative scenarios. The
former describe desired behaviors whereas the latter de-
scribe undesirable ones.

Our definition of scenarios agrees with the one adopted
by popular object-oriented modeling techniques such as
[68]; it also agrees with the kind of preliminary description
used in several industrial projects we have been involved in
and briefly discussed in the paper. Such scenarios have
strengths and weaknesses in supporting the requirements
engineering process.

•� On the positive side, they induce an informal, narra-
tive, and concrete style of description that focuses on
the dynamic aspects of hypothetical software-
environment interactions. They can therefore be de-
ployed easily by multiple stakeholders with different
background to build a shared view of the “visible part
of the iceberg.” Scenarios can be used for a wide vari-
ety of purposes in the requirements engineering life-
cycle—notably, to elicit requirements in hypothetical
situations [2], [58]; to help identify exceptional cases
[59]; to populate more abstract artifacts such as con-
ceptual models [68], [67], business rules [66], or glos-
saries [72]; to validate requirements in conjunction
with prototyping [70], animation [18], or plan genera-
tion tools [1], [22]; to reason about usability during

0098-5589/98/$10.00 © 1998 IEEE

R

²²²²²²²²²²²²²²²²

•� A. van Lamsweerde and L. Willemet are with the Département d’Ingénierie
Informatique, Université Catholique de Louvain, Place Sainte Barbe 2,
B-1348 Louvain-la-Neuve, Belgium. E-mail: {avl, lw}@info.ucl.ac.be.

Manuscript received 12 Jan. 1998; revised 25 Aug. 1998.
Recommended for acceptance by R. Kurki-Suonio and M. Jarke.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 107462.

1090 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 12, DECEMBER 1998

system development [9]; to generate acceptance test
cases [32]; to structure requirements through user-
oriented decomposition for subsequent work assign-
ment [72]; to support evolution [47]; to explain, illus-
trate and document requirements throughout the
software lifecycle; etc.

•� On the downside, scenarios are inherently partial; they
raise a coverage problem similar to test cases, making it
impossible to verify the absence of errors such as, e.g.,
incompleteness with respect to stated goals [73], [13] or
conflicts among goals/requirements [62], [45]. In-
stance-level trace descriptions also raise the combinato-
rial explosion problem inherent to the enumeration of
combinations of individual behaviors. Scenarios in the
form of interaction sequences are also procedural, thus
introducing risks of overspecification—such as, e.g.,
too strict dependencies between interaction events. The
description of interaction sequences between the soft-
ware and its environment forces decisions about the
precise boundary between them which may be prema-
ture in the early stages of requirements elicitation. Last
but not least, scenarios leave required properties about
the intended system implicit, in the same way as
safety/liveness properties are implicit in a program
trace; in the end such properties need to be made ex-
plicit in order to support analysis, negotiation/ com-
mitment, subsequent implementation, and evolution.

The objective of this paper is to address those deficiencies
by means of a formal method for generating explicit, de-
clarative, type-level requirements from operational, instance-
level scenarios in which such requirements are implicit, so as
to obtain formal specifications amenable to goal-based com-
pleteness analysis, conflict detection/resolution, exploration
of alternative system proposals, scenario improvement, and
specification refinement. To give a concrete example, this
method when applied to scenarios of user-ATM interaction
will generate formal assertions capturing declarative re-
quirements such as

“every card inserted shall be returned unless the password en-
tered remains invalid after three attempts.”

To do this, our method takes scenarios as examples/
counterexamples of intended system behavior, and induc-
tively infers a set of candidate goals/requirements that
cover all example scenarios and exclude all counterexample
scenarios. The basic technical hint is to generate temporal
logic formulas whose logical models include/exclude the
temporal sequences given as positive/negative scenarios.
The procedure roughly consists of the following steps re-
peated for each scenario provided:

•� map the events from the interaction sequence to op-
erations (possibly after having filtered out irrelevant
events);

•� generate state predicates along the interaction sequence
from conditions that define the elementary state transi-
tions produced by such operations in the domain;

•� inductively infer candidate temporal logic assertions
that are satisfied by the interaction sequence anno-
tated with such state predicates;

•� integrate the assertions thereby obtained with those
previously obtained from the scenarios considered be-
fore, by use of coverage/exclusion rules.

Unlike deductive inference, inductive inference is not
sound; the candidate assertions generated must, therefore, be
checked/refined by the requirements engineer for adequacy.

It is important to note that the scenarios we start from
are not requirements, even though they frequently appear
in preliminary material for requirements elicitation—much
the same way as examples of input-output pairs are not
specifications of a program; program traces do not describe
an algorithm; process traces do not describe a process
model; etc. When we talk about requirements elicitation in
this paper, we refer to the process of acquiring declarative
specifications of system goals and requirements from pre-
liminary material such as interview transcripts, documen-
tation available about the application domain, reports about
problematic issues with the existing system and opportuni-
ties for a new one, etc. The scenarios provided are assumed
to be found in such preliminary material; we do not cover
the process of eliciting and elaborating such scenarios—see,
e.g., [68], [34], [61], [64] for guidelines and research efforts
in that direction.

Scenarios are expressed here as event trace diagrams
[68], a notation chosen for its popularity and its simplicity.
The generated specifications are expressed in the KAOS
goal-based language [11], [42] so that a number of formal
reasoning techniques can be subsequently applied to the
specifications obtained—such as goal-based refinement and
completeness checking [13], obstacle analysis [44], conflict
detection/resolution [45], formal operationalization [11],
and design derivation [20]. Other reasoning techniques may
be applied as well to the goals inferred, such as qualitative
reasoning to determine the degree to which high-level goals
are satisficed/denied by lower-level goals/requirements
[54], or requirement/assumption monitoring for the recon-
ciliation of specifications and runtime behavior [21].

The paper is organized as follows. Section 2 provides
some necessary background material on the KAOS meth-
odology for goal-oriented RE. Section 3 discusses the inte-
gration of goal-based and scenario-based processes for re-
quirements elicitation and validation. Section 4 then pres-
ents our goal inference procedure by detailing the above
steps and illustrating them piecewise on a simple ongoing
example, namely, the ATM system borrowed from [68]. Sec-
tion 5 shows a complete run of the goal inference procedure
on a nontrivial exemplar, namely, the Lift system [50]. Sec-
tion 6 then discusses what the inferred formal specifications
can be used for, by showing various types of formal analy-
sis at the goal level that could not be carried out at the sce-
nario level. Section 7 reviews related efforts in scenario-
based RE and Section 8 concludes by discussing the current
status of this work together with future plans; the latter
include the implementation of a tool to support this method
and its application to the most complex scenarios we have
seen in the industrial projects we are involved in.

2 GOAL-BASED RE WITH KAOS
The KAOS methodology is aimed at supporting the whole
process of requirements elaboration—from the high-level

VAN LAMSWEERDE AND WILLEMET: INFERRING DECLARATIVE REQUIREMENTS SPECIFICATIONS FROM OPERATIONAL SCENARIOS 1091

goals to be achieved to the requirements, objects and op-
erations to be assigned to the various agents in the com-
posite system. Thus WHY, WHO, and WHEN questions are
addressed in addition to the usual WHAT questions ad-
dressed by standard specification techniques.

The methodology comprises a specification language, an
elaboration method, and meta-level knowledge used for
local guidance during method enactment. Hereafter we
introduce some of the features that will be used later in the
paper; see [11], [42], [13], [15] for details.

2.1 The Specification Language
The KAOS language provides constructs for capturing
various types of concepts that appear during requirements
elaboration.

2.1.1 The Underlying Ontology
The following types of concepts will be used in the sequel.

•� Object. An object is a thing of interest in the composite
system whose instances may evolve from state to
state. It is in general specified in a more specialized
way—as an entity, relationship, or event dependent on
whether the object is an autonomous, subordinate, or
instantaneous object, respectively. Objects are charac-
terized by attributes and invariant assertions. Inheri-
tance is of course supported.

•� Operation. An operation is an input-output relation
over objects; operation applications define state transi-
tions. Operations are characterized by pre-, post-, and
trigger-conditions. A distinction is made between do-
main pre/postconditions, which capture the elemen-
tary state transitions defined by operation applications
in the domain, and required pre/postconditions, which
capture additional conditions that need to strengthen
the domain conditions in order to ensure that the re-
quirements are met.

•� Agent. An agent is another kind of object which acts
as processor for some operations. An agent performs
an operation if it is effectively allocated to it; the agent
monitors/controls an object if the states of the object are
observable/controllable by it. Agents can be humans,
devices, programs, etc.

•� Goal. A goal is an objective the composite system
should meet. AND-refinement links relate a goal to a
set of subgoals (called refinement); this means that
satisfying all subgoals in the refinement is a sufficient
condition for satisfying the goal. OR-refinement links
relate a goal to an alternative set of refinements; this
means that satisfying one of the refinements is a suffi-
cient condition for satisfying the goal. The goal re-
finement structure for a given system can be repre-
sented by an AND/OR directed acyclic graph. Goals
concern the objects they refer to. They may conflict
with each other [45].

•� Requisite, requirement, and assumption. A requisite is a
goal that can be formulated in terms of states con-
trollable by some individual agent. Goals must be
eventually AND/OR refined into requisites assignable
to individual agents. Requisites in turn are AND/OR
operationalized by operations and objects through

strengthenings of their domain pre/postconditions
and invariants, respectively, and through trigger con-
ditions. Alternative ways of assigning responsible
agents to a requisite are captured through AND/OR
responsibility links; the actual assignment of an agent
to the operations that operationalize the requisite is
captured in the corresponding performance links. A
requirement is a requisite assigned to a software agent;
an assumption is a requisite assigned to an environ-
mental agent. Unlike requirements, assumptions can-
not be enforced in general [21], [44].

2.1.2 Language Constructs
Each construct in the KAOS language has a two-level ge-
neric structure: an outer semantic net layer for declaring a
concept, its attributes and its various links to other concepts
[8]; an inner formal assertion layer for formally defining the
concept. The declaration level is used for conceptual mod-
eling (through a concrete graphical syntax), requirements
traceability (through semantic net navigation) and specifi-
cation reuse (through queries) [15]. The assertion level is
optional and used for formal reasoning [11], [13], [44], [45].

The generic structure of a KAOS construct is instanti-
ated to specific types of links and assertion languages ac-
cording to the specific type of the concept being specified.
For example, consider the following goal specification for
an ATM system:

Goal Avoid [IllegalAccessToAccount]
 InstanceOf SecurityGoal
 Concerns ATM, Card, Account
 InformalDef An ATM should never give access to an account

 through a card unless the password entered to the ATM
 is correct

 RefinedTo PassWdAsked, PassWdEntered,
 PassWdChecked, AccessDecisionMade
 FormalDef " atm: ATM, c: Card, ac: Account
 À GivesAccess (atm, c, ac)
 W [LinkedTo (c, ac) Á OKPassWd (c, atm)]

The declaration part of this specification introduces a
concept of type “goal,” named Avoid [IllegalAccessToAccount],
prohibiting some property from ever holding (“Avoid”
verb), concerned with maintaining secure access to objects
by agents (“SecurityGoal” category), referring to objects
such as ATM or Account, refined into four subgoals, and de-
fined by some informal statement. (The semantic net layer
is represented in textual form in this paper for reasons of
space limitations; the reader may refer to [15] to see what
the alternative graphical concrete syntax looks like.)

The assertion defining this goal formally is written in a
real-time temporal logic inspired from [40]. The following
classical operators for temporal referencing are used [48]:

o (in the next state) � (in the previous state)

◊ (some time in the future) � (some time in the past)

o (always in the future) n (always in the past)

: (always in the future unless) U (always in the future until)

Formal assertions are interpreted over historical se-
quences of states. Each assertion is in general satisfied by
some sequences and falsified by some other sequences. The
notation:

(H, i) |= P

1092 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 12, DECEMBER 1998

is used to express that assertion P is satisfied by history H at
time position i (i ¶ T), where T denotes a linear temporal
structure assumed to be discrete in this paper. The seman-
tics of the above temporal operators is then defined as
usual [48], e.g.,

(H, i) |= o P iff (H, next(i)) |= P
(H, i) |= ◊ P iff (H, j) |= P for some j � i

(H, i) |= o P iff (H, j) |= P for all j � i

(H, i) |= P U Q iff there exists a j � i such that (H, j) |=
Q
 and for every k, i ≤ k < j, (H, k) |= P

(H, i) |= P :��Q iff (H, i) |= P U Q or (H, i) |= o P

Note that oP amounts to PW false. We will also use the
logical connectives Á (and), Â (or), À (not), � (implies),
� (equivalent), Æ (entails), Ã (congruent), with

P Æ Q iff o (P � Q),
P Ã Q iff o (P � Q)

(Note the implicit o-operator in every entailment.)
To handle real requirements we often need to introduce

real-time restrictions. We, therefore, introduce bounded
versions of the above temporal operators in the style advo-
cated by [40], such as

◊≤d (some time in the future within deadline d)

o≤d (always in the future up to deadline d)

The semantics of the real-time operators is then defined
accordingly, e.g.,

(H, i) |= ◊≤d P iff (H, j) |= P for some j � i with dist(i, j) ≤ d

(H, i) |= o<d P iff (H, j) |= P for all j � i such that dist(i, j) < d

where dist: T � T � D is a temporal distance function from
the temporal structure T to a metric domain D. A frequent
choice is

T: the set of naturals

D: {d | there exists a natural n such that d = n � u},
 where u denotes some chosen time unit

dist(i, j): | j - i | � u

Multiple units can be used (e.g., second, day, week); they
are implicitly converted into some smallest unit. For exam-
ple, the subgoal PassWdEntered above could be formally
specified by the assertion

" atm: ATM, c: Card
PwdAsked (atm, c) Æ È�d PwdEntered (c, atm)

In the assertion formalizing the goal Avoid [IllegalAccessTo-
Account] above, the predicate OKPassWd(c, atm) means that, in
the current state, an instance of the OKPassWd relationship
links variables c and atm of sort Card and ATM, respectively.
The OKPassWd relationship, ATM agent, and Card entity are
declared in other sections of the specification, e.g.,

Agent ATM
 CapableOf AskPassWd, CheckPassWd, DeliverCash, ...
 Has CashAvailable, CashGiven: Amount-$

Relationship OKPassWd
 Links Card {card 0:N}, ATM {card 0:N}
 DomInvar " c: Card, atm: ATM
 OKPassWd (c, atm) Ã
 ($u: User, x: Nat) [Types (u, atm, x, c) Á c.PassWd = x]

In the declaration of ATM, CashAvailable is declared as an at-
tribute of ATM whose values are in the range Amount-$.

As mentioned earlier, operations are specified formally
by pre- and postconditions in the state-based tradition [26],
[60], e.g.,

Operation DeliverCash
 Input Card {arg: c}, Amount-$ {arg: amount};
 Output CashDelivered
 PerformedBy ATM {arg: atm}
 DomPre À CashDelivered (c, atm, amount)
 DomPost CashDelivered (c, atm, amount)

It is important to note that the invariant defining the OK-
PassWd relationship is not a requirement, but a domain descrip-
tion in the sense of [35], [36], [74]; it specifies what password
correctness does precisely mean in the domain. The pre- and
postcondition of the operation DeliverCash above are domain
descriptions as well; they capture corresponding elementary
state transitions in the domain, namely, from a state where
the amount of cash is not delivered to a state where the
amount of cash is delivered (for some amount and card
specified among the arguments of the operation).

The software requirements are found in the terminal goals
assigned to software agents (e.g., the goal Avoid [IllegalAc-
cessToAccount] assigned to the ATM agent), and in the addi-
tional pre/postconditions that need to strengthen the corre-
sponding domain pre- and postcondition in order to ensure
all such goals [11], [42], e.g.,

Operation DeliverCash
 ...
 RequiredPre for Avoid [IllegalAccessToAccount]:
 OKPassWd (c, atm)
 RequiredPre for Maintain [LimitedAdvance]:
 amount � c.Limit

The distinction between domain conditions and require-
ments is very important to the method presented in this
paper; it is similar to the distinction between indicative and
optative properties in [36] and between NAT and REQ in
Parnas’ 4-variable model [57].

2.2 The Elaboration Method
Fig. 1 outlines the major steps that may be followed to sys-
tematically elaborate KAOS specifications from high-level
goals. (Section 3 will discuss how scenario-based elicitation
and validation enter into this process model.)

