

Taming Architectural Evolution
André van der Hoek** Marija Mikic-Rakic* Roshanak Roshandel* Nenad Medvidovic*

**University of California, Irvine
Dept. of Information and Computer Science

444 Computer Science Building
Irvine, CA 92697 USA

Phone: 1-949-824-6326
andre@ics.uci.edu

*University of Southern California
Computer Science Department

Henry Salvatori Computer Center 300
Los Angeles, CA 90089 USA

Phone: 1-213-740-6504
{marija,roshande,neno}@usc.edu

ABSTRACT
In the world of software development everything evolves. So,
then, do software architectures. Unlike source code, for which the
use of a configuration management (CM) system is the predomi-
nant approach to capturing and managing evolution, approaches to
capturing and managing architectural evolution span a wide range
of disconnected alternatives. This paper contributes a novel archi-
tecture evolution environment, called Mae, which brings together
a number of these alternatives. The environment facilitates an
incremental design process in which all changes to all architec-
tural elements are integrally captured and related. Key to the envi-
ronment is a rich system model that combines architectural con-
cepts with those from the field of CM. Not only does this system
model form the basis for Mae, but in precisely capturing architec-
tural evolution it also facilitates automated support for several
innovative capabilities that rely on the integrated nature of the
system model. This paper introduces three of those: the provision
of design guidance at the architectural level, the use of specialized
software connectors to ensure run-time reliability during compo-
nent upgrades, and the creation of component-level patches to be
applied to deployed system configurations.

Keywords
software architecture, configuration management, evolution, sys-
tem model, design environment, Mae

1. INTRODUCTION
Consider a scenario in which an organization develops an innova-
tive word processor. Following good software engineering prac-
tices, the organization first develops a proper architecture [28] for
the word processor in a suitable architectural style [33], then
models this architecture in an architecture description language
(ADL) [23], refines the architecture into a module design, and,
finally, implements the application impeccably. The new word
processor is an instant hit and many copies are sold. Motivated by
this success, the organization enters a continuous cycle of rapidly
advancing the word processor, creating add-ons, selling upgrades,

adapting the word processor to different hardware platforms, spe-
cializing the word processor for various customers, and generally
increasing its revenue throughout this process.

Configuration management (CM) systems have long been used to
provide support for these kinds of situations [5]. However, ad-
vanced CM support is only available for managing source code. It
is possible to manage other kinds of artifacts, but present-day CM
systems do not provide much support beyond storing different
versions of those artifacts. Herein lies a problem with the above
scenario: as the word processor evolves, so does its architecture.
These architectural changes need to be managed in a manner
much like source code, allowing the architecture to evolve into
different versions and exhibit different variants [14].

This paper provides a solution to this problem. We have devel-
oped an architecture evolution environment, called Mae, which
has two unique characteristics. First, it is centered on an architec-
tural system model that tightly integrates architectural concepts
with concepts from the field of CM. This integration captures the
evolution and variability of architectures and is necessary to rep-
resent crosscutting relationships among evolving architectural
elements. Second, Mae leverages and integrates many sources of
auxiliary information used to describe architectural evolution,
such as architectural styles (e.g., [2,35]), subtyping relations
among architectural elements (e.g., [11,21]), and behavioral and
constraint specifications (e.g., [18,41]). The addition of these
information sources to the system model creates a rich informa-
tion web that is used by Mae to guide and govern the architectural
evolution process.

Because Mae uses a system model with integrated architectural
and CM concepts, it provides enhanced support during the design
process. The environment, for example, uses the integrated system
model to suggest to an architect, candidate (versions of) compo-
nents during design. As another example, Mae uses the integrated
system model to validate the consistency of any local changes
within the broader framework of an entire architecture.

Mae’s integrated system model provides another benefit in the
form of new capabilities in the domains of software deployment
[12] and run-time change management [8,25]. Specifically, the
availability of explicit relations among the multiple versions of
architectural elements in the model allows the creation of patches
at the architectural level, instead of at the source code level. These
patches, in turn, can be automatically added to and removed from
installed systems. They can even be used to provide “safe” up-

grades by temporarily executing multiple versions of components
simultaneously via the use of special purpose software connectors
[29]. Once the desired properties of an upgrade are established,
old versions of components can be safely removed from the exe-
cuting system.

