Submitted to IEEE Transactions on Software Engineering

Scenario Networks for Software Specification and
Scenario Management
TR-2001-15

Thomas A. Alspaugh, Student Member, IEEE, and Annie 1. Antén, Member, IEEE

Abstract— Scenarios are widely used to specify the desired
behavior of a system, but managing the large collection of
scenarios that frequently result and making a scenario-based
specification complete are challenging tasks. Scenario net-
works address these challenges while retaining the many ad-
vantages of scenarios during software specification activities.
A scenario network is a collection of scenarios that has been
integrated into a single entity by the specification of the se-
quential and concurrent relationships among its component
scenarios. The addition of these relationships specifies the
larger-scale behavior that is typically missing from a collec-
tion of scenarios, and ties scenarios together in a way that
either indicates no gaps in the description are present, or
makes gaps obvious. Scenario networks provide procedural
guidance for scenario creation and support for scenario man-
agement. Gaps in the structure of a scenario network cor-
respond to missing or incomplete scenarios, and the closing
of these gaps result in the completion of the scenario collec-
tion. A scenario network organizes the collection of its sce-
narios, and its structure indicates several kinds of scenario
relationships, including equivalence relations dividing them
into equivalence classes. These relationships address some
of the challenges associated with scenario management.

Keywords— Scenario networks, requirements engineering,
scenario analysis, scenario management, software specifica-
tion.

I. INTRODUCTION

HE use of scenarios in software development has be-
come increasingly common [1]. Scenarios are useful
for describing required behavior that a system will have;
expressing what part of a system is visible from a particu-
lar viewpoint; and specifying a test case the system should
pass. A scenario is a sequence of events, each consisting
of an actor (human or otherwise) who performs the event
and the action that is performed [2]. Scenarios are typ-
ically expressed in prose and thus are accessible to any
reader. Since they are often expressed in the language and
terms of the system stakeholders, they can be understood
by the stakeholders as well as by analysts and developers.
Each scenario narrates a sequence of events, and this focus
helps the scenario author in choosing what facts the sce-
nario should cover, and the scenario reader in relating the
facts the scenario presents.
While scenarios have proven beneficial [1], [3], [4], [5], [6],
[7], their use also involves certain challenges [1], [2]. A sce-

T. A. Alspaugh (corresponding author) and A. I. Antén are at
the Department of Computer Science, North Carolina State Univer-
sity, 1010 Main Campus Drive (EGRC 408), Raleigh, NC 27695-7534
U.S.A. Email: {taalspau,aianton}@eos.ncsu.edu.

nario is inherently partial; each scenario offers a single view
of a single part of a system’s behavior. Even a large collec-
tion of scenarios may not provide a complete description of
a system, and it is difficult to determine to what extent the
collection is complete. Additionally, the relationships and
dependencies between scenarios in a collection are not ob-
vious. Finally, the scenarios in a collection are unlikely to
be consistent with each other, especially after the intended
behavior of the system has evolved during development.
These challenges, inherent in scenario-driven requirements
engineering, have been a central motivation for our work.
This work has two objectives: (1) to ensure requirements
coverage via the specification of a complete and consistent
set of scenarios, and (2) to develop strategies to support
scenario evolution and management.

The kind of specification information that is typically
missing from a collection of scenarios consists of informa-
tion that is on a larger scale than a single scenario, such
as temporal, causal, or dependency relationships between
scenarios. The temporal relationships between scenarios
are an important part of the intended behavior of the sys-
tem. Causal relationships between scenarios express that
the occurrence of one scenario can cause or prevent the
occurrence of another scenario, whether immediately or at
some later time. Dependency relationships between scenar-
ios express that for a particular scenario, the events chosen
for it, the scope of its effects, the form in which it is ex-
pressed, or other features of it depend on some aspect of
another scenario. A number of other relationships between
scenarios can be significant, such as interchangeability be-
tween scenarios or substitutability of one scenario for an-
other. These relationships are not typically expressed in a
collection of scenarios, or supported by current approaches
to scenario-driven requirements engineering.

In this paper we discuss our approach for expressing this
missing information using scenario networks. A scenario
network is a collection of scenarios whose sequential and
concurrent relationships have been made explicit. It can
be used to provide a complete specification of a system’s
important behavior, including not only the behavior ex-
pressed in individual scenarios but also behavior that spans
more than one scenario. The unification and integration
of its constituent scenarios contributes to improving the
quality of those scenarios; aids in determining whether the
collection of scenarios is complete; and guides the process

of completing them.

Throughout the paper we use the Enhanced Messaging
System (EMS) as an example [5]. The EMS is a compre-
hensive telephone voice messaging system which supports a
wide range of functionality, including: access and authenti-
cation; subscriber interactions with the EMS (e.g. notifica-
tions and message processing); caller interactions with the
EMS (e.g. recording of incoming messages and the mark-
ing of certain messages as urgent); as well as recording,
playing, and archiving of subscriber outgoing messages.

The remainder of this paper is organized as follows. Sec-
tion 2 of this paper summarizes related work. Section 3
introduces scenario networks. Section 4 presents the re-
lationships between scenarios that scenario networks sup-
port. Section 5 compares two approaches for constructing
a scenario network. Section 6 discusses the application of
scenario networks to software development. Section 7 sum-
marizes our findings and plans for future work.

II. RELATED WORK

Our work on scenario networks builds upon research in a
number of areas in requirements engineering. Each subsec-
tion below provides an introduction to one of these areas,
summarizes the most pertinent related work, and discusses
how scenario networks build upon that work.

A. Scenario management

We use the term scenario management to refer to the
management and administration of a collection of scenar-
ios. Scenario management addresses issues that arise as the
number of scenarios for a system increases, such as orga-
nizing, listing, and classifying the scenarios for the system;
tracing dependencies among scenarios, and between scenar-
ios and other artifacts; determining and maintaining rela-
tionships among scenarios; finding the scenario that defines
a particular behavior of the system; detecting and elimi-
nating duplicate or near-duplicate scenarios; managing in-
consistencies among scenarios; and determining whether a
group of scenarios is complete. It is needed for any system
with more scenarios than one person can keep track of in
his or her head.

These issues have received little attention. In their sur-
vey of the use of scenarios in industry, Weidenhaupt et
al. note that the creation, documentation, and validation
of scenarios is a substantial effort in itself [1]. Traceabil-
ity, maintenance of consistency with other artifacts, and
scenario evolution and management are significant prob-
lems that have not been adequately addressed by research
[1]. Jarke et al. also note that little research addresses the
problems that arise in managing a large set of scenarios
[8]. A special issue of the IEEE Transactions on Software
Engineering [9] is devoted to scenario management, and
a related issue of the Requirements Engineering Journal
[10] is devoted to interdisciplinary uses of scenarios, but
the articles in these two issues address the use of scenarios
for various purposes in various situations, rather than the
management of scenarios themselves (with the exception of
Jarke et al. [8], which contains a section on “scenario man-

agement in the large”). More recently, Alspaugh et al. have
proposed an approach to scenario management based on
glossaries, episodes (scenario fragments that appear in sev-
eral scenarios), and measures of similarity between scenar-
ios. The approach uses a purely syntactic view of scenarios
to support analysts as they work to make their scenarios
consistent; trace and maintain dependencies among scenar-
ios; look for scenarios that address a particular behavior;
and determine completeness of a group of scenarios [2].

Scenario networks provide an organizing structure for
a system’s scenarios, and the scenario relationships that
a scenario network uncovers provide ways to classify the
scenarios.

B. Scenario process guidance

Scenario process guidance refers to methods and heuris-
tics that guide the process of creating and refining scenar-
ios. Such process guidance helps analysts identify areas
of system behavior that no existing scenario addresses; lo-
cate scenarios that conflict with each other; and identify
scenarios that either do not sufficiently specify important
behavior, or that over-constrain by specifying unnecessary
or irrelevant details.