•� Goal elaboration. Elaborate the goal AND/OR structure
by defining goals and their refinement/conflict links
until assignable requisites are reached. The process of
identifying goals, defining them precisely, and relat-
ing them through positive/negative contribution
links is in general a combination of top-down and
bottom-up subprocesses [42]; offspring goals are
identified by asking HOW questions about goals al-
ready identified whereas parent goals are identified
by asking WHY questions about goals and operational
requirements already identified.

•� Object capture. Identify the objects involved in goal
formulations, define their conceptual links, and de-
scribe their domain properties by invariants.

VAN LAMSWEERDE AND WILLEMET: INFERRING DECLARATIVE REQUIREMENTS SPECIFICATIONS FROM OPERATIONAL SCENARIOS 1093

•� Operation capture. Identify object state transitions that
are meaningful to the goals. Goal formulations refer
to desired or forbidden states that are reachable by
state transitions; the latter correspond to applications
of operations. The principle is to specify such state
transitions as domain pre- and postconditions of op-
erations thereby identified, and to identify agents that
could have those operations among their capabilities.

•� Operationalization. Derive strengthenings on operation
pre/postconditions and on object invariants in order
to ensure that all requisites are met. Formal derivation
rules are available to support the operationalization
process [11].

•� Responsibility assignment. Identify alternative respon-
sibilities for requisites; make decisions among refine-
ment, operationalization, and responsibility alterna-
tives—with process-level objectives such as: reduce
costs, increase reliability, avoid overloading agents,
resolve conflicts; assign the operations to agents that
can commit to guaranteeing the requisites in the al-
ternatives selected. The boundary between the system
and its environment is obtained as a result of this pro-
cess, and the various requisites become requirements
or assumptions depending on the assignment made.

The steps above are ordered by data dependencies; they
may be running concurrently, with possible backtracking at
every step.

2.3 Using Meta-Level Knowledge
At each step of the goal-driven method, domain-
independent knowledge can be used for local guidance and
validation in the elaboration process.

•� A rich taxonomy of goals, objects and operations is
provided together with rules to be observed when
specifying concepts of the corresponding subtype. We
give a few examples of such taxonomies.

•� Goals are classified by pattern of temporal behav-
ior they require:

 Achieve: P ⇒ ◊ Q or Cease: P ⇒ ◊ ¬ Q
 Maintain: P ⇒ Q : R or Avoid: P ⇒ ¬ Q : R

•� Goals are also classified by category of require-
ments they will drive with respect to the agents
concerned (e.g., SatisfactionGoals are functional
goals concerned with satisfying agent requests; In-
formationGoals are goals concerned with keeping

agents informed about object states; SecurityGoals
are goals concerned with maintaining secure access
to objects by agents; other categories include
SafetyGoals, AccuracyGoals, etc.) These categories
refine well-known functional and nonfunctional
goal categories [38], [54].

Such taxonomies are associated with heuristic rules
that may guide the elaboration process, e.g.,

•� SafetyGoals are AvoidGoals to be refined in Har-
dRequirements;

•� ConfidentialityGoals are AvoidGoals on Knows
predicates.

•� Tactics capture heuristics for driving the elaboration
or for selecting among alternatives, e.g.,

•� Refine goals so as to reduce the number of agents
involved in the achievement of each subgoal;

•� Favor goal refinements that introduce less con-
flicts.

Goal verbs such as Achieve/Maintain and categories such
as Satisfaction/Information are language keywords that allow
users to specify more information at the declaration level;
for example, the declaration Avoid [IllegalAccessToAccount] al-
lows specifiers to state in a lightweight way that the situa-
tion named IllegalAccessToAccount should never hold, without
entering into the temporal logic level. (We avoid the classi-
cal safety/liveness terminology here to avoid confusions
with SafetyGoals.)

To conclude this short overview of KAOS, we would like
to draw the reader’s attention on the complementarity be-
tween the outer semiformal layer and the inner formal
layer. At the semantic net level, the user builds her re-
quirements model in terms of concepts whose meaning is
annotated in InformalDef attributes; the latter are
placeholders for the designation of objects and operations
[74] and for the informal formulation of goals, require-
ments, assumptions and domain descriptions. At the op-
tional formal assertion level, more advanced users may
make such formulations more precise, fixing problems in-
herent to informality [52], and apply various forms of for-
mal reasoning, e.g., for goal refinement and exploration of
alternatives [13], requirements derivation from goals [11],
obstacle analysis [44], conflict analysis [45], require-
ments/assumptions monitoring [21], or inference of goal
specifications from scenarios as shown in this paper. Our
experience with various industrial projects in which KAOS
was used reveals that the semiformal semantic net layer is
easily accessible to industrial users; the formal assertion
layer proved effective after the results of formal analysis by
trained users were propagated back to the semiformal se-
mantic net layer.

3 INTEGRATING SCENARIO-BASED AND GOAL-
BASED RE

The objective of this section is to put our goal inference
method into perspective by: 1) briefly reviewing some ex-
perimental facts grounding some of the principles, as-
sumptions and choices made in the paper, 2) introducing

Fig. 1. Goal-based requirements elaboration.

1094 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 12, DECEMBER 1998

the notation used to capture scenarios as interaction se-
quences, and 3) discussing the intertwining of goal-based
and scenario-based processes for requirements elicitation
and validation.

3.1 Experience with Scenarios
Recent studies have shown that scenarios are of widespread
use in the requirements engineering process [72]. Our own
experience suggests that scenarios play a decisive role in
eliciting, validating, and explaining requirements. In par-
ticular, scenarios are frequently used for requirements
elicitation. For example, a study of eight independent elici-
tation sessions for a meeting scheduler system showed that
the eight potential users interviewed all used fragmentary,
instance-level scenarios to illustrate features they would
expect from such a system, with an average of 3.6 scenarios
per subject [12]. This limited study also revealed that nega-
tive scenarios are sometimes a natural way of drawing the
interviewer’s attention on undesirable behaviors in excep-
tional situations.

The CEDITI technology transfer institute we are working
with has been contractually involved in various industrial
RE projects ranging over a wide variety of domains, in-
cluding a phone system on TV cable, a complex copy-
right/royalty distribution system, a system to support the
emergency service in a major hospital, a complex system to
support good delivery to retailers, and an air traffic control
system. Scenarios were found in all those projects. They
had commonalities and differences.

•� All of them were used as preliminary material from
interviews and existing documents to start the build-
ing of the domain and requirements models.

•� All of them were initially obtained in the form of nar-
rative text describing instance-level behavior of agents;
sentences were articulated by connectives indicating
temporal sequencing (such as “when”, “then”, “after”,
“until”), e.g.,
“When a new CNT is installed on the network, it will syn-
chronize itself on the RFLT signals by finding ... The CNT will
then look for its UAC and wait until it receives ... When the
RFLT detects this access transmission, it shall measure ...”

•� All of them were found to be partial. For example, the
admission of patients to the emergency service of an
hospital was described by scenarios covering a few
typical cases, such as the victim of a car accident, the
victim of an accident at school, or someone deceasing
during admission; such scenarios were by no means
intended to be exhaustive.

•� The temporal sequences were in general fairly small—
typically, below 10 interaction events; one notable ex-
ception was a scenario describing a complete flight
history and comprising 92 interaction events from
flight plan filing up to aircraft taxying to gate.

•� The elaboration of scenarios seemed not too difficult in
domains where event sequencing is somewhat built-in
(e.g., telecommunication protocols, flight tracking);
there were situations however where scenario elabora-
tion was difficult—e.g., in the copyright/royalty distri-
bution system an analogy with train freight dispatch-
ing through a network of stations had to be used to get
agreement from all parties concerned.

•� In many of the narrative sequences we have seen, the
goals and requirements underlying them were implicit
and not really visible in the first place.

Those various observations motivated our efforts to
support the process of eliciting declarative specifications of
goals from interaction sequences among agents in which
goals are left implicit. The formal method presented in this
paper can be seen as a systematization of an informal proc-
ess followed in a number of cases. This method does not
tackle two problems upstream to the inference of goal
specifications, namely,

•� the elaboration of narrative temporal sequences of
interactions,

•� the translation of such narratives into the diagram-
matic notation used as input language to our infer-
ence procedure.

Guidelines and research efforts to tackle those two prob-
lems can be found in, e.g., [68], [34], [61], [64].

3.2 Representing Scenarios
A scenario was defined in Section 1 as a temporal sequence
of interaction events among different agents in the re-
stricted context of achieving some implicit purpose(s).

To represent such scenarios we use the popular event
trace diagram notation [68]. Fig. 2 shows a scenario for an
ATM system. Each vertical line is the time line of one agent
instance, with time progressing from top to bottom. The label
of a time line specifies the type of the corresponding agent

Fig. 2. Event trace diagram for the ATM exemplar.

VAN LAMSWEERDE AND WILLEMET: INFERRING DECLARATIVE REQUIREMENTS SPECIFICATIONS FROM OPERATIONAL SCENARIOS 1095

instance. An arrow from a source line to a target line means
that the source agent generates an event to be perceived by the
target agent. The label of an arrow specifies the type of the
corresponding event instance. Attributes can be attached to
events to capture communication of information.

In the KAOS context, an arrow denotes a shared phe-
nomenon between two agent instances [35], [36], [74], corre-
sponding to the application of a KAOS operation performed
by the source agent and observed by the target agent.

We have chosen this semiformal notation here because it
is well-known, very simple, and widely used. There are
many more sophisticated representation schemes that are
richer in expressive power and structuring mechanisms sup-
ported, e.g., type-level languages based on regular expres-
sions [11], decision trees [32], statecharts [25], annotated use
cases [61], etc. A simpler, widely used graphical language
was felt more appropriate for visualizing instance-level in-
teraction sequences from the temporal narratives obtained
during the early stages of requirements elicitation; it turns
out that this language is also quite natural for depicting
models of temporal logic specifications for a reactive system.

Note that event traces cannot be really considered as re-
quirements, much the same way as input-output pair ex-
amples are not specifications or program traces are not al-
gorithm descriptions. They convey partial information at
the instance level in procedural form; they leave desired
properties such as safety/liveness requirements implicit.

3.3 Intertwining of Goal-Based and Scenario-Based RE
Fig. 3 shows a process model that integrates both goal-
based and scenario-based processes for requirements elici-
tation and validation. (As in Fig. 1, the arrows indicate data
dependencies.)

Fig. 3. Integrating goal-based and scenario-based RE.

The RE process typically starts with interviews and
analysis of available documentation to find out what the
domain is, what the problematic issues with the existing
situation are, and what the opportunities for a new system
might be. Goals and scenarios are elicited in parallel from
this raw material together with domain descriptions, or-
ganizational policies, and operational choices whose ra-
tionale is generally implicit.

Goals are refined top-down (through HOW questions)
and abstracted bottom-up (through WHY questions); this
gives rise to new subgoals and supergoals that populate the
goal AND/OR graph (see the left circle arrow in Fig. 3).

In parallel, scenarios are refined, translated into event
trace diagrams, and possibly cleaned up (see the right circle
arrow in Fig. 3; Section 4.2 will further discuss the issue of
scenario clean up).

Goal elaboration and scenario elaboration are inter-
twined processes; a concrete scenario description may
prompt the elicitation of the specifications of the goals un-
derlying it (see the right-to-left arrow in Fig. 3); conversely,
a goal specification may prompt the elaboration of scenario
descriptions to illustrate or validate it (see the left-to-right
arrow in Fig. 3).

The paper’s main focus is on the upper right-to-left, goal
elicitation arrow in Fig. 3. Sections 4 and 5 present and il-
lustrate a formal method to support that arrow. The objec-
tive there is to obtain from scenarios additional goal specifi-
cations that were not obtained from the goal refine-
ment/abstraction processes triggered by the goals initially
identified from interviews and existing documentation.

The additional goal specifications obtained from sce-
narios may be brand new; they may cover specifications
already found by the goal elaboration process (in which
case the elicitation just reduces to some form of validation);
they may also be conflicting with specifications found by
the goal elaboration process. In the latter case such conflicts
have to be detected and resolved (see Section 6.3) which
will result in new versions of goals and scenarios.

The additional goal specifications obtained from sce-
narios may in turn trigger new goal elaboration processes
(see the left circle arrow again in Fig. 3). In particular, more
abstract goals are obtained bottom-up either informally, by
asking WHY questions about the goals obtained from sce-
narios, or formally, by using formal refinement/abstraction
patterns bottom-up (see Section 6.1). In doing so one may
find better alternatives to achieve the more abstract goals
which in turn results in better subgoals and corresponding
scenarios (see the left-to-right arrow again in Fig. 3, and
Section 6.4). Formal obstacle analysis can also be applied to
the goal specifications obtained from scenarios to generate
new goals together with corresponding new scenarios (see
the left-to-right arrow again in Fig. 3, and Section 6.2).

The lower part of Fig. 3 shows that relevant objects and
operations are identified and defined from the goal formu-
lations, as outlined in Section 2.2, but also from the scenar-
ios elaborated, see Sections 4.3 and 4.4.

Goal operationalization and responsibility assignment
then proceed as explained in Section 2.2.

Fig. 3 does not show backtracking steps that may take
place in the overall process. For example, the goal opera-
tionalization step may require revisiting some of the sce-
narios to make them consistent with the choices made
there; likewise, different software-environment boundaries
may be chosen during the responsibility assignment step,
which may result in updated versions of the interaction
scenarios initially elaborated.

4 THE GOAL INFERENCE PROCEDURE

The procedure for inferring explicit, declarative goal speci-
fications inductively from scenarios is specified as follows:

1096 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 12, DECEMBER 1998

GIVEN a set of positive and negative scenarios described by
 event trace diagrams,

FIND a conjunctive set of goal specifications taking the form

 P Æ È Q (Achieve/Cease)

 P Æ QW R (Maintain/Avoid)
 that covers all positive scenarios
 and excludes all negative ones.

A positive scenario describes a desired system behavior
whereas a negative scenario describes an undesirable one. A
conjunctive set of specifications will be said to be admissible
with respect to a set of positive/negative scenarios if it cov-
ers all positive ones and excludes all negative ones [53], [41].

We first give an overall description of the procedure for
inferring an admissible set of specifications for all scenarios
provided; the various steps of this procedure are detailed
next and illustrated on our ongoing ATM example.

4.1 Overview of the Goal Inference Procedure
As discussed before, the procedure assumes that each sce-
nario is provided in the form of an event trace diagram. The
procedure iterates over such diagrams; at each iteration it
inductively infers temporal logic formulas satisfied by the
current diagram, and integrates the result to the conjunctive
set of formulas obtained at previous iterations so as to
make the resulting set of formulas cover/exclude the cur-
rent positive/negative scenario as well. The procedure can
be summarized as follows.

For each scenario ET provided do
begin
1. Clean up ET;
2. Map the events in ET onto corresponding operations;
3. Generate state predicates along ET’s time lines from the domain
 pre/postconditions of these operations;
4. Inductively infer temporal logic formulas that are satisfied by
 ET annotated with these state predicates:

•� For each time line, collect progress and invariance properties as
ground facts that causally relate state predicates along that line:

•� an event generated along the line produces a state transition
described by the following progress fact:

PRE-State � o POST-State

•� a condition R remaining true along the line from a state transi-
tion characterized by ST up to a point after which a condition N
becomes true produces the following invariance fact:

R Á ST � (R W N)

•� Generalize these facts over time and over instances of agents/
objects to obtain quantified goal specifications taking the form:

PRE-State Æ È POST-State (Achieve/Cease)
R Á ST Æ (R W N) (Maintain/Avoid)

5. Integrate these goal specifications to the admissible conjunctive set
 of specifications obtained at previous iterations so as to keep the
 resulting set admissible, using coverage/exclusion rules.
6. Submit the resulting specifications to the requirements engineer for
 approval/refinement;
7. Elicit or infer supergoals and subgoals from the goals obtained
end

The various steps of this iterative procedure are now de-
tailed.

4.2 Step 1: Cleaning Up Scenarios
Scenarios provided by multiple stakeholders may be quite
complex [72]. The same one-shot scenario may address dif-
ferent, unrelated concerns; irrelevant events sometimes en-
ter the picture; scenarios elicited from different viewpoints
may have different granularities of interaction. The more
complex a scenario is, the more candidate goal specifica-
tions will be generated by the procedure that are likely to
be irrelevant to some specific concern.

It is, therefore, often helpful to clean up scenarios in or-
der to facilitate the subsequent steps of goal inference. We
propose three clean up rules here; a richer set of such rules
is subject to future work.