In the remainder of this paper, we discuss Mae and the architec-
tural system model upon which it is based. First, in Sections 2 and
3, we briefly present the background information and an example
system that, together, set the stage for the ensuing discussion.
Section 4 introduces our architectural system model and Section 5
discusses the implementation of Mae. Section 6 evaluates our
work by demonstrating a set of new, advanced architecture-based
CM capabilities enabled and supported by Mae. We discuss re-
lated work in Section 7 and present our conclusions in Section 8.

2. BACKGROUND
The architectural system model developed in Section 4 relies on
concepts from the software architecture and CM fields. This sec-
tion briefly discusses these concepts.

Software Architecture
As software systems grew more complex, their design and speci-
fication in terms of coarse-grain building blocks became a neces-
sity. The field of software architecture addresses this issue and
provides high-level abstractions for representing the structure,
behavior, and key properties of a software system. Software archi-
tectures involve (1) descriptions of the elements from which sys-
tems are built, (2) interactions among those elements, (3) patterns
that guide their composition, and (4) constraints on these patterns
[28]. In general, a particular system is defined in terms of a collec-
tion of components, their interconnections (configuration), and
interactions among them (connectors).

The field of software architecture is further characterized by sev-
eral additional concepts. An architectural style defines a vocabu-
lary of component and connector types and a set of constraints on
how instances of these types can be combined in a system or fam-
ily of systems [33]. When designing a software system, selection
of an appropriate architectural style becomes a key determinant of
the system’s success. Styles also influence architectural evolution
by restricting the possible changes an architect is allowed to
make. Examples of styles include pipe and filter, layered, client-
server [33], GenVoca [2], and C2 [35].

To date, many architecture description languages (ADLs) have
been developed to aid architecture-based development [23]. ADLs
provide formal notations for describing and analyzing software
systems. They are usually accompanied by various tools for pars-
ing, analysis, simulation, and code generation of the modeled
systems. Examples of ADLs include C2SADEL [22], Darwin
[20], Rapide [19], UniCon [34], and Wright [1]. A number of
these ADLs also provide extensive support for modeling behav-
iors and constraints on the properties of components and connec-
tors [23]. These behaviors and constraints can be leveraged to
ensure the consistency of an architectural configuration through-
out a system’s lifespan (e.g., by establishing conformance be-
tween the services of interacting components).

Some ADLs also support subtyping, a particular class of con-
straints that may be used to aid the evolution of architectural ele-
ments. As shown in [21], the notion of subtyping adopted by

ADLs is richer than that typically provided by programming lan-
guages: it involves constraints on both syntactic (e.g., naming and
interface [11]) and semantic (e.g., behavior [19]) aspects of a
component or connector. ADLs’ supporting tools are used to en-
sure that the desired subtyping relationships are preserved at the
architectural level. At the same time, it should be noted that ADL
tools provide no assurance that the desired relationships will hold
among the implemented components and connectors.

Configuration Management
The discipline of configuration management (CM) traditionally
has been concerned with capturing the evolution of a software
system at the source code level [4]. Research and development
over the past twenty-five years have produced numerous contribu-
tions within the field [7], evolving CM system functionality
through three distinct generations. The first generation consists of
such CM systems as SCCS [31], Sablime [3], and RCS [36]. The
creation of this generation was a direct result of two immediate
needs: to prevent multiple developers from making simultaneous
changes to the same source file and to track the evolution over
time of each source file. Both needs were satisfied through the
automatic maintenance of versioned archives, where each archive
contained a series of revisions to a single source file (using delta
storage techniques to save disk space) as well as locks to indicate
modifications in progress. Recognizing the need for multiple lines
of development as well as the need for temporary parallel work,
RCS introduced the use of branches to store logical variants in a
versioned archive file and merging as a method of moving
changes from one branch to another. Combined, all revisions and
variants create a version tree, which is the central entity through
which users interact with a first-generation CM system.

In order to support tracking of compound changes to groups of
source files and advanced workspace management, research into
system models [9,14,27,37] sparked the inception of the second
generation of CM systems. System models and their associated
modeling languages provide a way to capture the structure of the
software being managed via configurations—sets of specific ver-
sions of specific source files. To capture the potential evolution of
the structure itself, configurations can exist in different revisions
and variants—just as individual source files can. Through automa-
tion of workspace management via configuration specifications
(sets of rules indicating which version of which source file to
place in a workspace), changes to a multitude of source files can
be stored back in a repository in a single step, thereby evolving
both individual source files and configurations.