Weidenhaupt et al. observed that most developers viewed
the creation of scenarios as a craft rather than an engineer-
ing activity, and that effective theories and heuristics for
guiding the creation and refinement of scenarios are needed
[1]. Several researchers have proposed heuristics and theo-
ries to support them. Potts et al. discuss the refinement of
scenarios through the technique of scenario walkthroughs
in their Inquiry Cycle [3]. Sutcliffe, Maiden, et al. attack
the problem of missing scenarios with a method supported
by their CREWS-SAVRE tool. In this method, new sce-
narios are automatically generated for consideration by an
analyst, using a library of standard models and alternative
sequences of use case events [4], [11]. Rolland and Ben
Achour present a process that begins with a context and
initial scenario for a use case, and then guides the capture
and completion of new scenarios and their integration into
the use case [12]. The process employs guidelines for ef-
fective expression of use cases in prose, and rules that ask
for more information or generate a new use case element
from what is already known. The guidelines and rules are
based on linguistic patterns and structures [12]. The work
on viewpoints discussed below provides process guidance
for improving consistency among scenarios.

Process guidance is an important benefit of the use of
scenario networks. A scenario network aids in identify-
ing missing scenarios and behaviors by forcing analysts to
consider how the scenarios can occur in sequences or con-
currently. The consistency this enforces between scenarios
is different than that provided by viewpoints.

C. Viewpoints

A viewpoint is a partial specification of a system from
a particular perspective [13], [14]. This is usually the per-
spective of a single actor who interacts with the system.
Viewpoints are used as a means of expressing the separate

perspectives of the various actors of a system, and provide
a basis for identifying and eventually reconciling inconsis-
tencies between these perspectives.

Finkelstein, Nuseibeh, FEasterbrook, and other re-
searchers discuss viewpoints in requirements engineering
and a formalization of them termed ViewPoints [13], [14].
For a complex system, ViewPoints provide a framework
for separating the concerns of the various viewpoints. The
specifications from the various viewpoints may be ex-
pressed using different specification languages and methods
supported by different tools. Each viewpoint is defined in
terms of the editing and consistency checking actions ap-
propriate to it, and these actions and the inconsistencies
associated with the viewpoint provide process guidance for
eliciting and elaborating the specification [14]. If the spec-
ification is expressed in terms of a state transition system,
then each viewpoint may have its own subset of states and
of transitions between them. A particular system state or
transition between states may be visible from one view-
point but not from another. Reconciling the inconsisten-
cies between the specifications from each of the viewpoints
produces an integrated specification consisting of all the
system’s states and transitions [13].

Scenario networks are similar to viewpoints in that they
produce a unified system specification out of a number of
smaller specifications. Viewpoints are most effective where
these smaller specifications overlap at least to some ex-
tent, and viewpoints integrate the specifications by unify-
ing common elements shared among specifications. The
overlaps between specifications are the locus where view-
point integration takes place. In contrast, the component
scenarios of a scenario network are required to not over-
lap; in a scenario network, overlaps between scenarios are
eliminated so that each part of the system’s behavior is ex-
pressed in exactly one place. A scenario network integrates
its specifications by connecting the exit point of each sce-
nario with the entry points of all scenarios that can fol-
low it. The connections between scenario exits and entries
are the locus where integration of a scenario network takes
place.

D. Scenario integration

We use the term scenario integration to refer to any pro-
cess that unifies a group of scenarios into a single larger
entity. Scenario integration is not frequently practiced;
scenarios are generally used as individual partial specifi-
cations. This practice exacerbates the problems of missing
scenarios (and completeness in general), inconsistency be-
tween scenarios, and lack of conceptual unity of the system
being described.

Dano et al. integrate scenarios based on the temporal
relationships between them, and construct corresponding
Petri nets, as part of their work on formalizing domain-
expert use cases and producing object type state diagrams
from them [15]. A use case map (UCM) integrates use cases
to provide a whole-system specification [16], [17]. The use
cases are expressed as causal sequences of responsibilities
and denoted graphically as a graph with responsibilities at-

tached. Concurrency is explicitly represented in a UCM.
The original emphasis was on binding responsibilities to
system components and elicitation of requirements and de-
sign information. Feature interaction is examined visually
by inspection of the UCM notation. More recently, UCMs
have been used to express whole-system behavior, and for-
malized by (manual) translation into the specification lan-
guage LOTOS [18]. Sendall’s operation schemas are sys-
tem operations, corresponding to Jacobson’s transactions
that make up use cases, augmented by pre- and postcon-
ditions (and other information) [19]. The conditions ex-
press when each operation can occur and the effect of each
operation. The operation schemas for a system are thus
implicitly integrated into a single specification. The use
cases that contain the system operations become emergent
phenomena of the operation schemas for the system. A
use case itself can be considered to integrate some of the
scenarios of a system, since it can describe both a principal
sequence of actions and also possible variants for alternate
orderings, exceptional cases, or error handling [20]. Only
scenarios that are variants on each other are contained in
a single use case, however. Viewpoints provide a means of
integrating overlapping scenarios, as discussed above [13],
[14].

Scenario integration is one of the primary results and
benefits of creating a scenario network. Scenario networks
are similar to UCMs in that both of them provide a graphic
notation that indicates how scenarios (use cases) can occur
temporally. Scenario networks add techniques for assessing
and improving completeness of the collection of scenarios
and consistency among the scenarios.

E. Preconditions and postconditions for scenarios

Pre- and postconditions for scenarios express what each
scenario requires and achieves. A scenario’s precondition
expresses what the scenario expects to be true when it be-
gins, and a scenario’s postcondition expresses what the sce-
nario guarantees to be true when it concludes (if its pre-
condition was met).

Pre- and postconditions are widely used in many con-
texts. A number of researchers have attached pre- and
postconditions (or, equivalently, initial and final states)
specifically to scenarios. Rolland and Ben Achour use ini-
tial states of agents and final states of episodes to guide
the writing of use cases involving these agents and episodes
[12]. Rolland et al. attach initial and final states to scenar-
ios in their L’Fcritoire tool in support of a heuristic to
guide the search for additional goals [21].

Scenario networks use pre- and postconditions for sce-
narios to restrict the sequences of scenarios expressed by a
scenario network.

F. Scenario relationships

A scenario relationship expresses equivalence, ordering,
causality, inheritance, or some other connection between
two scenarios. Examples of scenario relationships between
any scenarios S4 and Sp are given in Table I.

Sa uses Sp

S extends Sp

S is equivalent to Sp
S4 is a subset of Sp
Sa overlaps with Sp
Sa depends on Sp

TABLE I
CoMMONLY USED SCENARIO RELATIONSHIPS

Jacobson et al. discussed the “uses” and “extends” rela-
tionships in their original work on use cases [22]. Simons
and others note that the Jacobson and the Unified Model-
ing Language (UML) definitions and redefinitions of “uses”
and “extends” have been problematic and are still not en-
tirely satisfactory; they induce arbitrary goto-like jumps
in the flow of control, “extends” is used in the literature
and in practice for purposes for which it is not adequate,
and neither relationship is sufficient to address long-range
dependencies between use cases [23]. Breitman and Leite
define and use relationships between scenarios (overlap,
equivalence, and subset) to classify and guide the evolu-
tion of scenarios [24]. Alspaugh et al. discuss the impor-
tance of dependency relationships between scenarios and
their preservation as the scenarios evolve [2].

Scenario networks provide a basis for several new sce-
nario relationships which we introduce in Section IV. These
relationships are used in the construction and refinement
of the scenario network and its constituent scenarios.

G. Concurrency between scenarios

Concurrency in requirements specification has been ad-
dressed by, for example, the CoRE method [25] the model-
ing approach of Coleman et al. [26], and the Specification
and Description Language (SDL) and Message Sequence
Charts (MSC) [27], [28]. Surprisingly little research has
focused on concurrency between scenarios, however. A sce-
nario is a sequence of actions and this sequence of actions
tends to obscure the fact that in general a scenario occurs
concurrently with other activity in the system. Desharnais
et al. use a state-based formalization of scenarios to ex-
plicitly represent concurrency between scenarios [29]. The
graphic notation of UCMs expresses the concurrency that
is desired between use cases, and has been used to detect
feature interactions [16]. There is a large body of estab-
lished work on concurrency and concurrent systems [30],
[31], [32], but it been little applied to concurrency between
scenarios.

Scenario networks begin to address concurrency between
scenarios and this continues to be an area of focus for future
work.

H. Specification formalisms for modelling

A specification formalism is a basis for constructing a
formal model whose behavior mimics important aspects
of the system it specifies, but which is abstract, compact,

and amenable to analysis. Whereas requirements describe
a system by presenting its properties, a model describes
a system by behaving like or simulating it. There are a
wide variety of specification formalisms, each with its own
strengths and weaknesses and areas of greatest applicabil-
ity. We discuss the formalisms that are most relevant to
scenario networks: Petri nets, high-level message sequence
charts, and extended finite state machines.