Event aggregation. A sequence of consecutive interaction
events of the same type but with different attribute values,
between the same two agents and in the same direction, can
be aggregated into one single event whose attribute value is
the sequence of original attribute values.

Fig. 4 illustrates the use of this rule on the ATM example.

Fig. 4. Event aggregation.

Elimination of nonshared phenomena. It is often the case
that potential users of the intended system provide scenar-
ios that describe a hypothetical sequence of events they
would be involved in when using the system; among such
events there may be some irrelevant ones that do not corre-
spond to interactions with a software agent. The rule here is
to eliminate all events generated by the environment that
cannot (or need not) be observed by a software agent [74].

Fig. 5. Eliminating nonshared phenomena.

VAN LAMSWEERDE AND WILLEMET: INFERRING DECLARATIVE REQUIREMENTS SPECIFICATIONS FROM OPERATIONAL SCENARIOS 1097

Fig. 5 illustrates the use of this rule on the ATM exam-
ple. The event of printing the deposit amount on the en-
velope to be entered is eliminated because the ATM cannot
observe this event even though the event has to occur in
the environment.

Scope restriction. The principle here is to remove from
the scenario all interaction events that are not relevant to
some aspect of interest. We use the goal categories provided
by KAOS to make this principle more precise (see Section
2.3). A scenario perspective according to some goal category
is the subsequence of all interaction events in this scenario
that are relevant to this category.

The concept of perspective introduced here is somewhat
similar to the notion of perspective [46], viewpoint [56] or
view [43]; the main difference is that a scenario perspective
here is not associated with a process-level stakeholder but
with a product-level goal category.

Given some complex scenario one may thereby extract
its SatisfactionGoal perspective that shows the sequence of
interaction events to satisfy an agent’s request, its Informa-
tionGoal perspective that shows the sequence of interaction
events to keep an agent informed about object states, etc.
Fig. 6 shows the SecurityGoal perspective for the ATM sce-
nario given in Fig. 2.

Fig. 6. Scope restricion: the SecurityGoal perspective.

4.3 Step 2: Mapping Interaction Events to Operations
Given an event trace diagram, possibly pruned after appli-
cation of clean up rules, the next step is to introduce for
each interaction event in the diagram the operation which
the event is an application of. This step comprises three
substeps for each event:

•� Identify the operation whose applications define the
event type.

•� Make the operation’s inputs and outputs explicit and
introduce typed variables to name them; such in-
puts/outputs generally include attributes of the event
type, and the source and target agents involved in the
interaction.

•� Get the operation’s domain pre- and postcondition from
knowledge available about the domain, or by elicita-
tion from domain experts. As a result, the operation as-
sociated with the event is defined by a pair of formal
assertions together with their logical interpretation
specified in corresponding InformalDef attributes.

In the ATM example, a CardInsertion event will produce an
operation InsertCard with instance variables c and atm of sort
Card and ATM, respectively; the corresponding domain pre-
and postcondition are:

DomPre: À CardInserted (c, atm)
 InformalDef: card c is not inserted in ATM atm
DomPost: CardInserted (c, atm)
 InformalDef: card c is inserted in ATM atm

Note again that the domain pre-/postconditions only
capture the elementary state transition associated with the
operation in the domain, as explained in Section 2.1.2; they
do not capture the additional conditions that need to
strengthen them so as to ensure the goals/requirements on
the system. Steps 4 and 5 below are aimed to infer the
goals/requirements from which such strengthenings are
derived by operationalization (see Fig. 3 and Section 2.2).

The following lexical conventions will be used through-
out the paper for choosing names for event types, opera-
tions, and domain predicates: an event type will be denoted
by a noun; an operation whose applications define an event
type will be denoted by a verb with the same root as this
event type; and a predicate capturing the corresponding
event occurrence will be denoted by a past participle with
the same root. In the examples below, the logical interpre-
tations for formal operations and predicates named ac-
cording to this scheme will be provided only when they are
not straighforward.

4.4 Step 3: Generating State Predicates Along Time
Lines

The objective of this step is to determine the exact state of
each agent instance before and after each interaction.

A state predicate attached to some point on a time line is
an assertion that captures the state of the corresponding
agent at that point. We will represent state predicates by
condition lists annotating the event trace diagram at the cor-
responding points. The conditions in a list are implicitly
connected by conjunction; a list at some point of a time line
captures the state of the corresponding agent at that point.
(Condition lists have been used for a long time in STRIPS-
like planning systems [55].)

Fig. 7 shows condition lists for the ATM scenario re-
stricted to the security perspective in Fig. 6.

Condition lists are built in a systematic way for each
time line from the initial state of this line, the domain
pre/postconditions of operations corresponding to the
events along the line, and the insertion/deletion of condi-
tions so as to meet the frame and observability axioms. We
first discuss these axioms before explaining the process of
generating condition lists.

Frame axiom. A condition holding at some point on a
time line remains subsequently true along this line until an
interaction event is found whose operation has among its
effects to make it false.

The frame axiom essentially says that every condition P
that is true at some time point is down propagated to sub-
sequent time points until an operation is applied at some
later time point whose effect is to retract it, that is, whose
domain postcondition implies À P. (For a discussion of the
frame problem in requirements specification, see [7]).

1098 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 12, DECEMBER 1998

For example, the state predicate CardInserted(c, atm) on the
User time line in Fig. 7 is down propagated until the time
point where the CardReturn event is generated by the ATM
agent, because the domain postcondition of the operation
ReturnCard corresponding to the latter event is CardRe-
turned(atm, c) which implies À CardInserted(c, atm).

Observability axiom. Every interaction event generated
by a source agent must be observable by the corresponding
target agent.

This axiom essentially says that every interaction event
must be a shared phenomenon observable by both parties
[74]. It requires the postcondition of the operation corre-
sponding to the event generated by the source agent to be
consistently reified in terms of interface objects/attributes
that are observable by the target agent. Consistency means
here that the local postcondition and the reified version
need to be equivalent.

For example, the PasswordRequest event generated by the
source ATM agent must be observable by the target User
agent; this requires the reification of the local postcondition
PassWdRequested(atm, c) into a reified version such as

#Screen (atm, c, ‘type passwd’)

for observability of this postcondition by the User agent; the
local and observable versions of the postcondition need to
be equivalent:

#Screen (atm, c, “type passwd’) Ã PassWdRequested (atm, c)

Similarly, the AccessAuthorization event generated by the
source Bank agent must be observable by the target ATM
agent; this requires the reification of the postcondition

AccessAuthorized(atm, c) local to the Bank agent into a reified
counterpart such as

#OKAccess (atm, c),

observable by the ATM agent (see the bottom of the ATM time
line in Fig. 7), with

#OKAccess (atm, c) Ã AccessAuthorized (atm, c)

Other reified conditions in Fig. 7 are bound by equiva-
lences such as

#Screen (atm, “insert card’) Ã Init (atm)
#Screen (atm, c, “take card’) Ã CardReturned (atm, c)

Reified versions of the local postconditions CardInserted(c,
atm) and PassWdEntered(c, atm) on the User line are left im-
plicit on the ATM line in Fig. 7 for sake of clarity; they are
defined by similar equivalences:

#CardInserted (c, atm) Ã CardInserted (c, atm)
#PassWdEntered (c, atm) Ã PassWdEntered (c, atm)

The introduction of reified conditions is part of the con-
dition list generation process as we explain it now.

Generating condition lists. The condition lists along an
agent’s time line are produced systematically as follows.

•� The condition list before the first arrow contains the
predicate restricting the agent’s initial state, to be given
by the scenario provider (e.g., Ready(atm) for the ATM
agent and the reified counterpart #Screen(atm, ‘insert
card’) for the User agent).

•� A condition list before an outgoing arrow is extended
with the domain precondition corresponding to this
arrow.

•� A condition list after an outgoing arrow is extended with
the domain postcondition corresponding to this arrow;
the conditions negated by this postcondition are re-
moved from the list (if any; see the frame axiom).

•� A condition list after an ingoing arrow is extended
with the reified counterpart of the domain postcon-
dition corresponding to this arrow on the source
agent’s line (see the observability axiom); the condi-
tions negated by this extension are removed from
the list (if any).

The simple, frequent case of retraction from a condition list
occurs when the new condition to be added is the syntactic
negation of one already in the list. This happens throughout
the two lines in Fig. 7.

Sometimes laws of the form P Æ À Q have to be found in
the available domain theory for the retraction of Q to take
place when P is added to the list; e.g., domain laws like

PassWdRequested (atm, c) Æ À Init (atm)
CardReturned (atm, c) Æ À #OKAccess (atm, c)
#Screen (atm, c, “take card’) Æ À CardInserted (c, atm)

are responsible for the deletion of the conditions Init(atm),
#OKAccess(atm, c), and CardInserted(c, atm), respectively, when
the conditions on the left-hand side of these laws are added
to the corresponding condition lists (see Fig. 7).

Removing redundant information. Domain laws can
also be used to simplify state predicates containing re-
dundant subformulas. The following simplification rule is
frequently used:

Fig. 7. ATM scenario annotated with condition lists.

VAN LAMSWEERDE AND WILLEMET: INFERRING DECLARATIVE REQUIREMENTS SPECIFICATIONS FROM OPERATIONAL SCENARIOS 1099

if a state predicate has the form P Á P1
 and there is a domain law of the form P Æ P1
then this state predicate can be simplified to P

This rule was used on the ATM line in Fig. 7 to remove the
condition PassWdRequested(atm, c) when AccessRequested(atm, c)
is added to the list; the law used is

AccessRequested (atm, c) Æ PassWdRequested (atm, c)

The same simplification rule was used to remove the
precondition À CardReturned(atm, c) from the state predicate
before the CardReturn event; the law used is

#CardInserted (c, atm) Æ À CardReturned(atm, c)

4.5 Step 4: Inferring Temporal Logic Assertions from
a Single Scenario

An event trace diagram represents a temporal sequence of
interaction events. On the other hand, a temporal logic as-
sertion is satisfied by temporal sequences of states (see Sec-
tion 2.1.2). The problem is thus to find out meaningful can-
didate temporal logic assertions that are satisfied by the an-
notated agent lines in the event trace diagram considered.
“Meaningful” means here that the assertions should cap-
ture the operational goals underpinning the interactions
among agents. Such goals are requirements or assumptions
dependent on whether the satisfying temporal line corre-
sponds to a software or an environmental agent, respec-
tively (see Section 2.1.1).

The process of inferring temporal logic assertions from a
single event trace diagram has two steps: 1) for each time
line, progress and invariance properties about the state
transitions along that line are collected as ground facts that
causally relate conditions from condition lists, and 2) these
facts are then generalized over time and over instances of
agents and objects.

4.5.1 Collecting Facts about Agent Behavior
A state transition along an agent’s time line occurs when an
operation is performed by the agent, that is, when an outgo-
ing arrow is found along the line. The outgoing arrows along
an agent’s time line are, therefore, considered successively.

Progress properties. A progress property is obtained by
causally linking the agent’s states before and after an out-
going arrow. Let oa denote the current outgoing arrow; let
PRE-listoa and POST-listoa denote the condition lists right
before and right after oa, respectively. The corresponding
progress property capturing the state transition is obtained
simply by the fact:

PRE-listoa � o POST-listoa

where “�” denotes the logical implication in the current
state and “o“ denotes the “next” temporal operator (see
Section 2.1.2).

Let us consider the agent line in Fig. 7 that will give rise
to requirements, that is, the ATM line. The first outgoing ar-
row corresponds to the PasswordRequest interaction event.
We obtain the following fact:

#CardInserted(c, atm) Á Init(atm) Á À PassWdRequested(atm, c)
� o [PassWdRequested (atm, c) Á #CardInserted (c, atm)]

(In this fact, #CardInserted(c, atm) is the reified version on
the ATM side of the postcondition CardInserted(c, atm) local to

the User line and resulting from the previous CardInsertion
ingoing arrow.)

For the CardReturn outgoing arrow we similarly obtain:

#CardInserted (c, atm) Á #OKAccess (atm, c)
 � o CardReturned (atm, c)

It is worth noticing that progress properties have a
stimulus-response pattern. The condition lists above can be
rewritten as

PRE-listoa: Eoa Á Coa Á Preoa

POST-listoa: Coa Á Postoa

with

Eoa: reified postcondition of the operation corresponding
to the last ingoing event preceding the outgoing ar-
row oa on the agent’s line (Eoa captures the occur-
rence of this “stimulus” event),

Preoa: domain precondition of the “response” operation
corresponding to oa,

Postoa: domain postcondition of the “response” operation
corresponding to oa,

Coa: other conditions from the agent’s condition list left
unchanged by the response operation corresponding
to oa (Coa captures the agent’s “context” in which the
stimulus-response interaction takes place).

A factual progress property then takes the stimulus-
response form

Eoa Á Coa Á Preoa � o (Coa Á Postoa)

What the above reformulation captures is the only
change in the agent’s state that results from the specific re-
sponse to the input stimulus.

Invariance properties. An invariance property is obtained
by finding a state transition along the agent’s line at which
some condition in the agent’s condition list is true and re-
mains subsequently true along the time line up to some
point. The following fact is collected in such a situation:

R Á ST � (R W N)

where

ST is the condition becoming true as a result of the state
transition,

R is the condition remaining true up to some point on the
agent’s line,

N is the agent’s state predicate at the subsequent point
where R is no longer true,

W is the “unless” temporal operator (see Section 2.1.2).

The following invariance property is thereby obtained from
the ATM line:

#CardInserted (c, atm)
 � #CardInserted (c, atm) W CardReturned (atm, c)

For a richer ATM scenario that would include the initial se-
lection of language lg by the User agent, one would similarly
obtain the fact that the language does not change during
the entire transaction:

1100 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 12, DECEMBER 1998

#LanguageSelected (c, atm, lg)
 � #LanguageSelected (c, atm, lg) W Init (atm)

4.5.2 Generalizing Facts into Quantified Assertions
Progress/invariance facts along each time line are general-
ized as follows.

Generalization over time. The various facts collected so
far refer to some specific current state and some specific
subsequent ones. The first generalization step is, therefore,
twofold.

•� All assertions are generalized to hold over any state;
implications “�” are replaced by entailments “Æ”
everywhere (recall that P Æ Q iff o (P � Q)).

•� Progress assertions are generalized so as to refer not
necessarily to the next state but to some future one;
the “o” operator is replaced by the “È” operator in
every such assertion. The reason for this generaliza-
tion is that other scenarios to be integrated with the
one under consideration may refer to intermediate
interaction events and states taking place between the
occurrence of a stimulus and the occurrence of the
corresponding response. Requiring that every re-
sponse occurs immediately in the next state is thus
too restrictive (and in general unachievable) in view
of other interactions that may arise in-between from
other scenarios.

As a result of this first kind of generalization, two classes of
goal specifications are obtained for each time line:

•� Achieve/Cease goal specifications taking the form

PRE-listoa Æ È POST-listoa

•� Maintain/Avoid goal specifications taking the form

R Á ST Æ (R W N)

Generalization over instances. The specifications gener-
alized over time are still ground assertions about specific
instances of agents and objects. The next step is to generalize
them by introduction of quantifiers over instance variables.

All ground assertions are implications of the form

A [u] Æ Q [u, v]

where u denotes the variables occurring in the antecedent A
and v denotes the variables occurring in the consequent Q
but not in the antecedent A. The standard way of general-
izing such formulas is to take the form

 " u:
A [u] Æ $ v: Q [u, v] (standard generalization)

that is, the assertion is universally quantified over all in-
stance variables u occurring in the antecedent; its conse-
quent is existentially quantified over the instance variables
v that do not occur in the antecedent (existential quantifiers
$v may of course jump over subformulas in Q that contain
no occurrences of v). While it is reasonable to generalize by
stating that any u involved in A is involved in Q, it would
be much too strong to state that any possible v is unrestrict-
edly involved in Q.

Back to the ATM example, the goal specifications obtained
by generalization over time and over instances from the
facts collected in Section 4.5.1 include

"c: Card, atm: ATM
#CardInserted (c, atm) Á #OKAccess (atm, c)
 Æ È CardReturned (atm, c)

and

" c: Card atm: ATM, lg: AtmLanguage
#LanguageSelected (c, atm, lg)
 Æ #LanguageSelected (c, atm, lg) W Init (atm)

(Examples of existential quantification over variables not
occurring in the antecedent will appear in Section 5.)