A Petri net is a directed graph with two kinds of nodes,
places and transitions, and with arcs that run either from
places to transitions or from transitions to places [33]. If
an arc runs from a node ¢ to another node d (whether a
place or transition) then c is said to be an input to d, and d
an output from c. The state of the Petri net is indicated by
the presence of tokens in one or more places, and a token
moves from one place to another when a transition between
them fires. A transition can fire when all of its input places
are occupied by tokens, and when a transition fires all of its
output places receive tokens. Thus, concurrency is inherent
in Petri nets and they are particularly useful in modelling
concurrent systems. Petri nets are supported by almost
four decades of research and a number of software tools [33].
The structure of Petri nets does not map to the structure
of the systems they describe or the problems they solve,
however, so it can be difficult to trace a feature of a Petri
net to a feature of a description of the system in another
form.

High-Level Message Sequence Charts (HMSCs) are a
formalism for describing systems in terms of Message Se-
quence Charts (MSCs) [28]. A Message Sequence Chart is
a graphical representation of sequences of messages trans-
mitted between instances (systems, components, processes,
etc.) [28], [34]. A basic MSC is roughly comparable in func-
tion to a scenario, with messages or actions of an MSC cor-
responding to events of a scenario. MSCs may be far more
complex than scenarios, however, with timers and quanti-
fied times, conditions for restricting message sequences, al-
ternation, iteration, concurrency, references to other MSCs,
and various other features for specifying partially or to-
tally ordered sequences of messages. A High-level Message
Sequence Chart connects individual MSCs, not using the
MSC notation as its name suggests but an unrelated no-
tation that indicates sequential composition, alternation,
iteration, concurrency between two HMSCs, and recursive
composition in which a node of an HMSC can itself be an
HMSC [28], [35].

An extended finite state machine is a finite state machine
(FSM) whose states have been augmented by variables [36].
The global state of the machine then consists of its explicit
state (one or more of the nodes of its diagram) plus its
extended state (the values of the variables). The variables
may be external to the FSM or local to it, in which case
their scope may be all the states and transitions or some
subset of them. The values of the variables can be changed
by the explicit state, by transitions between explicit states,
or possibly from outside the extended FSM; the values of
the variables may be used as guards for each transition.
Extended FSMs are widely used to describe many sorts

of systems, and occur in several variants, including State-
charts [37], [38] and state diagrams in the Specification and
Description Language (SDL) [27], [39]. Statecharts extend
the basic idea of extended FSMs with several sorts of com-
position, including concurrency and clustering of states to
ameliorate state explosion. They are widely used (for ex-
ample in UML) and software tools such as StateMate are
available to support them. SDL was developed especially
for telecommunications and embedded systems (as were
MSCs and HMSCs), and is most commonly employed in
those domains.

A scenario network is an extended finite state machine
that has been adapted to express temporal and causal re-
lationships between scenarios. Its nodes are scenarios, and
its transitions represent possible paths from one scenario
to another. Paths that initiate a new instance of concur-
rency are marked to distinguish them. Unlike the tran-
sitions of an FSM, the transitions of a scenario network
are not labelled with inputs, because the event that trig-
gers a transition is part of the scenario the transition leads
to. Each scenario is guarded by a precondition expressed
in the primitive terms of the network (corresponding to
the extended state of an extended FSM), and has a post-
condition expressing the scenario’s effect on the primitive
terms. Scenario networks express sequences of actions, as
do Statecharts, MSCs, and HMSCs, and like Statecharts
and HMSCs the graphic notation for scenario networks is
based on that of FSMs and transition systems in general.
We limit scenario networks to a simpler structure than that
of Statecharts, MSCs, and HMSCs in order to concentrate
on relationships between scenarios, and to focus on the
requirements engineering and process challenges that are
made clear and can be mitigated even with this simple
structure. Scenario networks differ from Petri nets in a
number of ways, notably in that scenario networks do not
possess separate transition and place nodes, and the form
of a scenario network is directly traceable to significant as-
pects of the behavior of the system it describes.

III. SCENARIO NETWORKS

This section defines specific terminology and introduces
scenario networks.

A. Terminology

We define the following key terms.

A scenario is a sequence of events, plus possibly some
associated attributes such as pre- and postconditions [2].
Each event consists of an action and an actor that per-
forms it. An actor may be a specific person, component,
or system, or may be an unbound role or parameter that
can be filled by any of several specific actors.

A scenario network is comprised of a group of scenarios
and the interconnections between them that indicate the
allowed scenario sequences and concurrency. The intercon-
nections are restricted by the pre- and postconditions of
each scenario. At least one of the scenarios is distinguished
as initial, and at least one other as terminal.

A multipath is a possibly ramified path along the connec-
tions between the scenarios of a scenario network. In its
simplest form without concurrency, a multipath is simply
a sequence of scenarios. Where concurrency is possible, a
multipath can ramify into several concurrent sequences.

An initial scenario of a network is one that can begin a
multipath in the network, and can appear nowhere else.

A terminal scenario of a network is one that can end
a branch of a multipath in the network, and can appear
nowhere else.

The precondition of a scenario is a logical expression that
must be true in order for the scenario to begin. The pre-
condition of scenario S, is denoted Pre(Sy).

The postcondition of a scenario is a logical expression
that is guaranteed to be true after the scenario concludes.
The postcondition of scenario Sy is denoted Post(Sa).

The primitive terms of a network are a set of variables
of Boolean, integer, or other types, in which the conditions
of scenarios in the network are expressed.

The follow set of a scenario is the set of scenarios in its
network that can follow it in a sequence. The follow set of
scenario S4 is denoted Follow(Sy4).

The precede set of a scenario is the set of scenarios in its
network that can precede it in a sequence; that is, the set
of scenarios whose follow sets contain it. The precede set
of scenario Sy is denoted Precede(Sy).

The ramification set of a scenario is the set of scenarios
in its network that can begin a new concurrent sequence
after it. The ramification set of scenario S, is denoted
Ramify(Sa).

B. Motivation and example

Individual scenarios are frequently used to describe a sin-
gle transaction or a single sequence of events accomplishing
a particular purpose (as in Scenario S12 shown in Table II).
A scenario describes part of a system’s behavior, and a
group of scenarios describes the entire behavior of a sys-
tem. Ideally, every system behavior is expressed by one or
more scenarios in the group. For illustration, we consider
scenarios for the Enhanced Messaging System, a voice mail
system discussed in our earlier case study [5].

S12. Subscriber listens to the next message.
1. Subscriber s dials the next message command.
EMS plays s’s next message.
3. If that message was ‘new’, its state becomes ‘old’

N

TABLE II
EMS SCENARIO Sia

What is not expressed by a group of scenarios is the
allowed temporal relationships among all the scenarios.
There is no specification of either the allowable sequences
of scenarios or concurrency between sequences of scenarios.
Scenario networks provide a way to express this additional
information. Any allowable behavior of the system corre-
sponds to a (possibly ramified) path through the network,

beginning at an initial scenario and continuing until each
branch of the path reaches a terminal scenario.

A detailed example of a sequential scenario network for a
simplified EMS is presented in our earlier work [5]. Here we
present an example from the complete EMS that demon-
strates concurrency, using the scenarios listed in Table ITI.

So EMS startup.

S1 EMS shutdown.

S Subscriber calls EMS, authenticates him/herself.
S12 Subscriber listens to the next message.

S13 Subscriber has no more messages to listen to.
So9 Subscriber disconnects from EMS.

S39 Caller calls a subscriber and leaves a message.
S39 Caller disconnects from EMS.

TABLE III
EMS SCENARIOS USED IN THE EXAMPLE

In the context of the EMS, expected or desired behaviors
are represented by a number of multipaths through the
scenarios listed in Table ITI. Wherever a multipath diverges
into two or more paths, it indicates concurrency between
the scenario sequences on the parallel paths. Some allowed
multipaths for the EMS are listed in Table IV.

The list of allowed multipaths continues without end,
so rather than listing the multipaths we create a scenario
network that expresses exactly the multipaths that are al-
lowed.

We express scenario networks in one of two equivalent
ways: in tabular form (see Table V), or as a diagram (see
Figure 1). In each form, the scenarios in the network may
be further restricted by pre- and postconditions. For the
tabular form, we list the network’s scenarios, identify those
that are initial or terminal, and give each scenario’s follow
set and ramification set. Table V provides this information
for the example scenarios.

A second way to express a scenario network is by produc-
ing a diagram in which scenarios, represented by circles, are
connected by arrows indicating sequence, and slashed ar-
rows indicating where multipaths through the network may
branch, as portrayed by the scenario network diagrams in
Figures 1 and 2.

Figure 1 shows the entire scenario network diagram for
the completed EMS. In the diagram, scenarios are repre-
sented by labelled circles, and transitions between them by
arrows. Each gray circle indicates the Cartesian product
of all arrows into it with all arrows out of it, and all arrows
out with all arrows in; otherwise the diagram would con-
tain a thicket of arrows. For example, at the gray Cartesian
product circle in the upper right, the arrow from Ss7 into
the product stands for seven arrows: one from Ss7 to each
of S3; through Sss, Sss, and S3g. For purposes of illustra-
tion in this paper, we focus our discussion on a portion of
the scenario network shown in Figure 2.

The scenario network in Figure 2 supports all the allowed
scenario multipaths listed in Table IV, and an infinite num-

1//
Ak
/ k"

Kay:
S8
g6 | 827
\\ /
57 1__:;, | 53
S:z
./j% P\\.‘
520 N
511 —
_—

516 and 536 wana shaorbed (Mo aifer soananos

Soanarno

Inial Scaneria

Tesminal Scenaro

Cartesian Product
al Afrowe

Sopnano Sequence
Scenario Concunmant
Branch Hagins

Arrow Mulliplied by
Cartasian Product

Fig. 1. Diagram of EMS scenario network

i

512

S2 —I 529

\/

SU—I S1

A

S30 —— p/'s39

-,

Fig. 2. Diagram for example scenario network

50%51

So - 51
L'SQ*SB*SQQ

Csso* S39
So Sh

S’ »S'(
r’ 30 39 Sl

So
L’S2*513*529

(’530* S39

So ~S1

LSQ*SQ*SQQ

S30— S39
s

T o
So—S19— S13— S29

('530* S39

S() 'Sl
LL’ 52*512*329

S30—S39

(’530* S39

So ~S1
L’L So—= 519 S12—>S13— Sa9
S30— 539

TABLE IV
SOME ALLOWED EMS MULTIPATHS

ber of others. However, it also supports an infinite number
of scenario multipaths that should not be allowed, such as

('530* S39

So ~S1

L"52*512*512*529
(caller left one message but subscriber listened to two)

Such undesired multipaths are ruled out by assigning a
precondition to each scenario. A scenario’s precondition is
required to be true in order for the scenario to begin. Each
scenario is also assigned a postcondition which is satisfied
at the end of the scenario. At any point in a multipath
we can determine which scenarios can occur by comparing
their preconditions with the postconditions fulfilled by sce-
narios already completed. The pre- and postconditions for
the example scenarios are given in Table VI.

We note that scenario networks may appear on the sur-
face similar to finite state machines, but there are impor-
tant differences between them. Notably, each scenario’s
conditions refer to a state that can be arbitrarily complex,
so that a scenario network is capable of much more com-

Initial scenarios So

Terminal scenarios S, Sag, S39

Scenario Follow set Ramification set

So S Sa, S30

St 0 0

Sa Si2, S13, S29 0

Si2 Si2, S13, Sa9 0

S13 Si2, Si3, S29 0

Sag 0 0

S30 S3g 0

S39 0 0
TABLE V

TABULAR FORM FOR EXAMPLE SCENARIO NETWORK

Precondition Postcondition
- So (acc=1tt) AVs € S: (s.tot' = 0)
tt S1 acc = ff
ls.ckg N acc Sy (s.ckg’ = tt) A (s.rem’ = s.tot)
0 < s.rem Sio s.rem’ = s.rem — 1
0= s.rem Siz it
tt Sao s.ckg’ = ff
acc S30 (s.tot’ = s.tot + 1) A
(s.rem’ = s.rem + 1)
t Ssg
Term Meaning
acc True while EMS is accepting calls.
S The finite set of subscribers.
s A subscriber in S.
s.ckg True while s is checking message
s.tot The number of messages s has.
s.rem The number of unheard messages s has.

TABLE VI
PRE- AND POSTCONDITIONS OF EXAMPLE SCENARIOS

plex transition sequences than a finite state machine. Also,
a scenario network addresses concurrency in a manner dif-
ferent from the way a finite state machine does nondeter-
minism.

C. Scenario networks as system simulations

Scenario networks simulate a system by presenting se-
quences of scenarios that correspond to desired behaviors
of the system. Each individual scenario describes part of
the system’s behavior in the usual way; actors correspond
to people, components, or systems, and may represent all or
part of the system whose behavior is of interest, or actors
that are part of its environment. The events of the sce-
nario are taken to occur in the order the scenario specifies.
For the purposes of the scenario network, each scenario is
considered to occur atomically; the scenario network does
not reflect any details of the interior of the scenario. This
simplification is to allow us to separate concerns by con-
centrating on relationships between scenarios, and by con-

sidering each scenario only in terms of its conditions and
its follow and ramification sets.

A scenario network begins a multipath with an initial
scenario, then continues by following each scenario’s follow
and ramification sets. A scenario is allowed to begin only
when it is a possible next scenario and its precondition is
true; if both these are the case, the scenario can be trig-
gered by its first event. The possible next scenarios may
be visualized using one or more counters, initially a single
counter on an initial scenario. The possible next scenarios
are all the scenarios in the follow or ramify sets of a scenario
that has a counter. If a scenario in a ramify set is triggered,
a new counter is given to that scenario, indicating a new
concurrent thread and beginning a new branch of the multi-
path. If a scenario in a follow set is triggered, that scenario
is given its predecessor’s counter and the existing branch
of the multipath is extended. Only one of the scenarios in
the predecessor’s follow set can be triggered. When a sce-
nario is triggered, its postcondition takes effect and may
change the values of the primitive terms of the scenario
network; if two scenarios or more are triggered simulta-
neously, we consider that their postconditions are applied
in some particular sequence, without defining which of the
possible sequences occurs. When each counter reaches a
terminal scenario, it has no further effect since terminal
nodes have empty follow and ramify sets. When all a sce-
nario network’s counters have reached terminal nodes, the
multipath is complete.

We note that it is possible for a scenario network to hang,
for its scenarios to set its primitive terms so no possible
next scenario’s precondition is satisfied. In such a situa-
tion the multipath does not terminate and the result of the
scenario network is undefined.

The primitive terms of a scenario network may be in-
dividual booleans or integers or values of other sets. For
example, in the EMS, there are primitive terms whose val-
ues are drawn from the set of all subscribers, a finite but
dynamically changing set; others whose values are strings,
lists, or other containers; and other terms whose values are
attributes of a particular subscriber, analogous to fields of
an object or mappings from the set of subscribers onto an-
other set of values.

It is important to note that although a scenario network
simulates a system, it does not itself represent the system
being modelled or any other entity in the environment.
Instead, it represents possible sequences of events, nothing
more, and the actors of those events may be the system
or components of the system, entities in the environment,
people interacting with system or in the environment, or
anything else that can cause an event to occur. All these
actors are distinct from the scenarios that describe them,
and from the scenario networks that are made up of the
scenarios. The system (and all the other actors) are present
only by virtue of the events in which they participate, and
these events may be distributed across many scenarios.

IV. RELATIONSHIPS BETWEEN SCENARIOS

Several kinds of relationships between scenarios are ev-
ident from the scenario sequences for a scenario network.
Each of these relationships can be expressed in terms of
follow sets. In the definitions below, S4, S, Sc, Ssub,
and Ssuper represent arbitrary scenarios.

The elementary relation can be followed by (—) expresses
follow and ramification sets as a relation. Sy, — Sp if Sp
is either in S 4’s follow set or ramification set.