The above generalization rule may be too strong for a
specific class of Achieve/Cease goal specifications, namely,
goals that capture the first response after a stimulus in which
the identity of the agent to respond is not specified. Such
goals have the general form:

E [...] Á C [..., ra, ...] Á Pre [..., ra, ...]
Æ È (C [..., ra, ...] Á Post [..., ra, ...])

where the instance variable ra for the responding agent
does not occur in the stimulus predicate E corresponding to
some ingoing arrow but occurs in the context condition C
and in the domain Pre/Post of the first outgoing arrow af-
ter this stimulus.

For such goals the standard generalization rule would yield

"... " ra:
E [...] Á C [..., ra ...] Á Pre [..., ra ...]
Æ È (C [..., ra, ...] Á Post [..., ra, ...])

Given that the stimulus predicate E does not mention
which target agent should respond, this specification as-
serts that every agent in a state satisfying C Á Pre should
eventually respond (e.g., every server in some required
state should respond to a client request that does not men-
tion a server identity). Such a requirement is most often
much too strong.

A first alternative generalization is to weaken the conse-
quent by introducing an existential quantification over the
responding agent:

"... " ra :
E [...] Á C [..., ra, ...] Á Pre [..., ra, ...]
Æ È $ ra’ : (C [..., ra’, ...] Á Post [..., ra’, ...]),

that is,

"... :
E [...] Á $ ra: (C [..., ra, ...] Á Pre [..., ra,])
Æ È $ ra’ : (C [..., ra’, ...] Á Post [..., ra’,])
 (weakened consequent generalization)

This specification now asserts that if there is some target
agent in some state required to respond to the stimulus then
there should eventually be a response by some target agent.
The first response thus includes the determination of an ap-
propriate responding agent left unspecified in the stimulus.

A second alternative generalization is to weaken the
above specification further by strengthening its antecedent:

"... :
E [...] Á " ra: (C [..., ra, ...] Á Pre [..., ra,])
Æ È $ ra’ : (C [...,ra,’ ...] Á Post [..., ra’,])

 (strengthened antecedent generalization)

VAN LAMSWEERDE AND WILLEMET: INFERRING DECLARATIVE REQUIREMENTS SPECIFICATIONS FROM OPERATIONAL SCENARIOS 1101

The latter specification asserts that if every agent is in
some state required to respond to the stimulus then there
should eventually be a response by some target agent.

Which generalization alternative to choose may depend
on the specific problem at hand. We have been unable so far
to state a precise selection heuristics; it seems that the
strengthened antecedent generalization is often needed
when the context condition C asserts a negative fact. In any
case the requirements engineer has to assess whether the
generalization may or not lead to a too strong or too weak
requirement (see the validation step 6 below).

The case of an unspecified responding agent cannot be
illustrated in our ATM ongoing example as any interaction
scenario always involves a specific ATM agent. We will il-
lustrate it in Section 5 in the scenario of a passenger calling
for a lift; in such a case it does not make sense to specify
which lift should be called, and the response to the stimulus
will include the determination of one responding lift
among all possible ones. The first generalization rule will
be applied to obtain the requirement that if there is a lift at
the passenger’s floor then there shall be a lift opening its
doors at that floor; the second generalization rule will be
used to obtain the requirement that if there is no lift at the
passenger’s floor or moving towards it then there shall be a
lift moving to that floor.

To conclude this section, we mention two heuristics that
can be used to infer additional goal specifications from a
single scenario.

Dataflow heuristics. If the occurrence of an interaction
event, formalized by a domain postcondition C, consumes an
attribute produced by the occurrence of a previous interac-
tion event, formalized by a domain postcondition P, then the
following assertion may be inferred from the scenario:

À P Á À C Æ (À C W P),

that is, no consumption is allowed unless a production oc-
curs. For the ATM scenario in Fig. 2, one would thereby ob-
tain the assertion that no cash be delivered unless the re-
quested amount is provided:

" c: Card, atm: ATM
À #AmountProvided (c, atm) Á À CashDelivered (atm, c)
Æ À CashDelivered (atm, c) W #AmountProvided (c, atm)

Asserting that every consumption requires a production
involves an existential quantification over productions; if P
contains occurrences of an instance variable referring to a
producer agent different from the consumer agent, then
these occurrences are existentially quantified (see examples
in Section 5).

Strengthened precondition heuristics. If a state predicate
S holds right before the generation of an interaction event,
formalized by a domain postcondition E, and is different
from the corresponding domain precondition D, then S
might be interpreted as an additional necessary condition
to the occurrence of this event:

E Æ � (D Á S)

For the ATM scenario in Fig. 7, one would thereby obtain the
following assertion:

" c: Card, atm: ATM
CardReturned (atm, c)
 Æ � [À CardReturned (atm, c) Á #OKAccess (atm, c)]

4.6 Step 5: Integration in the Admissible Set of
Specifications

The specifications obtained in step 4 of the goal inference
procedure cover the scenario currently considered. They
now need to be integrated into the conjunctive set of speci-
fications admissible for the scenarios previously consid-
ered, so that the resulting set of specifications remains ad-
missible; this means that the new conjunctive set of specifi-
cations must cover (exclude) all the positive (negative) sce-
narios considered so far, including the current one.

Let G denote the conjunctive set of goal specifications
admissible for all scenarios previously considered, and let F
denote the conjunctive set of specifications covering the
current scenario S.

Integrating a positive scenario. The logical models of G
are temporal sequences of states capturing behaviors that
are so far considered desirable in the envisioned system.
Requiring G to additionally cover S amounts to remove
from G’s set of models all behaviors that are incompatible
with S, that is, all behaviors that do not satisfy the specifi-
cation F covering S. For example, requiring G to cover the
scenario of the card being returned in case the access has
been authorized requires that all behaviors in which the
card is not returned in such a case be removed. The inte-
gration of a positive scenario is therefore achieved by inter-
secting G’s and F’s sets of models, that is, by conjoining G
and F. The new conjunctive set admissible for all scenarios
considered so far is thus simply G ° F.

Instead of just connecting all assertions from G and F by
an implicit conjunction, it may be desirable to “merge” as-
sertions from G and F that share some common prefix and
have the same pattern (Achieve/Cease or Maintain/Avoid).
Such assertions correspond to scenarios starting with a
common episode, that is, a common temporal subsequence
of interaction events. For the ATM Security perspective, the
normal CardReturn scenario in Fig. 6 and the exceptional
CardSwallow scenario will share an initial subsequence of
events starting with CardInsertion and ending with AccessRe-
quest. For the more extensive GetCash scenario in Fig. 2, the
companion ShowBalance scenario will share an initial subse-
quence of events starting with CardInsertion and ending with
?TransactionType. Common initial subsequences will also be
found for scenarios about account transfers, deposits, cash
requests exceeding card limit, cancellation requests, too
slow data entry, expired cards, cash unavailable, etc.

Let g and f denote two specifications from G and F hav-
ing the same goal pattern and obtained at steps 4 from sce-
narios sharing a common starting episode. Such specifica-
tions are obtained by syntactic search through G and F to
find out pairs of assertions whose antecedent shares a long-
est prefix conjunct, say P, in which the variables are quanti-
fied the same way; P captures some common state predi-
cate characterizing the common episode.

The integration of g and f is then achieved by means of
the following coverage rules:

1102 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 12, DECEMBER 1998

g: P Á G1 Æ È G2, f: P Á F1 Æ È F2
¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦

g Á f : P Æ [(G1 � È G2) Á (F1 � È F2)]

g: P Á G1 Æ (G2 W G3), f: P Á F1 Æ (F2 W F3)
¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦

g Á f: P Æ [(G1 � (G2 W G3)) Á (F1 � (F2W F3))]

Note that the inner implication in the conclusion part of
these rules is not an entailment. For the first rule, for exam-
ple, an inner entailment would prescribe the eventual
reaching of the target predicate G2 from any future state in
which G1 holds, without P necessarily holding, which is
not what the premise of the rule requires (recall that P Æ Q
means o (P � Q)). The soundness of the two rules above can
easily be proved using the proof theory of temporal logic.

Also note that the case where no g and f are found with a
common prefix conjunct in their antecedent corresponds to
the particular case where P = true in the rules above; the in-
tegration of scenarios with no common episode is achieved
just by conjunction of their goal assertions.

Let us illustrate the use of coverage rules in our ATM ex-
ample. Suppose that the new ShowBalance scenario has to be
integrated with the GetCash scenario shown in Fig. 2; one of
the goal specifications inferred for the latter at a previous
iteration of the procedure is

" c: Card, atm: ATM
#CardInserted (c, atm) Á #OKAccess (atm, c)
Á #TransactTypeEntered (c, atm, ‘getCash’)
Á À AmountAsked (atm, c)
 Æ È AmountAsked (atm, c)

The following goal specification is found to share a long-
est common prefix among those covering the ShowBalance
scenario:

" c: Card, atm: ATM
#CardInserted (c, atm) Á #OKAccess (atm, c)
Á #TransactTypeEntered (c, atm, ‘showBalance’)
Á À BalanceDisplayed (atm, c)
 Æ È BalanceDisplayed (atm, c)

The coverage rule then yields the following integrated
specification:

" c: Card, atm: ATM
#CardInserted (c, atm) Á #OKAccess (atm, c)
 Æ [#TransactTypeEntered (c, atm, ‘getCash’)
 Á À AmountAsked (atm, c)
 � È AmountAsked (atm, c)
 Á #TransactTypeEntered (c, atm, ‘showBalance’)
 Á À BalanceDisplayed (atm c)
 � È BalanceDisplayed (atm, c)]

Integrating a negative scenario. Requiring the admissi-
ble conjunctive set G to exclude the new negative scenario
S amounts to remove from G’s set of models all behaviors
that are compatible with S, that is, all behaviors that satisfy
the specification F covering S. For example, requiring G to
exclude the scenario of the card being returned after three
unsuccessful password trials requires that all behaviors in
which the card is returned in such a case be removed. The
integration of a negative scenario is therefore achieved by
conjoining G and À F which yields a global specification
taking the form

Ái gi Á (Âk À fk)

where the only À fk remaining are those whose conjunction
with all gi in G does not yield false. The remaining asser-
tions fk precisely capture what is undesirable in the negative
scenario.

Let f denote such an undesirable assertion remaining in
F, and let g denote a longest common prefix assertion from
G. The integration of g and f is then achieved by means of
exclusion rules such as

g: P Á G1 Æ È G2, f: P Á F1 Æ È (CT Á PostT)
¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦

g Á À f: P Æ [(G1 � È G2) Á (F1 � (CT Á À PostT) W F3))]

In this rule, P denotes the longest common prefix con-
junct, PostT denotes the domain postcondition resulting
from the undesirable event, CT denotes the conjunction of
all other conditions in the condition list remaining un-
changed by the undesirable state transition, and F3 denotes
a domain-dependent condition until which À PostT must
remain permanently true. Indeed, we want to precisely ex-
clude those state transitions in the context CT that would
result in PostT. The default case F3 = false corresponds to
requiring À PostT to hold forever; this could be too restric-
tive in some cases, and a weaker F3 may be elicited instead
(see the examples below).

In case the negative scenario is covered by a Maintain/
Avoid goal assertion, the following exclusion rule may be
used:

g: P Á G1 Æ (G2 W G3), f: P Á F1 Æ o F2
¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦

g Á À f: P Æ [(G1 � (G2 W G3)) Á (F1 � È À F2)]

Back to the ATM example again, suppose that the scenario
of the card being returned after three unsuccessful pass-
word trials has been given as negative scenario. For this
scenario step 4 of the goal inference procedure will generate
the following assertion covering it:

"c: Card, atm: ATM
#CardInserted (c, atm) Á #KO-PassWd (atm, c, 3)
 Æ È CardReturned (atm, c)

The following goal assertion was inferred in Section 4.5
for the related CardReturn scenario:

"c: Card, atm: ATM
#CardInserted (c, atm) Á #OKAccess (atm, c)
 Æ È CardReturned (atm, c)

The application of the first exclusion rule above to these
two assertions yields the following integrated goal asser-
tion to cover the previous positive scenario and exclude the
current negative one:

"c: Card, atm: ATM
#CardInserted (c, atm)
Æ [#OKAccess (atm, c) � È CardReturned (atm, c)
 Á #KO-PassWd(atm, c, 3) � À CardReturned (atm, c) W F3)]

In this case, the requirement of never returning the card
might be too strong, and the requirements engineer should
elicit the condition F3 for returning the card at some point.

Note that the role of negative scenarios is not to infer
brand new specifications but rather to avoid overgeneraliza-
tions from positive scenarios. The inductive learning of new

VAN LAMSWEERDE AND WILLEMET: INFERRING DECLARATIVE REQUIREMENTS SPECIFICATIONS FROM OPERATIONAL SCENARIOS 1103

specifications from negative examples won’t make much
sense in the context of requirements specification, because a
Closed World assumption doesn’t make sense in this context
(everything that is not explicitly excluded is not necessarily
admissible). Rather than a fairly large number of negative
scenarios enumerating prohibited behaviors, a limited num-
ber of well-chosen ones is expected to be provided as warn-
ings about specific exceptional situations [12], [59].

The goal inference procedure could be simplified by
turning negative scenarios into positive ones. Instead of a
negative scenario capturing some undesired behavior in
some specific situation, the stakeholder(s) providing the sce-
nario might be asked to provide an explicit positive scenario
instead in order to capture an alternative desirable behavior
in that specific situation. Experience however suggests that
negative scenarios are often provided in the first place when
exceptional situations need to be pointed out.

Note finally that our procedure is conceptually biased
when no additional domain knowledge is used; like any
learning technique, the admissible set of goal specifications
inferred is bound to the vocabulary used to describe the
scenarios given as examples [41].

4.7 Steps 6 and 7: Validation and Further Goal
Elicitation

Unlike deduction, inductive inference is not necessarily
sound; what is inferred is not necessarily true in the inter-
pretations of interest. The inferred assertions need therefore
to be validated. In our context, this means that the goals,
requirements and assumptions obtained at each iteration
over a new scenario need to be submitted to the require-
ments engineer and the stakeholders in order to check their
adequacy and adjust them if necessary.

As already mentioned in Section 4.5.2, a first validation
task is to check whether the generalized goal specifications
are not too strong or too weak.

A frequent adjustment is the temporal strengthening of
Achieve/Cease goals. The specifications obtained so far take
the form

P Æ È Q
Real-time restrictions most often need to be put on them,
leading to specifications taking the form

P Æ È�d Q

Examples of temporally strengthened goals obtained at
this stage include the following requirement on the ATM side:

"c: Card, atm: ATM
#CardInserted (c, atm) Á Init (atm) Á À PassWdRequested (atm, c)
Æ È�d [PassWdRequested (atm, c) Á #CardInserted (c, atm)],

and the following assumption on the User side:

"c: Card, atm: ATM
#Screen (atm, c, ’ type passwd’) Á À PassWdEntered (c, atm)
Æ È�e PassWdEntered (c, atm)

Once the goals inferred from scenarios have been
checked and possibly adjusted, new goals can be elicited
from them.

A first, informal technique consists in asking WHY
questions about the inferred goal to elicit more abstract su-
pergoals, and HOW questions to find out more concrete
subgoals and companion missing goals.

In our ongoing ATM example, a WHY question about the
real-time goals above would lead to the elicitation of
higher-level goals such as Achieve[PromptService] and
Achieve[ServiceAvailable]. Coming back to the requirement
limiting repeated password trials, a WHY question will
lead to the goal Avoid[PassWordSearched]. A new WHY
question about the latter will lead to the goal
Avoid[IllegalAccessToAccount].

An alternative, formal technique consists in using formal
goal refinement/abstraction patterns [13] bottom-up to ob-
tain more abstract supergoals, and top-down to obtain
more concrete subgoals and companion missing goals. We
come back to this formal technique in Section 6.1 below.

5 A COMPLETE EXAMPLE: THE LIFT SYSTEM

The purpose of this section is to show a complete run of the
goal inference procedure on a nontrivial benchmark. We
have chosen the Lift exemplar [50] for that purpose because
it involves some less trivial treatment of quantifiers. Some
conclusions and prospects for automated support of this
method will be discussed from there.

Fig. 8 shows a first scenario of interaction between a pas-
senger and a lift. This scenario has been given as a positive
one by stakeholders and represented by an event trace dia-
gram by the requirements engineer.

Fig. 8. Positive scenario for the lift exemplar.

5.1 Step 1: Cleaning Up Scenarios
There is no sequence of consecutive interaction events of
the same type; the event aggregation rule is therefore not
applicable.