Si—Sp 2 Sp € Follow(Sa) U Ramify(S4)

Extended by universal quantification, — produces the
follow subtype relation g, and the precede subtype rela-
tion Jpre. SaTt01SB (SadpeSn) if Sa can follow (pre-
cede) any scenario that Sp can:

S43t15B VSc.(S¢ — Sp) = (Sc — Sa)

A
SadpeSs = VSc.(Sc + Sp) = (Sc + Sa)
When S, is both a follow subtype and precede subtype
of Sp, then S4 may be substituted in any place where
Sp appears. The combination of these two relationships
produces the can be substituted for relationship Jgeq.

S4TseqSB = (SaZt15B) A (SaZpreSB)

Each of these reflexive and transitive relations D1, Jpyre,
and g, is the basis of an equivalence relation. The follow
equivalence relation =g, is true when Iy, holds in both
directions. Two scenarios are follow-equivalent when they
can follow all the same scenarios.

SA=1S5 2 (SaZt1SB) A (SBDt01S4)

Two scenarios are precede equivalent (=pre) when they can
precede all the same scenarios.

SAEpreSB é (SAgpreSB)/\(SBgPFeSA)

A third and stronger equivalence relation sequence equiv-
alence =qeq is true when both =¢,; and =, hold. Two
scenarios are sequence-equivalent when either can be sub-
stituted for the other in any scenario sequence.

SAEseqSB é (SAEfolSB)/\(SAEpreSB)

Tio1 and Jpre, Jseqs =fo1and =ppe, and =goq indicate a
range of possibilities of substitution of one scenario for an-
other. Each of these substitution relationships offers the
possibility of generating plausible new sequences of scenar-
ios by substituting into sequences already deemed accept-
able, and directs attention to related scenarios that may
need to track each other as changes occur.

One of the most interesting relationships arising in a sce-
nario network is a substitution relationship analogous to
the behavioral subtype relationship [40], in which Sg,p is

a behavioral subtype of Sgyuper (denoted Ssup <: Ssuper)
iff Ssup has all the behavior of Ssyper, and possibly some
additional behavior. Then S,; can be substituted for any
occurrence of Sgyper and still satisfy the behavior (here, the
pre- and postconditions) expected from Ssyper. The “can
be substituted for” relationship Dy is a step in this di-
rection. In analogy to object-oriented types and subtypes,
we consider that a pre- and postcondition define a sce-
nario type, and that two scenarios are of the same type
if their preconditions and postconditions are equivalent.
Then the appropriate reflexive and transitive subtype re-
lationship among scenarios Ssyp <: Ssyper OCCurs whenever
two conditions hold:

(1) Ssup’s precondition is no stronger than Ssyper’s (s0
that Ssyup can begin whenever Sgyper) can)

Pre(Ssuper) = Pre(Ssub)

(2) Ssup’s postcondition is no weaker than Ssyuper’s (s0
that Sy fulfills all the conditions that Sgyper does)

POSt(Ssub) — POSt(Ssuper)

These two conditions call to mind the covariance and
contravariance appearing in object-oriented subtyping [41].
Behavioral subtyping of scenarios by this definition has
the desirable property that it may be automatically de-
termined, for an appropriate language of conditions.

S is equivalent to Sp =oeq
Sa can be substituted for Sp Tseq
Sa can begin whenever Sp can g
S4 is a refinement of Sp <: or Jgeq

TABLE VII
SOME SCENARIO RELATIONSHIPS AND POSSIBLE FORMALIZATIONS

V. CONSTRUCTING A SCENARIO NETWORK

In this section, we discuss two systematic approaches to
construct a scenario network for a collection of scenarios:
(1) annotating each scenario with pre- and postconditions,
and (2) refining large-scale narratives covering many sce-
narios about the system’s behavior into smaller units.

A. Constructing a scenario network from pre- and postcon-
ditions

The basis of the pre- and postcondition approach is to
consider what result each scenario achieves, and what it
requires in order to achieve that result. We express the
objectives and needs of each scenario as logical pre- and
postconditions in [5]. Then scenario Sp can occur immedi-
ately after scenario Sy if (Post(Sa)APre(Sp)) is satisfiable,
that is, if there is a set of values for the primitive terms
of the network for which both the postcondition of S4 and
the precondition of Sp are true. However, S4 and Sg are
not necessarily in the same sequential branch; satisfiability
only indicates that they can be adjacent in a linearization

of some multipath. In order to make satisfiability indi-
cate which scenarios can follow each other sequentially, we
first partition the scenarios into subsets, based on which
scenarios can appear in sequence without beginning a new
concurrent branch. Then within each subset, satisfiability
of (Post(Sa)APre(Sp)) indicates that Sp is in the follow set
of S 4, and equivalently that a sequential arrow connects S 4
to Sp in the diagram of the scenario network. A table or
a diagram of the scenario network can be produced from
the conditions in combination with the partitioning and
the concurrent branching among the subsets, and relation-
ships between conditions express equivalence or ordering
relationships between the scenarios with those conditions.
However deriving a diagram and these relationships with-
out automated support is a cumbersome process.

The EMS case study demonstrated that this was not an
efficient method for constructing a scenario network. We
found that in constructing the pre- and postconditions first,
the knowledge the analyst already has about the desired
sequencing among the scenarios is effective in debugging
and verifying the conditions. But by the time the analyst’s
knowledge could be brought to bear on the problem in this
way, a substantial effort had already been expended in cre-
ating the initial pre- and postconditions. We also found
that in using this knowledge to debug the follow sets, the
follow sets converged slowly towards acceptable results. We
hypothesized that slow convergence resulted in part be-
cause the follow sets depend on the interactions between
many pre- and postconditions, and this approach did not
provide sufficient guidance in the question of which condi-
tion to address next. Too much time was spent adjusting
first one condition then another, and then backtracking.
In the remainder of this paper, we discuss the narrative
refinement approach, which proved more effective.

B. Constructing a scenario network by narrative refine-
ment

In the narrative refinement approach, analysts consider
the envisioned system that is described by the collection of
scenarios. The system’s behavior is first described with a
single high-level story, expressed in natural language. For
example, in the EMS case study the single high-level story
was “The EMS records messages that callers leave for par-
ticular subscribers; subscribers may listen to these mes-
sages and store them for a time if they wish.” The sto-
ries are then successively decomposed into smaller, more
detailed stories until each story contains enough detail so
that all the desired system behaviors are described in some
story. These smaller stories may be extracted from the
higher-level stories in several ways: choosing a single ac-
tor and following his or her interactions with the system:;
following a single concurrent thread of behavior of the sys-
tem and its environment; or identifying alternatives to a
previously identified path of actions.

As the stories become progressively more detailed, they
yield sequences of the specific scenarios covering actions
that take place in that story. They indicate sequential, al-
ternative, and concurrent relationships among their com-

10

ponent scenarios, from which a scenario network diagram
can be constructed.

C. Parallel construction of scenarios and network

Other approaches are possible and constitute future
work. The two approaches described above (derivation di-
rectly from conditions, and narrative refinement) assume
that a collection of scenarios already exists before the sce-
nario network is begun, but in practice this need not be the
case. We have seen indications that an approach in which
the scenarios and the scenario network are constructed in
parallel can offer further advantages. In this situation, the
scenario network provides process guidance throughout the
creation of the scenarios, rather than only when the sce-
nario collection is nearly complete. Individual scenarios
can be produced by elaborating the stories to the desired
level of detail, and dividing them into smaller stories and
ultimately scenarios. The additional effort required for con-
structing the scenario network would be minimal with this
approach.

VI. APPLYING SCENARIO NETWORKS

Scenario networks offer many benefits to developers as
they seek to specify a system’s requirements. A sce-
nario network records the sequences and concurrency that
can occur among its scenarios, information that is not
part of the individual scenarios and may not otherwise be
recorded. A scenario network provides a clear visual repre-
sentation of those sequences and concurrency, in the form
of the scenario network diagram. The process of creating a
scenario network helps the analyst improve the quality of
the individual scenarios and (our case study showed) also
helps the analyst uncover problems with the requirements
and thus improve their quality as well (Section VI-A dis-
cusses this in greater detail). A completed scenario network
acts as a system specification that includes everything the
component scenarios specify and additionally specifies be-
havior that spans more than one scenario, thus providing
a more effective operationalization of the system’s require-
ments. All these benefits aid in the validation of the ana-
lysts’ understanding of the system’s behavior, the system
specification (which is the scenario network itself), and the
system requirements. In this section, we discuss in more
detail how the application of scenario networks during re-
quirements engineering activities offers two specific bene-
fits: it offers process guidance to analysts, and provides
a framework for scenario management as discussed in sec-
tions A and B below.