We will assume that there is no wish here to restrict the
scope of the scenario to some specific concern. Alternatively,
the requirements engineer might restrict the scope of the
scenario in Fig. 8 to the SafetyGoal perspective by retaining
only those interactions concerned with the Passenger’s
safety during transportation.

1104 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 12, DECEMBER 1998

The interaction events in Fig. 8 are then reviewed suc-
cessively by the requirements engineer to check whether
each of them corresponds to a shared phenomenon be-
tween Passenger and Lift instances. The only questionable
events are Entrance and Exit. At first sight it seems that those
events could be dropped since there is no apparent need for
the lift to observe the passenger’s entrance/exit to/from
the lift. After checking with stakeholders it appears how-
ever that there are expectations on the system to manage lift
overloads. An additional sensor device has therefore to be
foreseen which will make the Entrance and Exit events ob-
servable by the Lift. These events are therefore not removed
from the scenario.

5.2 Step 2: Mapping Interaction Events to Operations
For each interaction event an operation is identified whose
application corresponds to it, e.g.,

LiftCall yields the operation CallLift,
Move yields the operation MoveTo,
FloorRequest yields the operation RequestFloor, etc.

The requirements engineer identifies the inputs and out-
puts of each such operation and introduces typed variables
to name them. Beside names for agent instances, names for
attributes of the corresponding event type may need to be
introduced among inputs/outputs. The above operations
become

CallLift (p, f) p: Passenger, f: Floor
MoveTo (l, f) l: Lift, f: Floor
RequestFloor (p, l, f) p: Passenger, l: Lift, f: Floor

The event types in the event trace diagram are then
decorated with the corresponding variables introduced (see
the arrow labels in Fig. 9).

The domain pre/postconditions capturing the elemen-
tary state transition produced by the operation are elicited
or retrieved from domain knowledge. The following condi-
tions are obtained:

CallLift (p, f) : DomPre: À LiftCalled (p, f)
DomPost: LiftCalled (p, f)

MoveTo (l, f) : DomPre: À Moving (l, f)
DomPost: Moving (l, f)

Arrive (l, f) : DomPre: À LiftAt (l, f)
DomPost: LiftAt (l, f)

OpenDoors (l) : DomPre: l.Doors = ‘closed’
DomPost: I .Doors = ‘open’

CloseDoors (l) : DomPre: l.Doors = ‘open’
DomPost: l.Doors = ‘closed’

Enter (p, l) : DomPre: À In (p, l)
DomPost: In (p, l)

Exit (p, l) : DomPre: ln (p, l)
DomPost: À In (p, l)

RequestFloor (p, l, f): DomPre: À FloorRequested (p, l, f)
DomPost: FloorRequested (p, l, f)

The logical interpretation of the predicate LiftAt(l, f) above is:
“lift l is stopped at floor f.”

5.3 Step 3: Generating State Predicates Along Time
Lines

Fig. 9 shows the result of applying the condition list gen-
eration procedure to each time line. The reified versions of

conditions propagated along ingoing arrows are not shown
there for sake of clarity. For observability from the Passen-
ger line of state transitions along the Lift line, the reified
conditions are defined by

#Moving (l, f) Ã Moving (l, f)
#LiftAt (l, f) Ã LiftAt (l, f)

In practice, those reified versions will be made concrete
through interface objects and predicates such as:

#Moving (l, f): l.Light(f) = ‘on’ Á f.Light = ‘on’
#LiftAt (l, f): l.Bell(l) = ‘on’ ;

we don’t go further into such user interface details here.
For observability from the Lift line of state transitions

along the Passenger line, the reified conditions are defined
by

#LiftCalled (p, f) Ã LiftCalled (p, f)
#In (p, l) Ã In (p, l)
#FloorRequested (p, l, f’) Ã FloorRequested (p, l, f’)

The condition lists generated successively from the ini-
tial state for the Lift line are:

1. À LiftAt (l, f)
2. À LiftAt (l, f), À Moving (l, f), #LiftCalled (p, f)
3. Moving (l, f), #LiftCalled (p, f)

In the list above, the condition À Moving(l, f) was retracted
because the condition Moving(l f) was inserted; the redundant
condition À LiftAt(l, f) was removed by use of the simplifica-
tion rule and the domain law

Moving (l, f) Æ À LiftAt (l, f)

Fig. 9. Annotated event trace diagram for the lift exemplar.

VAN LAMSWEERDE AND WILLEMET: INFERRING DECLARATIVE REQUIREMENTS SPECIFICATIONS FROM OPERATIONAL SCENARIOS 1105

After the Arrival event the generated condition list is

4. LiftAt (l, f), l.Doors = ‘closed,’ #LiftCalled (p, f)

The condition Moving(l, f) was retracted there because of the
contraposed version of the domain law above. Continuing
from there we get

5. LiftAt (l, f), l.Doors = ‘open,’ #LiftCalled (p, f)

where the condition l.Doors = ‘closed’ was retracted because
the condition l.Doors = ‘open’ was inserted. After generation of
the Entrance event from the Passenger line we get

6. LiftAt (l, f), l.Doors = ‘open,’ #In (p, l)

In the list above, the condition #LiftCalled(p,f) was retracted
because of the domain law

In (p, l) Æ À LiftCalled (p, f)

After the next, FloorRequest ingoing arrow on the Lift line we
get

7. LiftAt (l, f), l.Doors = ‘open,’ #FloorRequested (p, l, f’)

The redundant condition #In(p, l) was removed from this
list by application of the simplification rule and the do-
main law

FloorRequested (p, l, f’) Æ In (p, l)

From the next, DoorsClosing outgoing arrow on the Lift line
the remaining condition lists are successively:

 8. LiftAt (l, f), l.Doors = ‘closed,’ #FloorRequested (p, l, f’)
 9. l.Doors = ‘closed’, Moving (l, f’), #FloorRequested (p, l, f’)
10. l.Doors = ‘closed’, LiftAt (l, f’), #FloorRequested (p, l, f’)
11. l.Doors = ‘open’, LiftAt (l, f’), #FloorRequested (p, l, f’)
12. l.Doors = ‘open’, LiftAt (l, f’), À #In (p, l)

5.4 Step 4: Inferring Temporal Logic Assertions from
a Single Scenario

Collecting facts about agent behavior. The following ground
facts are successively collected along the Lift time line.

1)�Progress facts:
2-3. À LiftAt (l, f) Á À Moving (l, f) Á #LiftCalled (p, f)

 � o [Moving (l, f) Á #LiftCalled (p, f)]
3-4.� Moving (l, f) Á #LiftCalled (p, f)

 � o [LiftAt (l, f) Á l.Doors = ‘closed’ Á #LiftCalled (p, f)]
4-5.� LiftAt (l, f) Á l.Doors = ‘closed’ Á #LiftCalled (p, f)

 � o [LiftAt (l, f) Á l.Doors = ‘open’ Á #LiftCalled (p, f)]
7-8� LiftAt (l, f) Á l.Doors = ‘open’ Á #FloorRequested (p, l, f’)

 � o [LiftAt (l, f) Á l.Doors = ‘closed’
 Á #FloorRequested (p, l, f’)]

8-9. LiftAt (l, f) Á l.Doors = ‘closed’ Á #FloorRequested (p, l, f’)
 � o [l.Doors = ‘closed’ Á Moving (l, f’)
 Á #FloorRequested (p, l, f’)]
9-10. l.Doors = ‘closed’ Á Moving(l, f’) Á #FloorRequested(p, l, f’)
 � o [l.Doors = ‘closed’ Á LiftAt (l, f’)
 Á #FloorRequested (p, l, f’)]
10-11. l.Doors = ‘closed’ Á LiftAt (l, f’) Á #FloorRequested (p, l, f’)

 � o [l.Doors = ‘open’ Á LiftAt (l, f’)
 Á #FloorRequested (p, l, f’)]

2)� Invariance facts:

At state transition resulting in

ST: l.Doors = ‘open’

the predicate

R: LiftAt (l, f)

is true and remains true along the Lift’s time line up to some
point; at the subsequent point where R is no longer true the
state predicate

N: l.Doors = ‘closed’ Á Moving (l, f’) Á #FloorRequested (p, l, f’)

is true. Hence the invariance fact

LiftAt (l, f) Á l.Doors = ‘open’
� LiftAt (l, f) W
 [l.Doors = ‘closed’ Á Moving (l, f’) Á #FloorRequested (p, l, f’)]

which states that the lift at floor f with doors open remains
permanently at that floor unless it moves to the requested
floor with its doors being closed.

At state transition resulting in

ST: Moving (l, f’)

the predicate

R: l.Doors = ‘closed’

is true and remains true along the Lift’s time line up to some
point; at the subsequent point where R is no longer true the
state predicate

N: l.Doors = ‘open’ Á LiftAt (l, f’) Á #FloorRequested (p, l, f’)

is true. Hence the invariance fact

l.Doors = ‘closed’ Á Moving (l, f’)
 � l.Doors = ‘closed’ W
 [l.Doors = ‘open’ Á LiftAt (l, f’) Á #FloorRequested (p, l, f’)]

which states that the lift moving with doors closed keeps its
doors permanently closed unless the lift is at its destination
floor.

Generalizing facts into quantified assertions. The rules in
Section 4.5.2 for generalizing facts over time and over
agent/object instances yield the following goal specifications.

Achieve/Cease goals:

2-3. "p: Passenger, f: Floor
 #LiftCalled (p, f) Á (" l: Lift) (À LiftAt (l, f) Á À Moving (l, f))
 Æ È [($l: Lift) Moving (l, f) Á #LiftCalled (p, f)]

3-4. " p: Passenger, f: Floor, l: Lift
 #LiftCalled (p, f) Á Moving (l, f)
 Æ È [LiftAt (l, f) Á l.Doors = ‘closed’ Á #LiftCalled (p, f)]

4-5.. " p: Passenger, f: Floor, l: Lift
 #LiftCalled (p, f) Á LiftAt (l, f) Á l.Doors = ‘closed’
 Æ È [LiftAt (l, f) Á l.Doors = ‘open’ Á #LiftCalled (p, f)]

7-8. " p: Passenger, f, f’: Floor, l: Lift
 #FloorRequested (p, l, f’) Á LiftAt (l, f) Á l.Doors = ‘open’
 Æ È [LiftAt (l, f) Á l.Doors = ‘closed’
 Á #FloorRequested (p, l, f’)]

8-9. " p: Passenger, f, f’: Floor, l: Lift
 #FloorRequested (p, l, f’) Á LiftAt (l, f) Á l.Doors = ‘closed’
 Æ È [l.Doors = ‘closed’ Á Moving (l, f’)
 Á #FloorRequested (p, l, f’)]

9-10. " p: Passenger, f’: Floor, l: Lift
 #FloorRequested (p, l, f’) Á l.Doors = ‘ closed’ Á Moving (l, f’)
 Æ È [l.Doors = ‘closed’ Á LiftAt (l, f’)
 Á #FloorRequested (p, l, f’)]

1106 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 12, DECEMBER 1998

10-11. " p: Passenger, f’: Floor, l: Lift
 #FloorRequested (p, l, f’) Á l.Doors = ‘closed’ Á LiftAt (l, f’)

 Æ È [l.Doors = ‘open’ Á LiftAt (l, f’)
 Á #FloorRequested (p, l, f’)]

Note that the strengthened antecedent generalization
rule was chosen for the goal 2-3; the latter corresponds to
the first response to a stimulus LiftCall[p, f] in which no target
Lift agent is specified to respond to the stimulus. The re-
sulting assertion adequately prescribes a responding lift
move if there is no lift at the passenger’s floor or moving
towards it. The weakened consequent generalization rule
would have produced a too strong requirement here,
namely, that a responding move occurs if there is at least
one lift not at the passenger’s floor and not moving to-
wards it. Also note that the standard generalization rule has
been applied to the goal 7-8 corresponding to the first re-
sponse to a stimulus FloorRequest[p, l, f’], because there the
stimulus specifies the agent l to respond.

Maintain/Avoid goals:

" l: Lift, f: Floor
LiftAt (l, f) Á l.Doors = ‘open’
Æ LiftAt (l, f) W
 [l.Doors = ‘closed’ Á $ f’: Floor, p: Passenger
 Moving (l, f’) Á #FloorRequested (p, l, f’)]

" l: Lift, f’: Floor,
l.Doors = ‘closed’ Á Moving (l, f’)
Æ l.Doors = ‘closed’ W
 [l.Doors = ‘open’ Á LiftAt (l, f’) Á $ p: Passenger
 #FloorRequested (p, l, f’)]

Note that the standard generalization rule produced an
existential quantification over f’ in the first Maintain goal,
because this variable does not occur in the antecedent of
that goal, but a universal quantification over f’ in the second
Maintain goal, because f’ there appears in the antecedent.

All goal specifications above have been inferred from the
Lift line; they correspond therefore to requirements to be
achieved by the lift control software. The following goal
specifications, inferred similarly from the Passenger line,
yield assumptions:

" p: Passenger, f: Floor, l: Lift
LiftCalled (p, f) Á À In (p, l) Á #LiftAt (l, f) Á l.Doors = ‘open’
 Æ È [In (p, l) Á #LiftAt (l, f) Á l.Doors = ‘open’
 Á ($ f’: Floor) À FloorRequested (p, l, f’)]

" p: Passenger, f, f’: Floor, l: Lift
In (p, l) Á À FloorRequested (p, l, f’) Á #LiftAt (l, f) Á l.Doors = ‘open’
 Æ È [FloorRequested (p, l, f’) Á #LiftAt (l, f) Á l.Doors = ‘open’]

The first assumption states that a passenger who called a
lift will get into it when the lift is stopped at her floor with
the doors open; the second assumption states that a pas-
senger who entered a lift will indicate her destination floor
while the lift is stopped with the doors open.

Finally, we can use the dataflow heuristics from Section
4.5.2 to generate more specifications.

There is a producer-consumer relationship between the
LiftCall[p, f] event and the Arrival[l, f] event; the latter consumes
the attribute f produced by the former. We thus obtain:

" l: Lift, f: Floor
À ($ p: Passenger) #LiftCalled (p, f) Á À LiftAt (l, f)
 Æ [À LiftAt (l, f) W ($ p: Passenger) #LiftCalled (p, f)]

Note the existential quantification over the producer
agent, as explained in Section 4.5.2. There is a similar pro-
ducer-consumer relationship between the FloorRequest[p, l, f’]
event and the Arrival[l, f’] event; the latter consumes the at-
tribute f’ produced by the former. We thus obtain:

" l: Lift, f’: Floor
À ($ p: Passenger) #FloorRequested (p, l, f’) Á À LiftAt (l, f’)
 Æ [À LiftAt (l, f’) W ($ p: Passenger) #FloorRequested (p, l, f’)]

These specifications assert that unnecessary lift moves
should be avoided; the first states that a lift should move to
some floor only if called from that floor whereas the second
states that a lift should move to some floor only if requested
by an inside passenger. As we will see in Section 6.3, conflict
analysis applied to these declarative specifications reveals
that they are divergent [45]; the conflict will be resolved by a
straightforward weakening to cover both of them.

5.5 Step 5: Integration in the Set of Admissible
Specifications

Suppose that a second positive scenario is given in which
the lift is already at the floor where the passenger issues a
lift call (see Fig. 10).

Fig. 10. Next positive scenario for the lift exemplar.

The initial state on the Lift line is now LiftAt(l,f); step 4 will
directly infer

" p: Passenger, f: Floor, l: Lift
#LiftCalled (p, f) Á LiftAt (l, f) Á l.Doors = ‘closed’
 Æ È [LiftAt (l, f) Á l.Doors = ‘open’ Á #LiftCalled (p, f)]

The procedure when trying to match assertions to find out
longest common prefixes for the application of a coverage
rule will find that this specification is already among those
inferred from the previous scenario. (Alternatively, one
might introduce a preliminary stage of event trace analysis to
discover scenario overlaps—see discussion below.)

Suppose now that a negative scenario is provided next,
which resembles the normal scenario in Fig. 8 except that a
LiftOverload event is generated by the Lift agent between the
Entrance and FloorRequest events—in other words, a counter-
scenario is given in which the lift moves on in spite of being
overloaded.