A. Process guidance

Scenario networks offer process guidance in several ways.
A scenario network provides a useful roadmap for guid-
ing walkthroughs of the scenarios. The benefits of walk-
throughs are widely known [3], [4]. The process of con-
structing a scenario network provides important benefits
besides the obvious one of producing the network. Con-
structing a scenario network by either of the systematic
approaches described in Section V spurs a comprehensive

sequence of walkthroughs; uncovers equivalence classes and
subtypes among the scenarios and results in improved con-
sistency in what the scenarios expect from and provide to
one another, based on these relationships; and draws at-
tention to gaps, overlaps, and shared episodes among the
scenarios. We discuss these points in more detail below.

Scenario walkthroughs

A scenario network diagram provides a graphical aid that
is well suited to walkthroughs. The directed-graph lay-
out of the diagram suggests paths to follow and guides the
choice of what paths to traverse or walk through next. A
scenario network guides the walkthrough process by direct-
ing walkthroughs along a sufficiently exhaustive selection
of the multipaths allowed by the scenario network. Al-
though a scenario network does not indicate how large a
selection would be sufficiently exhaustive, or exactly which
multipaths should be in the selection, it does indicate what
multipaths there are to select from. In the simplest sense,
a scenario network acts as a reminder to visit each scenario
along the path a walkthrough follows. A scenario network
makes visually explicit the points at which two or more
alternative paths exist, and provides a structure for fol-
lowing each alternative in succession in an organized fash-
ion. Similarly, a scenario network makes visually explicit
the points at which there are opportunities for additional
concurrency in a walkthrough, including simultaneous in-
stances of the same concurrent branch. A scenario network
also guides the consideration of consistency among a set of
walkthroughs that describe the desired behavior of a sys-
tem, by providing a specification against which to verify
that each walkthrough’s sequences of scenarios and concur-
rency among sequences are contained in the scenario net-
work’s multipaths. Finally, the diagram provides a form in
which certain kinds of information uncovered by the walk-
through can be conveniently recorded as the walkthrough
proceeds. We note particularly that the primitive terms of
a scenario network and the pre- and postconditions of sce-
narios in the network can record many kinds of behavior
and relationships that span several scenarios. For example,
the primitive terms s.tot and s.rem express several rela-
tionships between Ss “Subscriber calls EMS, authenticates
him /herself”, S12 “Subscriber listens to the next message”,
S13 “Subscriber has no more messages to listen to”, and Ssq
“Caller calls a subscriber and leaves a message”, including
the relationship that Ssy for a given subscriber s enables
the occurrence of S5 for s, and the relationship that Si3
for a given subscriber s can only occur if the number of
occurrences of Ssq for s is the same as the number of oc-
currences of Si» for s since the most recent occurrence of
Ss for s.

Guidance from systematic construction

The process of constructing a scenario network impels
a continuing series of walkthroughs to check the part of
the scenario network completed so far and to examine
how remaining scenarios should be added to the network.
Our studies indicate that an analyst naturally tends to
check each change to his/her scenario network by walk-

ing through several characteristic narratives for multipaths
that pass through the scenarios or connections that were
changed. Similarly, an effective way to determine how to
add a scenario to a network is to walk through some nar-
ratives that involve that scenario. For example, consider
the process of adding the scenario Ss7 “Caller calls EMS
directly and leaves a message” to the scenario network of
Figure 2. Walking through the paths that could involve
this scenario shows that S3; is quite similar (follow- and
precede-equivalent) to S3g “Caller calls a subscriber and
leaves a message.” Thus S37 should be connected into the
diagram in exactly the ways that S3g is. When we exam-
ine the full EMS diagram in Figure 1, we see that this is
indeed the case. We also find that for an analyst, thinking
about the system in terms of walkthroughs suggests addi-
tional new multipaths that should be walked through and
specified. These walkthroughs offer opportunities to im-
prove the quality of individual scenarios and the analyst’s
understanding of the system as recorded in the scenario
network.

Another benefit that occurs as a scenario network is con-
structed is the uncovering of equivalence classes of scenar-
ios, and the establishment of subtype orderings among the
equivalence classes. Construction of a scenario network
forces the analyst to consider which scenarios are equiv-
alent and to what degree. This occurs as the analyst
considers which scenarios can follow or precede a partic-
ular scenario, as part of the process of creating a scenario
network diagram. The diagram expresses these relation-
ships indirectly and graphically, and a correct diagram is
one in which (among other things) each of these relation-
ships is expressed correctly. An example of an equivalence
class in the small scenario network of Figure 2 is the set
{S2, S12, 513} (see Table VIII); each of these scenarios has
the same follow set. The careful analysis that occurs dur-
ing the construction of a scenario network and the result-
ing clarifications of and corrections to the scenarios also
improve the quality and usefulness of the scenarios and
requirements and results in a more complete understand-
ing of how the system is to behave. For example, in the
EMS case study, corrections to S12 “Subscriber listens to
the next message” resulted in the discovery and correc-
tion of two requirements errors, an incorrect requirement
that archived messages be presented using a separate set
of commands, and another error in the requirement for the
sequence in which all messages are presented [5].

The analyst’s consideration of scenario equivalence dur-
ing the construction of a scenario network results in spe-
cific attention to what each scenario assumes is available
and what each scenario assumes is true, and to the re-
sults the actions of each scenario produce. Construction
of a scenario network necessarily draws attention to gaps
that correspond to missing scenarios, to overlaps between
scenarios (of the actions they contain, or the results they
produce, or in what they assume), and to unsuspected
episodes shared by several scenarios or even to the con-
tainment of one scenario by another. For example, in the
EMS case study, construction of the EMS scenario network

11

identified unintended overlaps between S12, “Subscriber lis-
tens to the next message”, and five related scenarios, all of
which originally advanced the “current message” to be the
next message but only some of which should have, result-
ing occasionally in an advancement beyond the next mes-
sage. Construction of the scenario network also identified
an episode for recording a message that had been roughly
duplicated among S3q, “Caller calls a subscriber and leaves
a message”, and six other scenarios.

Gaps in the scenario network usually correspond to miss-
ing or incomplete scenarios. The visual metaphor provided
by the diagram makes the discovery of such unsuspected
scenarios much easier than it would be otherwise. For ex-
ample, construction of the EMS scenario network uncov-
ered the missing scenario that became S13, “Subscriber has
no more messages to listen to.” It was found because, as
in Figure 2, S12, “Subscriber listens to the next message”,
could be repeated (as indicated by the arrow from Si2 to
itself) but there was no different behavior specified to oc-
cur when S75 could no longer be repeated because there
were no more messages to hear.

B. Scenario management

Scenario networks provide a rich framework for manag-
ing a collection of scenarios. Additionally, the equivalence
relations between scenarios that a scenario network sup-
ports form a useful means for classifying and linking the
scenarios in a collection.

A scenario network provides a temporal scheme for orga-
nizing scenarios; every scenario has a place in the network.
A scenario’s place in the scheme is based upon where it can
occur, temporally, relative to the other scenarios. Tempo-
ral position is an important aspect of the scenario from the
analyst’s point of view. Thus it produces a better orga-
nization than one based on a more arbitrary aspect, such
as the order in which the scenarios were created. Orga-
nizing scenarios according to the order in which they were
identified fails to provide insights into meaningful relation-
ships, such as sequencing and concurrency. In contrast,
scenario networks highlight missing scenarios and duplica-
tion between scenarios in a way that analysts find natural
and useful, lending itself to methodical validation via walk-
throughs (discussed in Section VI-A).

A limitation of organizing scenarios with a scenario net-
work is that this organization does not linearize easily; its
natural topology is that of a graph. Thus a scenario net-
work does not translate straightforwardly into a table of
contents, for example.

An assortment of relations between scenarios arise dur-
ing the construction of a scenario network or are indicated
by the structure of a scenario network. The most immedi-
ately useful of these are equivalence relations, which indi-
cate scenarios that are equivalent in some sense. Examples
are the relation that groups together scenarios that can fol-
low all of the same scenarios (illustrated by Table VIII); or
scenarios that can precede all of the same scenarios; or sce-
narios that can both follow the same scenarios and precede
the same scenarios. Formally, each of these equivalence

12

relations partitions a collection of scenarios into disjoint
equivalence classes; the scenarios in each class are inter-
changeable in the sense of the relation, and every scenario
is in exactly one class. Informally, each relation groups
scenarios that are similar in a particular way. As an exam-
ple, Table VIII presents the four equivalence classes for the
“follow-equivalence” relation applied to the example sce-
nario network of Figure 2 and Table V. In this example,
S12, S13, and Sog form an equivalence class because each
of them can follow only Ss, Si2, or S13. Each of the eight
scenarios appears in exactly one equivalence class.

Equivalence class Can follow
{So}]
{ 51, 82, S50 } : S
{ S12, S13, S29 } Sa, S12, S13
{ S39 } S30

TABLE VIII

FOLLOW-EQUIVALENCE CLASSES OF EXAMPLE SCENARIO NETWORK

These equivalence classes of scenarios are useful in sce-
nario management. Any change to one scenario in a class
is likely to be needed for the other scenarios in the class,
or at least is more likely to be needed than for a scenario
unrelated to the changed one. The scenarios in a class
are consistent in some way (or should be if they are not).
Specifically, scenarios that are precede-equivalent produce
the same or similar results, and scenarios that are follow-
equivalent require the same or similar things in order to
achieve their results. For example, looking at Table VIII
we can see that a change in scenario S12 may also require
corresponding changes in the scenarios Si3 and Sag that
are follow-equivalent to it, and that the three scenarios
have the same or similar prerequisites. In fact, all three
scenarios require that the subscriber in question already
be authenticated to the EMS by his or her passcode, with
S12 additionally requiring that this subscriber have more
messages to hear and Sy3 additionally requiring that he or
she have no more messages.

VII. DISCUSSION AND FUTURE WORK

In this paper we have demonstrated that scenario net-
works provide a form in which to express important speci-
fication information that is typically missing from a collec-
tion of scenarios. The graphical form of a scenario network
provides a compact and useful summary of the temporal re-
lationships between the scenarios describing a system. The
structure of a scenario network forms a basis for determin-
ing significant relationships between scenarios.

In this paper we have used scenario pre- and postcondi-
tions, as dynamic restrictions on each scenario’s follow and
ramification sets. Another approach which we are consider-
ing is to assign full conditions to each scenario, conditions
that are detailed enough that they define the follow sets,
rather than merely restrict them. Then for two scenarios
Sa and Sp in the same sequential branch, Sp is in S4’s

follow set if (Post(Sa) A Pre(Sg)) is satisfiable, that is if
both the postcondition of S, and the precondition of Sp
are true for some set of values of the primitive terms of the
network. A full postcondition is a more complete state-
ment of the effects of a scenario, and a full precondition
more completely states its prerequisites. A set of scenar-
ios with full conditions is a partial form (sequential only)
of the diagram of a scenario network and its tabular form,
and scenario relationships may be derived directly from the
full conditions.

We have identified several areas of future work with re-
gard to full conditions. Determining correct full conditions
for a set of scenarios has proven to be a cumbersome task,
and verifying and debugging them has been challenging.
Decidability and efficiency are also issues. The language in
which the full conditions are expressed must be carefully
restricted so that, for example, satisfiability of pairs of con-
ditions is at least decidable, and preferably reasonably ef-
ficient. In trials, we were able to express all conditions in
either propositional logic or first-order logic with quantifi-
cation restricted to only universal quantification over finite
sets (e.g. equivalent to the conjunction of a finite number
of propositional logic formulae), but in practice this may
not always suffice. We considered the use of Presburger
formulas as an alternative [42]. Full conditions imply the
sequential relationships of a scenario network, by means
of satisfiability, but we have not found a satisfactory way
to infer ramification of new concurrent branches from full
conditions. We are considering the extent to which ramifi-
cation is tied to the creation of new instances of a network’s
primitive terms, which appears to hold for some systems
we have considered. A second approach is to consider the
scope of primitive terms across the scenarios. We have
given all primitive terms global scope so far, but an alterna-
tive we are considering is to tie scope to ramified branches
for some primitive terms. Full conditions also imply all the
relationships in Section IV, by the redefinition of can be fol-
lowed by (—) in terms of satisfiability of conditions, either
across concurrency or restricted to be within a concurrent
sequence as described above. Defining these relationships
in terms of conditions may produce more flexible and in-
teresting relationships, or relationships more directly tied
to behavior rather than only to sequence, or other bene-
fits. Some relationships that can be defined in terms of
full conditions are listed in Table IX. And the behavioral
subtyping relationship (<:) defined in Section IV requires
full conditions in order for its definition to be satisfactory.
Finally, from the point of view of an analyst working on a
scenario network, the additional complexity added to con-
ditions to express a sequential relationship between several
scenarios seems disproportionately burdensome compared
to the simplicity of drawing an arrow from one scenario to
another and using conditions only to restrict the arrows dy-
namically. Until this practical issue is resolved effectively,
full conditions can only be of theoretical interest.

In the work presented here, we have chosen to repre-
sent concurrency in a way that emphasizes the similarities
between the relationship between a scenario and a “tail”

S can be concurrent with Sp
Sa conflicts with Sp

S allows Sp

S prevents Sp

TABLE IX
SOME SCENARIO RELATIONSHIPS FOR FULL CONDITIONS

of others that follow it in a single sequence, and the rela-
tionship between a scenario and a new concurrent thread
of scenarios that begins after it, and have made this ba-
sic to our definitions of the equivalence and ordering rela-
tionships that arise in a scenario network. More generally,
we have chosen to concentrate on scenario networks all of
whose nodes are single scenarios, rather than extending to
nodes that are themselves scenario networks. In each of
these two cases the alternative of composition of scenario
networks remains as future work. Parallel composition of
two or more scenario networks is another representation
of concurrency, more in line with the way concurrency is
represented in Statecharts and other modelling formalisms
and in programming language semantics, and which may
produce benefits in other kinds of analyses of scenarios in
networks. Hierarchical composition of scenario networks,
in which a node of a scenario network can be either an indi-
vidual scenario or another scenario network, is of practical
interest as a means of attacking the challenge of scalability
of scenario networks. Both kinds of composition are part
of our future work.

We have restricted the scenarios in a scenario network to
have a single entry point and a single exit point, or more
accurately to have the single precondition and single post-
condition that are all a single entry and exit require. An
extension of this is to allow scenarios with more than one
exit point, each with its own postcondition. This exten-
sion is analogous to use cases, which can include variant
sequences of events. Multiple exit points for each scenario
would allow us to move some complexity out of the con-
nections of the network and into scenarios, and support a
more natural expression of closely related event sequences,
especially appropriate for scenarios that can encounter un-
desired events causing a chain of events different from the
normal one. This extension is linked to hierarchical com-
position of scenario networks, because a scenario network
already is allowed to have more than one terminal scenario,
each of which (if the network were masquerading as a sce-
nario of a higher-level scenario network) could have a dis-
tinct postcondition.

In summary, scenario networks integrate a collection of
scenarios into a single entity that specifies the larger-than-
a-scenario behavior that is typically missing from a col-
lection of scenarios. The integration makes gaps in the
collection of scenarios obvious, or indicates no gaps are
present. Scenario networks provide a basis for several new
relationships between scenarios, including equivalence and
subtype relations based on the order in which scenarios

13

can occur. Process guidance for scenario creation is an im-
portant benefit of the use of scenario networks. Scenario
networks support scenario management by providing an
organizing structure for a system’s scenarios, and scenario
relationships that indicate dependencies among scenarios.

REFERENCES

[1] Klaus Weidenhaupt, Klaus Pohl, Matthias Jarke, and Peter
Haumer, “Scenarios in system development: Current practice,”
IEEE Software, vol. 15, no. 2, pp. 34—45, Mar./Apr. 1998.

[2] Thomas A. Alspaugh, Annie I. Antén, Tiffany Barnes, and Brad-
ford W. Mott, “An integrated scenario management strategy,”
in RE ’99: Fourth IEEE International Symposium on Require-
ments Engineering, June 1999, pp. 142-149.

[3] Colin Potts, Kenji Takahashi, and Annie I. Antén, “Inquiry—
based requirements analysis,” IEEE Software, vol. 11, no. 2, pp.
21-32, Mar. 1994.