The goal specifications derived from this negative sce-
nario by step 4 include:

VAN LAMSWEERDE AND WILLEMET: INFERRING DECLARATIVE REQUIREMENTS SPECIFICATIONS FROM OPERATIONAL SCENARIOS 1107

f : " l: Lift, p: Passenger, f, f’: Floor
 LiftAt (l, f) Á l.Doors = ‘open’ Á #FloorRequested (p, l, f’)
 Á Overloaded (l)
 Æ È [LiftAt (l, f) Á l.Doors = ‘closed’
 Á #FloorRequested (p, l, f’)]

(Note that the reified version #Overloaded(l) on the Passenger’s
side will typically correspond to an alarm ringing.)

The longest common prefix found for applying the ex-
clusion rule will correspond to an initial subsequence of
events starting with LiftCall and ending with Entrance. This
prefix is found in the goal specification 7-8 inferred from the
first positive scenario:

g: " l: Lift, p: Passenger, f, f’: Floor
 #FloorRequested (p, l, f’) Á LiftAt (l, f) Á l.Doors = ‘open’
 Æ È [LiftAt (l, f) Á l.Doors = ‘closed’
 Á #FloorRequested (p, l, f’)]

The integration by means of the first exclusion rule in Sec-
tion 4.6 yields the goal specification

" l: Lift, p: Passenger, f, f’: Floor
LiftAt (l, f) Á l.Doors = ‘open’ Á #FloorRequested (p, l, f’)
Æ[È (LiftAt (l ,f) Á l.Doors = ‘closed’ Á #FloorRequested(p, l, f’))
 Á Overloaded (l) � (LiftAt (l, f) Á l.Doors ≠ ‘closed’) W F3]

In case of lift overload, the specification above states that
the lift must remain at the same floor with the doors re-
maining open, unless something happens. One obvious
choice for F3 here is À In(p, l), that is, the passenger who
caused the overload by entering the lift should leave it in
order to get the doors closed and allow the lift to behave as
required by the rest of the specification.

5.6 Steps 6 and 7: Validation and Further Elicitation
of Goals

Validation and elicitation of more abstract goals proceed in
parallel with steps 4 and 5. The various specifications in-
ferred from these steps are reviewed for adequacy. In par-
ticular, the assertions produced by the generalization rules
at step 4 are checked to see if the result is adequate, too
strong or too weak. For example, the wrong selection of the
weakened consequent generalization rule to produce a
stronger version for the Achieve goal 2-3 above should have
been detected thereby.

The scope of the temporal operators are also checked in
the various specifications obtained to see whether the latter
are not too weak (in case of È-operators) or to strong (in
case of o-operators). Real-time constraints would thereby
be superimposed for the various responses along the Lift
line. More abstract and more concrete goals can be elicited
informally by asking WHY and HOW questions about the
goal specifications inferred. For example, WHY questions
about the goals Avoid[LiftOverloaded] and Main-
tain[DoorsClosedWhileMoving] inferred above will lead to
higher-level Safety goals concerning Passenger agents.

More abstract goals can also be obtained formally by ap-
plication of formal abstraction patterns to the fine-grained
goal specifications above, e.g., to derive a more coarse-
grained goal specification that aggregates the Achieve goals
2-3, 3-4, and 4-5. We will illustrate this in Section 6.1 below.

5.7 Discussion
For an agent line with M ingoing events and N outgoing
events in a single scenario, the goal inference procedure
will generate M + N condition lists, N Achieve/Cease goal
specifications, and at most N Maintain/Avoid goal specifica-
tions (in general this will be much less as invariant condi-
tions are unlikely to be found from every state transition).
The admissible set of specifications does not expand with as
many specifications at each iteration over a new scenario;
specifications produced from common event subsequences
are not added as they are already there, and the specifica-
tions corresponding to the last, different interaction in
longest common subsequences are merged.

An obvious optimization here is to avoid at each itera-
tion recomputing condition lists and reinferring specifica-
tions that were already computed/inferred before. To
achieve this, a preliminary step at each iteration could de-
tect common subsequences of interaction events between
the current scenario and the previous ones so that only new
condition lists and specifications are recomputed; the latter
correspond to the last state transition before such subse-
quences differ.

As far as requirements are concerned, only time lines
that correspond to software agents need to be considered. It
may be helpful, however, to generate the assumptions from
time lines associated with environmental agents in order to
check whether such assumptions are realistic, that is,
whether they are likely to be met by environmental agents
as requisites for achieving higher-level goals. If this is not
the case, another responsibility assignment should be made
(see Fig. 3 and Section 2.2).

Since every outgoing event produces an Achieve/Cease
goal specification, fine-grained scenarios will correspond-
ingly produce fine-grained goal specifications. For a long,
complex scenario such fine-grained specifications are not
necessarily the ones one may wish to work with. There are
several ways to obtain more abstract and/or more coarse-
grained specifications. The first one is to apply event ag-
gregation and scope restriction rules as discussed in Section
4.2. A second one, not explored in this paper, is to aggregate
recurring subsequences of interaction events into interaction
chunks, corresponding to macro-operators in the planning
sense [55]. A third one is to apply formal abstraction patterns
to generate parent goals from the fine-grained goals gener-
ated by the procedure; the latter are then seen as milestone
subgoals to achieve the parent goal. We discuss this tech-
nique in Section 6.1 below.

The complete run of our method on the lift system ex-
emplar should help visualizing what level of tool support
can be provided. The outer loop of the procedure would be
under control of the tool. After having asked the require-
ments engineer (RER) for a new event trace diagram, the
tool (T) suggests applying the clean up rules available to the
scenario entered by RER (step 1); while event aggregation
can be done automatically, scope restriction and elimination
of nonshared phenomena must be under control of RER. T
then generates the abstract syntax tree for the possibly sim-
plified scenario from its diagrammatic representation.
Listing the proposed operation names produced from the
corresponding events, T asks RER to identify and supply

1108 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 12, DECEMBER 1998

names for operation inputs/outputs and for their corre-
sponding type. T then asks for the domain pre-
/postconditions of these operations or retrieves them from
the domain knowledge base (step 2). The initial state along
each agent line must also be provided by RER. From there T
automatically generates all condition lists along each line
and decorates the abstract syntax tree with the annotations
generated (step 3). In this process, the retraction of a condi-
tion that gets negated is easily achieved by tree matching;
for retraction of implied conditions and removal of redun-
dant conditions T needs domain laws to be supplied by
RER if not available in the domain knowledge base; the
simplification of condition lists is then achieved by deletion
of matching subtrees. The progress and invariance facts
along each time line are then automatically collected by T
from the annotated abstract syntax tree (step 4.1). Generali-
zation over time and over instances is performed next by T
(step 4.2); in case of a stimulus predicate not referencing the
target responding agent, RER is asked to select the appro-
priate generalization rule to be applied by T. Integration
into the admissible set of specifications using the cover-
age/exlusion rules is then performed by T which searches
for largest common prefix subtrees (step 5). RER is then
asked to validate the goal specifications generated and to
adapt them, if necessary, using the structural editor avail-
able. If requested, T then generates more abstract specifica-
tions by application of abstraction patterns whose leaves
match specifications corresponding to successive interac-
tions (step 6).

Our effort so far has been concentrated on method de-
velopment and experimentation rather than tool develop-
ment; we do not expect any major implementation problem
as the current GRAIL/KAOS environment [15] has power-
ful facilities for generating abstract syntax trees from
graphical input, for generating related information from
such trees via attribute grammar mechanisms, and for ob-
ject base querying and retrieval.

6 GOAL-LEVEL ANALYSIS OF SPECIFICATIONS
INFERRED FROM SCENARIOS

The purpose of this section is to show what the inferred
formal specifications can be used for, by presenting various
types of formal analysis at the goal level that could not be
performed at the scenario level. The benefits of inferring
temporal logic specifications of goals from operational sce-
narios are demonstrated by examples of formal conflict
analysis, obstacle analysis, the inference of more abstract
goals, and the derivation of alternative scenarios that better
achieve the underlying goals.

6.1 Eliciting New Goals by Goal Abstraction Patterns
In [13], a formal technique is described to elaborate goal
refinements in a systematic way for a number of frequent
goal assertion patterns. The general principle is to reuse
formal refinement patterns defined in a pattern library, and
proved correct once for all using the proof theory of tempo-
ral logic [48] and available tools such as STeP [49]. The se-
lection of a pattern whose root matches the goal to be re-
fined generates instantiated subgoals that are formally
guaranteed to achieve this goal.

Fig. 11 gives an example of such a pattern. Milestone
predicates Q1, ..., Qn, Q are introduced; if each of them
eventually holds from the previous milestone then the par-
ent goal is guaranteed to be achieved.

Fig. 11. The milestone-driven refinement/abstraction pattern.

Such a tree can be considered bottom-up instead of top-
down; we then get an abstraction pattern. The selection of a
pattern whose leaves match a set of goals to be abstracted
generates an instantiated parent goal which is formally
guaranteed to be achieved by the more concrete subgoals.

In particular, the milestone-driven abstraction pattern is
especially suitable for generating more coarse-grained goal
specifications from fine-grained ones inferred from succes-
sive events generated along an agent line.

We illustrate this on the following goal specifications
that were inferred in Section 5:

2-3. " p: Passenger, f: Floor
 #LiftCalled (p, f) Á (" l: Lift) (À LiftAt (l, f) Á À Moving (l, f))
 Æ È [($ l: Lift) Moving (l, f) Á #LiftCalled (p, f)]

3-4. " p: Passenger, f: Floor, l: Lift
 #LiftCalled (p, f) Á Moving (l, f)
 Æ È [LiftAt (l, f) Á l.Doors = ‘closed’ Á #LiftCalled (p, f)]

 4-5. " p: Passenger, f: Floor, l: Lift
 #LiftCalled (p, f) Á LiftAt (l, f) Á l.Doors = ‘closed’
 Æ È [LiftAt (l, f) Á l.Doors = ‘open’ Á #LiftCalled (p, f)]

These three fine-grained specifications match the leaves of a
more general version of the milestone-driven pattern given
in Fig. 12 (the pattern in Fig. 11 is obtained by taking R =
true in Fig. 12). The leaf nodes of this pattern are instanti-
ated as follows:

P: (" l: Lift) (À LiftAt (l, f) Á À Moving (l, f))
R: #LiftCalled (p, f)
Q1: ($ l: Lift) Moving (l, f)
Q2: LiftAt (l, f) Á l.Doors = ‘closed’
Q: LiftAt (l, f) Á l.Doors = ‘open’

Fig. 12. A general milestone-based abstraction pattern.

We may, therefore, apply this abstraction pattern and
generate the following more coarse-grained goal:

" p: Passenger, f: Floor
#LiftCalled (p, f) Á (" l: Lift) (À LiftAt (l, f) Á À Moving (l, f))
 Æ È [($ l: Lift) (LiftAt (l, f) Á l.Doors = ‘open’ Á #LiftCalled (p, f))]

that is,

VAN LAMSWEERDE AND WILLEMET: INFERRING DECLARATIVE REQUIREMENTS SPECIFICATIONS FROM OPERATIONAL SCENARIOS 1109

“if a lift call is issued with no lift at the passenger’s floor or mov-
ing towards it, there shall be a lift at the floor where the call was
issued, with its door open.”

The same abstraction pattern applied to the fine-grained
goals 7-8 to 10-11 inferred in Section 5 yields the following
more coarse-grained goal:

" p: Passenger, f, f’: Floor, l: Lift
LiftAt (l, f) Á l.Doors = ‘open’ Á #FloorRequested (p, l, f’)
 Æ È [LiftAt (l, f’) Á l.Doors = ‘open’ Á #FloorRequested (p, l, f’)]

Formal abstraction/refinement patterns may also be
used top-down to find out missing companion goals, re-
quirements, assumptions and/or scenarios.

To illustrate this on the ATM example again, consider the
requirement

" c: Card, atm: ATM, a: Amount
#TransactTypeEntered (c, atm, ‘getCash’)
Á #AmountEntered (c, atm, a) Á a � c.Limit
Á À CashDelivered (atm, c)
 Æ È CashDelivered (atm, c),

inferred from the scenario in Fig. 2. Asking a WHY question
about this requirement may lead to the higher-level goal
Achieve[CashDelivered]:

" c: Card, atm: ATM
#TransactTypeEntered (c, atm, ‘getCash’)
Á À CashDelivered (atm, c)
 Æ È CashDelivered (atm, c)

The parent and child goals match the “strengthened an-
tecedent” pattern shown in Fig. 13, with instantiations

P: #TransactTypeEntered (c, atm, ‘getCash’)
 Á À CashDelivered (atm, c)

Q: CashDelivered (atm, c)
R: ($a: Amount) #AmountEntered (c, atm, a) Á a � c.Limit

The following assertions are thereby generated as miss-
ing companion subgoals:

" c: Card, atm: ATM
#TransactTypeEntered (c, atm, ‘getCash’)
Á À CashDelivered (atm, c)
 Æ È ($a: Amount) #AmountEntered (c, atm, a) Á a � c.Limit

and

" c: Card, atm: ATM
#TransactTypeEntered (c, atm, ‘getCash’)
Á À CashDelivered (atm, c)
 Æ [#TransactTypeEntered (c, atm, ‘getCash’)
 Á À CashDelivered (atm, c)] W CashDelivered (atm, c)

Fig. 13. The “strengthened antecedent” refinement pattern.

The former captures a new goal, with a corresponding
scenario, to allow users to re-enter lower amounts than
previously asked in order to meet the card’s limitation; the
latter makes explicit the assumption that users choosing the

‘getCash’ option keep interested in getting cash up to when
cash is delivered.

The inference of explicit, declarative goal specifications
from operational scenarios thus allows new goals, re-
quirements and assumptions to be elicited through formal
techniques.

6.2 Obstacle Analysis
In [44], formal techniques are presented to systematically
generate obstacles that obstruct given goals. Obstacle as-
sertions are formally derived from a goal assertion by

1)� regressing the negated goal assertion through the
domain theory available in order to find out precon-
ditions for goal obstruction, or

2)�applying formal obstruction patterns associated with
specific temporal goal patterns in order to build for-
mal fault trees.

Once obstacle assertions are obtained, scenarios are being
sought as models of these assertions to check whether the
obstacles are satisfiable. The result of this process is a sys-
tematic enumeration of obstacles and exceptional scenarios
whose resolution leads to more realistic and more complete
requirements (see [44] for details).

When goal specifications are inferred from scenarios
using our procedure, these obstacle/scenario generation
techniques may be used to find out missing requirements
and scenarios.

To illustrate this on our ongoing ATM example, consider
the goal

" c: Card, atm: ATM
#CardInserted (c, atm) Á À PassWdRequested (atm, c)
 Æ È [PassWdRequested (atm, c) Á #CardInserted (c, atm)] ,

inferred in Section 4 from the scenario in Fig. 2. Looking in
the domain theory (or asking domain experts) for necessary
conditions for passwords to be requested by an ATM, one
may get, e.g.,

PassWdRequested (atm, c) Æ CardReadable (atm, c),

that is,

À CardReadable (atm, c) Æ À PassWdRequested (atm, c)

We regress the negated goal above, that is,

È $c: Card, atm: ATM
#CardInserted (c, atm)
Á o (#CardInserted (c, atm) � À PassWdRequested (atm, c))

through the above domain rule and thereby formally derive
the following obstacle to this goal:

È $c: Card, atm: ATM
#CardInserted (c, atm)
Á o (#CardInserted (c, atm) � À CardReadable (atm, c))

The obvious satisfying scenario is a card being inserted
and remaining unreadable when inserted. New goals and
scenarios have to be elicited therefrom in order to resolve
this obstacle (see [44] for resolution techniques).

Other possibly missing goals and scenarios about, e.g.,
expired cards, cash unavailable, or no paper left anymore
for transaction records, would have been derived formally
in exactly the same way.

1110 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 12, DECEMBER 1998

The inference of explicit, declarative goal specifications
from operational scenarios thus may ensure more coverage
and more robustness through formal obstacle analysis.

6.3 Conflict Analysis
In [45], formal techniques are presented to systematically
detect/resolve divergences among goal formulations. A
divergence corresponds to the possible occurrence of a
boundary condition that makes the set of goal assertions
conflicting (that is, logically inconsistent).

Boundary conditions are formally derived by regressing
the negation of one of the goal assertions through the do-
main theory extended with the other goal assertions.

When goal assertions are inferred from scenarios using
the procedure described in Section 4, boundary conditions
may be sought using these techniques to detect possible
divergences among the goals inferred and thus among the
scenarios they cover.