[4] N. A. M. Maiden, S. Minocha, K. Manning, and M. Ryan,
“CREWS-SAVRE: Systematic scenario generation and use,” in
Proceedings: 3rd International Conference on Requirements En-
gineering, 1998, pp. 148-155.

[6] Thomas A. Alspaugh and Annie I. Antén, “Scenario networks:
A case study of the enhanced messaging system,” in Seventh
International Workshop on Requirements Engineering: Foun-
dation for Software Quality (REFSQ’01), June 2001.

[6] Annie I. Antén, Michael McCracken, and Colin Potts, “Goal
decomposition and scenario analysis in business process reengi-
neering,” in Proceedings of the 6th International Conference on
Advanced Information Systems Engineering (CAiSE’94), 1994,
pp. 94-104.

[7] Annie I. Antén and Colin Potts, “The use of goals to surface
requirements for evolving systems,” in Proceedings of the 1998
International Conference on Software Engineering (ICSE’98),
Apr. 1998, pp. 157-166.

[8] Matthias Jarke, X. Tung Bui, and John M. Carroll, “Scenario
management: An interdisciplinary approach,” Requirements En-
gineering Journal, vol. 3, no. 3-4, pp. 155-173, 1998.

[9] “IEEE Transactions on Software Engineering, 24(12),” Dec.
1998, Special Issue: Scenario Management.

[10] “Requirements Engineering Journal, 3(3-4),” 1998, Special Is-
sue: Interdisciplinary Use of Scenarios.

[11] Alistair G. Sutcliffe, Neil A. M. Maiden, Shailey Minocha, and
Darrel Manuel, “Supporting scenario-based requirements engi-
neering,” IEEE Transactions on Software Engineering, vol. 24,
no. 12, pp. 1072-1088, Dec. 1998, Special Issue: Scenario Man-
agement.

[12] Colette Rolland and Camille Ben Achour, “Guiding the con-
struction of textual use case specifications,” Data and Knowl-
edge Engineering Journal, vol. 25, no. 1-2, pp. 125-160, Mar.
1998, Also published as CREWS technical report 98-01.

[13] Steve Easterbrook and Bashar Nuseibeh, “Managing inconsis-
tencies in an evolving specification,” in RE’95: Second IEEE
International Symposium on Requirements Engineering, 1995,
pp. 48-55.

[14] Bashar Nuseibeh, Jeff Kramer, and Anthony Finkelstein, “A
framework for expressing the relationships between multiple
views in requirements specification,” IEEE Transactions on
Software Engineering, vol. 20, no. 10, pp. 760-773, Oct. 1994.

[15] Bénédicte Dano, Henri Briand, and Franck Barbier, “An ap-
proach based on the concept of use case to produce dynamic
object-oriented specifications,” in RE’97: Third IEEE Inter-
national Symposium on Requirements Engineering, 1997, pp.
54-64.

[16] R. J. A. Buhr and R. S. Casselman, Use case maps for object-
oriented systems, Prentice Hall, 1996.

[17] R. J. A. Buhr, “Use case maps as architectural entities for com-
plex systems,” IEFEE Transactions on Software Engineering,
vol. 24, no. 12, pp. 1131-1155, Dec. 1998.

[18] D. Amyot, L. Logrippo, R. J. A. Buhr, and T. Gray, “Use case
maps for the capture and validation of distributed systems re-
quirements,” in RE’99: Fourth IEEE International Symposium
on Requirements Engineering, 1999, pp. 44-53.

[19] S. Sendall and A. Strohmeier, “From use cases to system oper-
ation specifications,” in Third International Conference on the
Unified Modeling Language UML’2000, 2000, pp. 1-15.

14

20]

(21]

(22]

23]

(24]

25]

[26]

27]

28]

29]

(30]

(31]

(32]

33]

(34]

(35]

(36]

(37]

(38]

39]

(40]

[41]

[42]

“OMG Unified Modeling Language Specification (version 1.3),”
Document ad/99-06-08, Object Management Group, Framing-
ham, MA, June 1999.

Colette Rolland, Carine Souveyet, and Camille Ben Achour,
“Guiding goal modeling using scenarios,” [IEEE Transactions
on Software Engineering, vol. 24, no. 12, pp. 1055-1071, Dec.
1998.

Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar
Overgaard, Object-Oriented Software Engineering: A Use Case
Driven Approach, ACM Press, 1992.

Anthony J. H. Simons, “Use cases considered harmful,” in
29th Conference on Technology of Object-Oriented Languages
and Systems, 1999, pp. 194-203.

Karin Koogan Breitman and Julio Cesar Sampaio
do Prado Leite, “A framework for scenario evolution,” in
ICRE’98: Third International Conference on Requirements
Engineering, 1998, pp. 214-223.

Stuart Faulk, Lisa Finneran, and James Kirby, Jr., “Experience
applying the CoRE method to the Lockheed C-130J software re-
quirements,” in Compass’94: 9th Annual Conference on Com-
puter Assurance, Gaithersburg, MD, 1994, pp. 3-8, National
Institute of Standards and Technology.

Glenn L. Coleman, Charles P. Ellison, Gentry G. Gardner,
Daniel L. Sandini, and John W. Brackett, “Experience in model-
ing a concurrent software system using STATEMATE,” in Com-
puFuro ’90. Proceedings of the 1990 IEEE International Con-
ference on Computer Systems and Software Engineering, May
1990, pp. 104-108.

“Specification and description language (MSC),” ITU-T Rec-
ommendation Z.100, International Telecommunications Union,
Nov. 1999.

“Message Sequence Chart (MSC),” ITU-T Recommendation
7.120, International Telecommunications Union, Nov. 1999.
Jules Desharnais, Marc Frappier, Ridha Khédri, and Ali Mili,
“Integration of sequential scenarios,” IEFEE Transactions on
Software Engineering, vol. 24, no. 9, pp. 695-708, Sept. 1998.
Robin Milner, Communication and Concurrency, Prentice Hall,
1989.

Rance Cleaveland, Joachim Parrow, and Bernhard Steffen, “The
Concurrency Workbench: A semantics-based tool for the verifi-
cation of concurrent systems,” ACM Transactions on Program-
ming Languages and Systems, vol. 15, no. 1, pp. 36-72, Jan.
1993.

E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic ver-
ification of finite-state concurrent systems using temporal logic
specifications,” ACM Transactions on Programming Languages
and Systems, vol. 8, no. 2, pp. 244-263, Apr. 1986.

James L. Peterson, “Petri nets,” ACM Computing Surveys, vol.
9, no. 3, pp. 223-252, Sept. 1977.

Ekkart Rudolph, Peter Graubmann, and Jens Grabowski, “Tu-
torial on Message Sequence Charts,” Computer Networks and
ISDN Systems, vol. 28, no. 12, pp. 1629-1641, June 1996.

S. Mauw and M. A. Reniers, “High-level message sequence
charts,” in Proceedings of the Fighth SDL Forum (SDL’97),
1997, pp. 291-306.

Roel Wieringa, “A survey of structured and object-oriented soft-
ware specification methods and techniques,” ACM Computing
Surveys, vol. 30, no. 4, pp. 459-527, Dec. 1998.

David Harel, “Statecharts: A visual formalism for complex sys-
tems,” Science of Computer Programming, vol. 8, no. 3, pp.
231-274, June 1987.

David Harel and Amnon Naamad, “The STATEMATE seman-
tics of statecharts,” ACM Transactions on Software Engineering
and Methodology, vol. 5, no. 4, pp. 293-333, Oct. 1996.

Rolv Braek, “SDL basics,” Computer Networks and ISDN Sys-
tems, vol. 28, no. 12, pp. 1585-1602, June 1996.

Pierre America, “Inheritance and subtyping in a parallel object-
oriented language,” in ECOOP ’87, European Conference on
Object-Oriented Programming, J. Bézivin et al., Eds. June 1987,
number 276 in Lecture Notes in Computer Science, pp. 234-242,
Springer-Verlag.

Martin Abadi and Luca Cardelli, A theory of objects, Springer-
Verlag, New York, 1996.

William Pugh, “The Omega test: a fast and practical integer
programming algorithm for dependence analysis,” in Proceedings
Supercomputing’91, Nov. 1991, pp. 4-13, Reproduced in Comm.
of the ACM, vol. 35, No. 8, August 1992, pp. 102-114. Retitled:
A Practical Algorithm for Exact Array Dependence Analysis.