To illustrate this, consider the following goal specifica-
tions inferred in Section 5:

" l: Lift, p: Passenger,, f, f’: Floor

#FloorRequested (p, l, f’) Á LiftAt (l, f) Á l.Doors = ‘open’
Æ È [LiftAt (l, f) Á l.Doors = ‘closed’ Á #FloorRequested (p, l, f’)]

#FloorRequested (p, l, f’) Á LiftAt (l, f) Á l.Doors = ‘closed’
Æ È [l.Doors = ‘closed’ Á LiftAt (l, f’) Á #FloorRequested (p, l, f’)]

#FloorRequested (p, l, f’) Á LiftAt (l, f’) Á l.Doors = ‘closed’
Æ È [LiftAt (l, f’) Á l.Doors = ‘open’ Á #FloorRequested (p, l, f’)]

On another hand, consider the negative scenario about
the lift being overloaded and the following goal specifica-
tion that was inferred from it:

LiftAt (l, f) Á l.Doors = ‘open’ Á #FloorRequested (p, l, f’)
Á Overloaded (l)
Æ [(LiftAt (l, f) Á l.Doors ¡ ‘closed’) W À In (p, l)]

The following boundary condition can be formally de-
rived to establish the divergence among those four goals:

$ l: Lift, p: Passenger, f,’ f: Floor
o [LiftAt (l, f) Á l.Doors = ‘open’ Á #FloorRequested (p, l, f’)
 Æ Overloaded (l)]

This boundary condition is satisfied by the “starvation”
scenario of a passenger never reaching her destination floor
because of the lift getting overloaded at every attempt to
enter the lift. Once such a divergence is detected formally,
appropriate resolution strategies can be applied, see [45].

The two following goals about avoiding unnecessary
lift moves were derived in Section 5 using the dataflow
heuristics:

" l: Lift, f: Floor
À ($ p: Passenger) #LiftCalled (p, f) Á À LiftAt (l, f)
Æ [À LiftAt (l, f) W ($ p: Passenger) #LiftCalled (p, f)]

and

" l: Lift, f: Floor
À ($ p: Passenger) #FloorRequested (p, l, f) Á À LiftAt (l, f)
Æ [À LiftAt (l, f) W ($ p: Passenger) #FloorRequested (p, l, f)]

Using the conflict detection techniques in [45] we find
that these two Avoid goals are pairwise conflicting with the
two coarse-grained Achieve goals inferred in Section 6.1;

one of the boundary conditions derived to make these goals
pairwise logically inconsistent is:

$ l: Lift, f: Floor, p’: Passenger
À ($ p: Passenger) #LiftCalled (p, f)
Á À LiftAt (l, f) Á #FloorRequested (p’, l, f)

This boundary condition captures a situation of a pas-
senger wishing to go to floor f whereas the lift may not do
so because it is not called from that floor. We can then apply
the weakening rule for conflict resolution [45] which yields
the following conflict-free version for the two Avoid goals
above:

" l: Lift, f: Floor
À LiftAt (l, f) Á À ($ p: Passenger) #LiftCalled (p, f)
 Á À ($ p: Passenger) #FloorRequested (p, l, f)
 Æ [À LiftAt (l, f) W $ p: Passenger
 (#LiftCalled (p, f) Â #FloorRequested (p, l, f))]

The inference of explicit, declarative goal specifications
from operational scenarios thus allows formal conflict
analysis to take place.

6.4 Goal-Based Identification of Better Scenarios
Scenarios may sometimes contain a great deal of overspeci-
fication with respect to their underlying goals left implicit.
Sometimes they even prescribe some sequencing of events
that is not the best one for achieving those implicit goals. In
such cases, the inference of explicit, declarative goal for-
mulations for subsequent reasoning may result in finding
out better scenarios to achieve them.

To illustrate this, let us come back again to the goal
Achieve[CardProperlyHandled] whose declarative formulation
was inferred in Section 4.6:

"c: Card, atm: ATM
#CardInserted (c, atm)
Æ #OKAccess (atm, c) � È CardReturned (atm, c)
 Á #KO-PassWd(atm, c, 3) � À CardReturned (atm, c) W F3)]

A WHY question about this goal leads to the higher-level
goals Achieve[RepeatedUse] and Avoid[IllegalUse]. IllegalUse may
result from situations where the card has been forgotten at
the ATM. It then turns out that there is a better scenario to
enforce both goals than the scenario in Fig. 2 (taken from
[68]). A piece of domain knowledge, based on empirical
evidence, tells us that people accessing an ATM in order to
get cash tend to concentrate on their main goal of getting
cash—to the point that they sometimes forget about the rest
of the transaction once their primary goal is achieved, that
is, getting their receipt and taking their card back. A better
way to achieve the goals Achieve[RepeatedUse] and
Avoid[IllegalUse] is, therefore, to require the ATM to deliver
cash only when the card has been withdrawn, that is, to
make the interaction events CardReturn and CardWithdrawal
precede the interaction events CashDelivery and CashWith-
drawal in Fig. 2. (This scenario is in fact implemented in
many ATM systems.)

The strengthened precondition heuristics discussed in
Section 4.5 may also help detecting unnecessary sequencing
in scenarios provided. If the postcondition of the operation
associated with some event is not required to strengthen the
domain precondition of the operation associated with the

VAN LAMSWEERDE AND WILLEMET: INFERRING DECLARATIVE REQUIREMENTS SPECIFICATIONS FROM OPERATIONAL SCENARIOS 1111

event just following, then the sequencing is not required;
there is no logical producer-consumer dependency between
the postcondition of the former and the precondition of the
latter. This heuristics may be used to detect the unnecessary
sequencing of the FloorRequest and DoorsClosing events in the
Lift scenario given in Fig. 8.

7 RELATED WORK

The informal use of scenarios for requirements elicitation,
validation and documentation is widely recognized among
practitioners [69], [72] and is promoted by many method-
ologies [68], [67], [34], [58]. Proposals for representing sce-
narios have flourished [63]; they generally consist in exten-
sions or adaptations of existing notations for capturing dy-
namic behaviors of specific agents. For type-level scenarios,
these include, e.g., regular expressions [11], statecharts [25],
decision trees [32], operational scripts [67] enriched with
contextual information [59], or narrative use cases [34] pos-
sibly annotated with interaction traces that contain state
information [61]. Extensions to support loops,
modularization and hierarchical decomposition have also
been suggested [61]. For instance-level scenarios, notations
based on message sequence charts [33] to capture interac-
tion traces have been the most popular to date [68], [23].
There have also been proposals for explicitly linking sce-
narios to the goals underlying them [22], [11], [59], [29],
[65]. Our choice of a specific notation in this paper was
dictated by the simplicity, popularity, and closeness of the
notation to the informal narratives provided by
stakeholders. (The type-level scenario notation supported
by KAOS [11] was felt too rich and complex in this context.)
Our experience also suggests that the goals underpinning
scenarios are often left implicit in practice (see Section 3.1).

Most research work on using scenarios in requirements
engineering has been on the validation side. Prototyping
[31], [70], animation [18], simulation [30] and symbolic exe-
cution [17] tools generate execution traces which can be
seen as scenarios to be submitted to stakeholders for ade-
quacy checking. The ARIES Simulation Component [3], [4]
allows a specification to be executed, even if ambiguities,
inconsistencies and incompletenesses are present, by sup-
porting various levels of abstraction. Scenarios there for-
malize validation questions that are asked to check whether
some desirable or undesirable system behavior is covered.
CRITTER [22] is a scenario-based requirements debugging
system. Goals are formalized in some restricted temporal
logic, and type-level scenarios are expressed in a Petri net-
like language. The general approach consists in:

1)�detecting inconsistencies between scenarios and
goals, and

2)�applying operators that modify the specification to
remove the inconsistencies.

Step 1) is carried out by a planner that searches for scenar-
ios leading to some goal violation. The operators offered to
the analyst in step 2) encode heuristics for specification de-
bugging—e.g., introduce an agent whose responsibility is to
avoid the last state transition before the goal is broken. Nit-
pick [37] is another example of scenario-based debugging

of specifications. Given a specification and a claim formu-
lated in a Z-like relational language, the system tries to
generate a counterexample to that claim which can be seen
as a scenario that may help correcting the specification. In
the same spirit, model checking tools can be viewed as sce-
nario-based validation tools [10], [51]; given a declarative
specification in some temporal logic and an operational
specification of a finite state machine, these tools try to
show that the temporal logic specification is satisfied by the
finite state machine through enumeration of all execution
traces; in case of failure they exhibit a counter-example sce-
nario that violates the specification.

The work on scenario-based elicitation has not yet
reached such a level of technical sophistication and matur-
ity. At the very extreme of informality, guidelines are pro-
vided for building finite state machine models from event
trace diagrams [68]. Process models that integrate scenarios
as important artifacts for requirements elicitation have been
suggested [58]; the role of scenarios to identify obstacles
obstructing goals has been demonstrated [59]. [71] suggests
using scenarios as “keys” for retrieving generic require-
ments satisfied by them and reusable for the problem at
hand. In [65], a semiformal approach is proposed for elicit-
ing goals from scenarios. Goals are represented there by
parameterized action verbs; alternative goals correspond to
alternative parameter values. Assuming that a bidirectional
coupling between a type-level scenario and such a goal can
be made explicit, heuristic rules are suggested for finding
out alternative goals to establish the scenario, missing com-
panion goals, or subgoals of the goal considered.

The WATSON and ISAT systems are examples of work
closely related to ours. WATSON is an automated elicitation
environment that tries to induce a plausible formal specifi-
cation from scenarios expressed in natural language [39].
The system relies on domain knowledge to correct routine
ommissions and errors in scenarios, constrain the space of
possible scenario generalizations, and plan queries to the
user about variant scenarios. ISAT is a scenario-based elici-
tation/validation assistant that helps requirements engi-
neers acquire and maintain a specification consistent with
scenarios provided [27]. The system uses explanation-based
learning techniques to generalize the scenarios in order to
state and prove validation lemmas. Recent developments
have been focussed on the validation side. [28] describes a
formal method for generating scenarios that establish some
target goal specification. The principle is to retrieve from a
knowledge base fragmentary scenarios that establish some
of the conjuncts of the goal predicate, generalize them, ap-
ply some constrained coinstantiation to make them refer to
common objects, and compute a merge of the resulting sce-
narios that establishes the whole set of conjuncts. A sce-
nario integration step is thus involved there. Another tech-
nique for scenario integration is proposed in [16]. Scenarios
are represented there by mathematical relations; scenario
integration involves the application of complex relational
“meet” operators. The result is a relational description of a
big scenario—unlike the declarative goals, requirements
and assumptions obtained here.

The formal method presented in this paper is closely re-
lated to inductive learning from examples. Admissible de-

1112 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 12, DECEMBER 1998

scriptions are obtained there by bidirectional search
through a space of descriptions. A typical algorithm iterates
over the instances provided. If the current instance is posi-
tive, the candidate concept descriptions obtained so far are
transformed minimally by use of generalization rules so as to
cover this new positive instance without covering the
negative instances already considered; if the current in-
stance is negative, the candidate concept descriptions ob-
tained so far are transformed minimally by use of specializa-
tion rules so as to exclude this new negative instance with-
out excluding the positive instances already considered.
Various inductive learning algorithms have been proposed
which vary according to the search strategy followed, the
specific generalization/specialization rules applied, the
characteristics of the set of admissible descriptions found,
and the use or not of domain knowledge. Mitchell’s candi-
date elimination algorithm is probably the best known
among them [53]. The interested reader may refer to [41] for
a comparative analysis of these algorithms.

A notable difference between inductive learning algo-
rithms and our goal inference procedure is that the learning
of a new concept from examples requires starting from the
bottom of the lattice of concept descriptions and climbing
up by generalizations to cover positive examples. In our
case, we start from the top of the lattice of all possible be-
haviors (where everything is permited), and go down by
removing behaviors each time a new scenario has to be
covered or excluded.

Learning techniques have already been used in a variety
of software engineering applications, including the synthe-
sis of list processing programs from execution traces [6], the
inference of process models from process traces [24], and
the generation of test cases [5].

8 CONCLUSIONS

While scenarios are a proven effective means for eliciting
requirements, they cannot replace such requirements be-
cause they are most often partial, instance-level, procedural,
and often leave the underlying goals, requirements and
assumptions implicit. The approach advocated in this paper
is to use the narrative, concrete, and informal style of de-
scription provided by scenarios to elicit more abstract, type-
level, and declarative specifications; such specifications
cover more behaviors and assert goal-based properties ex-
plicitly and formally. Thanks to the inference of goal speci-
fications from scenarios, formal analysis can be applied to
the specifications to generate further specifications by goal
abstraction and refinement; to generate obstructing obsta-
cles that prompt for new goals to handle exceptional situa-
tions; to detect conflicts among goals/requirements and
resolve them; to find out new scenarios that operationalize
their intended purpose in a more effective way.

The inference method presented in the paper allows de-
clarative specifications of goals, requirements and assump-
tions to be generated from scenarios in a systematic, formal
way. The various kinds of formal analysis at the goal level
illustrate the benefits of inferring high-level, temporal logic
specifications rather than more operational ones such as
finite state machines or state-based specifications, on which
such analysis could not have been applied.

Event trace diagrams were chosen as a simple, semifor-
mal notation for representing scenarios because they are
widely used in practice and because they provide an intui-
tive visualization of the logical models the inferred tempo-
ral logic formulas need to satisfy. Our method exploits the
temporal goal patterns provided by KAOS to inductively
infer candidate goal assertions satisfied by the event trace
diagrams provided. These assertions are progressively inte-
grated as new scenarios are provided so that in the end
they cover all positive scenarios and exclude all negative
ones. The generated assertions need to be validated, and
may be abstracted/refined formally using the techniques
discussed in Section 6.

Long, complex scenarios in which unrelated interaction
events are involved will correspondingly make the infer-
ence process more complex. A scenario filtering mechanism
was therefore proposed, based on views associated with
KAOS goal categories, to simplify the scenarios and make
the inference process more focussed. Other clean up
mechanisms beside those presented here need to be inves-
tigated in order to further simplify scenarios when neces-
sary. Among them, scenario chunking to represent macro-
interactions seems a promising approach which proved
effective in AI hierarchical planning.

Another direction we want to investigate in the future is
the inference, in parallel, of a finite state machine whose
execution paths cover the positive scenarios provided; our
validation step would then be supported by model check-
ing tools applied to the temporal logic specifications and
the finite state machine inferred in parallel.

The method presented in this paper is grounded on sev-
eral years of experience with scenario-based goal elicitation
in industrial projects. We hope to have convinced the reader
through the variety of examples given in the paper, some of
them being fairly complex, that the method is systematic
and effective in nontrivial elicitation situations. Our goal
now is to experiment them on the largest, complex scenar-
ios found among those we have been working on at the
CEDITI tech transfer institute. In parallel, our formal
method needs to be complemented with a tool to be inte-
grated in the existing KAOS/GRAIL environment for goal-
based requirements engineering [15].

ACKNOWLEDGMENTS

The work reported herein was partially supported by the
“Communauté Française de Belgique” (FRISCO project, Ac-
tions de Recherche Concertées No. 95/00-187—Direction
générale de la Recherche). Partial support was also provided
while the first author was on sabbatical at SRI International
by the Advanced Research Projects Agency under Air Force
Research Laboratory Contract No. F30602-97-C-0040.

We are deeply indebted to Robert Darimont,
Emmanuelle Delor, Philippe Jamart, Philippe Massonet,
and Christophe Ponsard for sharing their experience and
insights in the use of scenarios in industrial projects at
CEDITI. Thanks go also to Jose Fiadeiro for clarifying dis-
cussions on scenario integration in a temporal logic frame-
work. The comments and feedback provided by the re-
viewers were greatly appreciated.

VAN LAMSWEERDE AND WILLEMET: INFERRING DECLARATIVE REQUIREMENTS SPECIFICATIONS FROM OPERATIONAL SCENARIOS 1113

REFERENCES

[1]� J.S. Anderson and S. Fickas, “A Proposed Perspective Shift:
Viewing Specification Design as a Planning Problem,” Proc.
IWSSD-5, Fifth Int’l Workshop Software Specification and Design, pp.
177–184, IEEE, 1989.

[2]� A.I. Anton, W.M. McCracken, and C. Potts, “Goal Decomposition
and Scenario Analysis in Business Process Reengineering,” Proc.
CAISE’94, Sixth Conf. Advanced Information Systems Eng., pp. 94–104,
Lecture Notes in Computer Science 811, Springer-Verlag, 1994.

[3]� K.M. Benner, “The ARIES Simulation Component,” Proc. KBSE’93.
[4]� K.M. Benner, M.S. Feather, W.L. Johnson, and L.A. Zorman,

“Utilizing Scenarios in the Software Development Process,” In-
formation System Development Process, Elsevier Science, B.V. North-
Holland, pp. 117–134, 1993.

[5]� F. Bergadano and D. Gunetti, “Testing by Means of Inductive
Program Learning,” ACM Trans. Software Eng. and Methodology,
vol. 5, no. 2, Apr. 1996.

[6]� A.W. Biermann and R. Krishnaswamy, “Constructing Programs
from Example Computations,” IEEE Trans. Software Eng., vol. 2,
no. 9, pp. 141-153, 1976.

[7]� A. Borgida, J. Mylopoulos, and R. Reiter, “On the Frame Problem
in Procedure Specifications,” IEEE Trans. Software Eng., vol. 21, no.
10, pp. 785–798, Oct. 1995.

[8]� R.J. Brachman and H.J. Levesque, eds., Readings in Knowledge
Representation. Morgan Kaufmann, 1985.

[9]� J.M. Carroll and M.B. Rosson, “Narrowing the Specification Im-
plementation Gap in Scenario-Based Design,” Scenario-Based De-
sign: Envisioning Work and Technology in System Development, J.M.
Carroll, ed., pp. 247–278, John Wiley & Sons, 1995.

[10]� E.M. Clarke and E.A. Emerson, “Automatic Verification of Finite-
State Concurrent Systems Using Temporal Logic Specifications,”
ACM Trans. Program. Language Systems ,vol. 8, no. 2, pp. 244–263,
1986.

[11]� A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-Directed
Requirements Acquisition,” Science of Computer Programming, vol.
20, pp. 3–50, 1993.

[12]� A. Dardenne, “On the Use of Scenarios in Requirements Acquisi-
tion,” Technical Report CIS-TR-93-17, Dept. of Computer and In-
formation Science, Univ. of Oregon, Aug. 1993.

[13]� R. Darimont and A. van Lamsweerde, “Formal Refinement Pat-
terns for Goal-Driven Requirements Elaboration,” Proc. FSE’4—
Fourth ACM SIGSOFT Symp. Foundations of Software Eng., pp. 179–
190, San Francisco, Oct. 1996.

[14]� R. Darimont and E. Delor, “Goal-Driven Requirements Specifica-
tion of a Copyright Tracking System,” CEDITI Deliverable, Sept.
1996. In French

[15]� R. Darimont, E. Delor, P. Massonet, and A. van Lamsweerde,
“GRAIL/KAOS: An Environment for Goal-Driven Requirements
Engineering,” Proc. ICSE’97—19th Int’l Conf. Software Eng., Boston,
Apr. 1997.

[16]� J. Desharnais, M. Frappier, R. Khedri, and A. Mili, “Integration of
Sequential Scenarios,” Proc. ESEC’97—Sixth European Software
Eng. Conf., pp. 310–326, Zurich, Lecture Notes in Computer Sci-
ence 1301, Springer-Verlag, Sept. 1997.

[17]� J. Douglas and R.A. Kemmerer, “Aslantest: A Symbolic Execution
Tool for Testing ASLAN Formal Specifications,” Proc. ISTSTA
‘94—Int’l Symp. Software Testing and Analysis, ACM Software En-
gineering Notes, pp. 15–27, 1994.

[18]� E. Dubois, Ph. Du Bois, and M. Petit, “Object-Oriented Require-
ments Analysis: An Agent Perspective,” Proc. ECOOP’93—Seventh
European Conf. Object-Oriented Programming, pp. 458-481, Lecture
Notes in Computer Science 707, Springer-Verlag, 1993.

[19]� M. Feather, “Language Support for the Specification and Devel-
opment of Composite Systems,” ACM Trans. Programming Lan-
guages and Systems, vol. 9, no. 2, pp. 198-234, Apr. 1987.

[20]� M. Feather, “Towards a Derivational Style of Distributed System
Design,” Automated Software Eng., vol. 1, no. 1, pp. 31–60, 1994.

[21]� M. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard, “Rec-
onciling System Requirements and Runtime Behaviour,” Proc.
IWSSD’98—Ninth Int’l Workshop Software Specification and Design,
Isobe, IEEE CS Press, Apr. 1998.

[22]� S. Fickas and R. Helm, “Knowledge Representation and Reason-
ing in the Design of Composite Systems,” IEEE Trans. Software
Eng., pp. 470–482, June 1992.

[23]� M. Fowler, UML Distilled—Applying the Standard Object Modeling
Language. Addison-Wesley, 1997.

[24]� P.K. Garg and S. Bhansali, ‘Process Programming by Hindsight,”
Proc. ICSE14—14th Int’l Conf. Software Eng., Melbourne, pp. 280–
293, 1992.

[25]� M. Glinz, “An Integrated Formal Model of Scenarios Based on
Statecharts,” Proc. ESEC’95—Fourth European Software Eng. Conf.,
Lecture Notes in Computer Science 989, Springer-Verlag, 1995.

[26]� D. Gries, The Science of Programming. Springer-Verlag, 1981.
[27]� R.J. Hall, “Systematic Incremental Validation of Reactive Systems

via Sound Scenario Generalization,” Automated Software Eng., vol.
2, pp. 131–166, 1995.

[28]� R.J. Hall, “Explanation-Based Scenario Generation for Reactive
System Models,” Proc. ASE’98, Hawaii, Oct. 1998.

[29]� P. Haumer, K. Pohl, and K. Weidenhaupt, “Requirements Elicita-
tion and Validation with Real World Scenes,” CREWS Report 98–
16, 1998.

[30]� C. Heitmeyer, R. Jeffords, and B. Labaw, “Automated Consistency
Checking of Requirements Specifications,” ACM Trans. Software
Eng. and Methodology vol. 5, no. 3, pp. 231–261, July 1996.

[31]� S. Hekmatpour and D. Ince, Software Prototyping, Formal Methods,
and VDM. Addison-Wesley, 1988.

[32]� P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, and C. Chen,
“Formal Approach to Scenario Analysis,” IEEE Software, pp. 33–
41, Mar. 1994.

[33]� ITU-T, Message Sequence Charts. Recommendation Z.120, 1993.
[34]� I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard, Object-

Oriented Software Engineering: A Use Case Driven Approach.
Addison-Wesley, ACM Press, 1993.

[35]� M. Jackson and P. Zave, “Domain Descriptions,” Proc. RE’93—
First Int’l IEEE Symp. Requirements Eng., pp. 56–64, Jan. 1993.

[36]� M. Jackson, Software Requirements & Specifications—A Lexicon of Prac-
tice, Principles and Prejudices. ACM Press, Addison-Wesley, 1995.

[37]� D. Jackson, “Elements of Style: Analyzing a Software Design
Feature with a Counterexample Detector,” Proc. ACM ISSTA’96,
pp. 239–249, San Diego, 1996.

[38]� S.E. Keller, L.G. Kahn, and R.B. Panara, “Specifying Software
Quality Requirements with Metrics,” Tutorial: System and Software
Requirements Engineering, R.H. Thayer and M. Dorfman, eds., pp.
145–163, IEEE CS Press, 1990.

[39]� V. Kelly and U. Nonnenmann, “Reducing the Complexity of For-
mal Specification Acquisition,” Automated Software Design, M.
Lowry and R. McCartne, eds., pp. 41–64, AAAI Press, 1991.

[40]� R. Koymans, Specifying Message Passing and Time-Critical Systems
with Temporal Logic, Lecture Notes in Computer Science 651,
Springer-Verlag, 1992.

[41]� A. van Lamsweerde, “Learning Machine Learning,” Introducing a
Logic Based Approach to Artificial Intelligence, A. Thayse, ed., vol. 3,
pp. 263–356, John Wiley & Sons, 1991.

[42]� A. van Lamsweerde, R. Darimont, and P. Massonet, “Goal-
Directed Elaboration of Requirements for a Meeting Scheduler:
Problems and Lessons Learned,” Proc. RE’95—Second Int’l Symp.
on Requirements Eng., York, IEEE, 1995.

[43]� A. van Lamsweerde, “Divergent Views in Goal-Driven Require-
ments Engineering,” Proc. Viewpoints’96—ACM SIGSOFT Work-
shop Viewpoints in Software Development, Oct. 1996.

[44]� A. van Lamsweerde and E. Letier, “Integrating Obstacles in Goal-
Driven Requirements Engineering,” Proc. ICSE-98: 20th Int’l Conf.
Software Eng., Kyoto, Apr. 1998.

[45]� A. van Lamsweerde, R. Darimont, and E. Letier, “Managing Con-
flicts in Goal-Driven Requirements Engineering,” IEEE Trans. Sof-
ware. Eng., special issue on Inconsistency Management in Software
Development, Nov. 1998.

[46]� J.C. Leite and P.A. Freeman, “Requirements Validation Through
Viewpoint Resolution,” IEEE Trans. Software Eng., pp. 1,253–1,269,
Dec. 1991.

[47]� J.C. Leite, G. Rossi, F. Balaguer, V. Maiorana, G. Kaplan, G.
Hadad, and A. Oliveros, “Enhancing a Requirements Baseline
with Scenarios,” Proc. RE’97—Third Int’l Symp. Requirements Eng.,
pp. 44–53, Anapolis, IEEE, 1997.

[48]� Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concur-
rent Systems. Springer-Verlag, 1992.

[49]� Z. Manna and the STep Group, “STeP: Deductive-Algorithmic
Verification of Reactive and Real-Time Systems,” Proc. CAV’96—
Eighth Int’l Conf. Computer-Aided Verification, pp. 415–418, Lecture
Notes in Computer Science 1102. Springer-Verlag, July 1996.

[50]� D. Marca and M. Harandi, “Problem Set for the Fourth Int’l
Workshop on Software Specification and Design,” Proc. Fourth

1114 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 12, DECEMBER 1998

Int’l Workshop Software Specification and Design, IEEE CS Press,
1987.

[51]� K.L. McMillan, Symbolic Model Checking: An Approach to the State
Explosion Problem. Kluwer, 1993.

[52]� B. Meyer, “On Formalism in Specifications,” IEEE Software, vol. 2,
no. 1, pp. 6–26, Jan. 1985.

[53]� T. Mitchell, “Generalization as Search,” Artificial Intelligence, vol.
18, pp. 203–226, 1982.

[54]� J. Mylopoulos, L. Chung, and B. Nixon, “Representing and Using
Nonfunctional Requirements: A Process-Oriented Approach,”
IEEE Trans. Sofware. Eng., vol. 18, no. 6, pp. 483-497, June 1992.

[55]� N.J. Nilsson, Principles of Artificial Intelligence. Springer-Verlag,
1982.

[56]� B. Nuseibeh, J. Kramer, and A. Finkelstein, “A Framework for
Expressing the Relationships Between Multiple Views in Re-
quirements Specifications,” IEEE Trans. Software Eng., vol. 2, no.
10, pp. 760–773, Oct. 1994.

[57]� D.L. Parnas and J. Madey, “Functional Documents for Computer
Systems,” Science of Computer Programming, vol. 25, pp. 41–61,
1995.

[58]� C. Potts, K. Takahashi, and A.I. Anton, “Inquiry-Based Require-
ments Analysis,” IEEE Software, pp. 21–32, Mar. 1994.

[59]� C. Potts, “Using Schematic Scenarios to Understand User Needs,”
Proc. DIS’95—ACM Symp. Designing Interactive Systems: Processes,
Practices and Techniques, Univ. of Michigan, Aug. 1995.

[60]� B. Potter, J. Sinclair, and D. Till, An Introduction to Formal Specifica-
tion and Z, second edition. Prentice Hall, 1996.

[61]� B. Regnell, K. Kimbler, and A. Wesslen, “Improving the Use Case
Driven Approach to Requirements Engineering,” Proc. RE’95—
Second Int’l Symp. Requirements Eng., pp. 40–47, York, IEEE, 1995.

[62]� W.N. Robinson, “Integrating Multiple Specifications Using Do-
main Goals,” Proc. IWSSD-5—Fifth Int’l Workshop Software Specifi-
cation and Design, pp. 219–225, IEEE, 1989.

[63]� C. Rolland, C. Ben Achour, C. Cauvet, J. Ralyte, A. Sutcliffe, N.
Maiden, M. Jarke, P. Haumer, K. Pohl, E. Dubois, and P. Heymas,
“A Proposal for Scenario Classification Framework,” Requirements
Eng. J., vol. 3, no. 1, 1998.

[64]� C. Rolland and C. Ben Achour, “Guiding the Construction of
Textual Use Case Specifications,” Data and Knowledge Eng. J., vol.
25, nos. 1-2, pp. 125–160, Mar. 1998.

[65]� C. Rolland, C. Souveyet, and C. Ben Achour, “Guiding Goal Mod-
elling Using Scenarios,” CREWS Report Series no. 98–27.

[66]� D. Rosca, S. Greenspan, M. Feblovitz, and C. Wild, “A Decision
Making Methodology in Support of the Business Rules Lifecycle,”
Proc. RE’97—Third Int’l Symp. Requirements Eng., pp. 236–246,
Anapolis, IEEE, 1997.

[67]� K.S. Rubin and J. Goldberg, “Object Behaviour Analysis,” Comm.
ACM, vol. 35, no. 9, pp. 48–62, Sept. 1992.

[68]� J. Rumbaugh, M. Blaha, W. Prmerlani, F. Eddy, and W. Lorensen,
Object-Oriented Modelling and Design. Prentice Hall, 1991.

[69]� I. Sommerville and P. Sawyer, Requirements Engineering: A Good
Practice Guide. John Wiley & Sons, 1997.

[70]� A. Sutcliffe, “A Technique Combination Approach to Require-
ments Engineering,” Proc. RE’97—Third Intl. Symp. Requirements
Eng., pp. 65–74, Anapolis, IEEE, 1997.

[71]� A. Sutcliffe, N. Maiden, S. Minocha, and D. Manuel, “Supporting
Scenario-Based Requirements Engineering,” CREWS Report 98–
08, 1998.

[72]� K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer, “Scenario
Usage in System Development: A Report on Current Practice,”
IEEE Software, Mar. 1998.

[73]� K. Yue, “What Does It Mean to Say that a Specification is Com-
plete?” Proc. IWSSD-4, Fourth Int’l Workshop Software Specification
and Design, Monterey, 1987.

[74]� P. Zave and M. Jackson, “Four Dark Corners of Requirements
Engineering,” ACM Trans. Software Eng. and Methodology, pp. 1–30,
1997.

Axel van Lamsweerde is full professor of com-
puting science at the Université Catholique de
Louvain, Belgium. He received the MS degree
in mathematics from that university, and the
PhD degree in computing science from the
University of Brussels. From 1970-1980, he was
research associate with the Philips Research
Laboratory in Brussels, where he worked on
proof methods for parallel programs and knowl-
edge-based approaches to automatic program-
ming. He was then professor of software engi-

neering at the Universities of Namur and Brussels until he joined UCL
in 1990. He is co-founder of the CEDITI technology transfer institute
partially funded by the European Union. He has also been a visitor at
the University of Oregon and the Computer Science Laboratory of SRI
International, Menlo Park, California. Dr. van Lamsweerde’s profes-
sional interests are in lightweight formal methods and tools for assist-
ing software engineers in knowledge-intensive tasks. His current focus
is on constructive, technical approaches to requirements engineering
and, more generally, to formal reasoning about software engineering
products and processes. van Lamsweerde was program-chair of the
Third European Software Engineering Conference (ESEC’91); program
co-chair of the Seventh IEEE Workshop on Software Specification and
Design (IWSSD-7); and program co-chair of the ACM-IEEE 16th Inter-
national Conference on Software Engineering (ICSE-16). He is a
member of the Editorial Boards of the Automated Software Engineer-
ing Journal and the Requirements Engineering Journal. Since 1995, he
is editor-in-chief of the ACM Transactions on Software Engineering and
Methodology (TOSEM). He is a member of the IEEE, ACM, and AAAI.
His recent papers can be found at http://www.info.ucl.ac.be/people/avl.html.

Laurent Willemet received the degree of engi-
neer in computer science in 1995 from the Univer-
sité Catholique de Louvain, Belgium. He is now a
PhD candidate in the Département d’Ingénierie
Informatique of this university. His research con-
cerns the use of scenarios in the requirements
engineering process. He also has a strong interest
in formal specification techniques.