Flexibility was the key driving force behind the emergence of the
third generation of CM systems. Researchers recognized that a
single method of interaction (checking out artifacts into a work-
space, modifying them as needed, and checking them back into
the repository) was not adequate for all situations. Different CM
policies [26,38,40] are required, e.g., in situations where a large
number of developers operate on a small set of source files or in
cases where distributed groups of developers modify a single
piece of software.

3. EXAMPLE APPLICATION
Throughout this paper, we use a simple word processor as an ex-
ample application whose evolution will be managed by Mae, our
architectural evolution environment. This example has been mod-
eled and implemented in accordance with the C2 architectural

style [35]. The architecture of the word processor is shown in
Figure 1. The word processor consists of a number of components
that interact by exchanging messages via connectors. Of interest
to this paper are three particular characteristics of the word proc-
essor (corresponding components are highlighted in the figure):
(1) the SpellChecker component is optional; (2) the SpellChecker
component exists in two different revisions, one of which uses the
SpellCheckRepository component as its dictionary while the other
uses arbitrary dictionaries stored on the Internet; and (3) the
WordCounter component exists in multiple variants, each of
which is designed and implemented differently, but intended to
provide the same behavior. The combination of these three
characteristics results in the availability of multiple versions of the
word processor.

4. ARCHITECTURAL SYSTEM MODEL
Mae is based upon an intimate integration of architectural and CM
concepts. This integration creates a single system model in which
the evolution of all architectural elements is captured in a natural
and meaningful way—natural, because the system model inher-
ently operates at the architectural level, and meaningful, because
the system model relates changes to each other. Existing CM sys-
tem models (e.g., ShapeTools [14] and PROTEUS [37]), are lim-
ited in this regard: with the exception of Adele (through interfaces
[9]) and Inscape (through obligations and pre- and post-conditions
[27]), these system models do not provide mechanisms beyond
grouping, versioning, and selection.

The central role of architectural concepts in our system model
changes that fact. Specifically, it allows us to leverage explicit
architectural styles, subtyping relations among components, and
behavior and constraint specifications for three important pur-
poses. First, these concepts are used to meaningfully relate differ-
ent versions of architectural elements. For example, subtype rela-
tions may be used to augment changes to components with infor-
mation about the kind of subtype compatibility that is preserved
with each change [22]. Second, these concepts can be used to
ensure that particular configurations of architectural elements are
consistent (e.g., matching the behavioral specifications of the
architectural elements [6]). Third, the explicit and separate treat-
ment of components and connectors creates a powerful composi-

tional modeling facility subsuming those found in existing CM
system models. For example, existing CM system models only
provide facilities for modeling the composition of a component
out of other components, but do not provide mechanisms for pre-
cisely capturing how these other components interact with each
other [7].

Figure 2 presents the details of our architecture-based system
model. The model is not tied to any particular style or ADL; in-
stead, it can be mapped onto different ADLs. In Section 5 we
describe one such mapping used by Mae—to C2SADEL [22].

Types and Instances
Our architectural system model distinguishes types from in-
stances. Every element, whether an interface, component, or con-
nector, has to be defined as a type before it can be instantiated or
used in the definition of other types. We version types to capture

the evolution of architectural elements. Each instance in our sys-
tem model is, therefore, an instance of a specific version of a type.

Interfaces
The basic building blocks of our architectural system model are
interface types, which define abstract sets of services that a com-
ponent may provide or require. Each interface type is defined by a
unique name, a revision number, and a representation. The name
and revision number are used to uniquely distinguish each incar-
nation of an interface type as it evolves over time. The representa-
tion is used to capture a detailed specification of the interface in

GUI driver

Color
Dialog

File Dialog
Font

Dialog

Active
Document
Repository

File
Repository

Canvas

Toolkit

Legend:

Component

Connector

Communication
link

SpellCheck
Repository

Word
Counter

Spell
Checker

Figure 1. Example Word Processor Architecture.

name
revision
{interface[,optionalPropertyName, optionalPropertyValue]}*
{component[,optionalPropertyName, optionalPropertyValue]}*
{connector[,optionalPropertyName, optionalPropertyValue]}*
{behavior}*
{constraint}*
representation
{propertyName, propertyValue}*
ascendant
{descendant}*
style
subType

ComponentType

name
revision
variantPropertyName
{component[,variantPropertyValue]}*
{propertyName, propertyValue}*
ascendant
{descendant}*
subType

VariantComponentType

componentType

ConnectorType

variantComponentType

VariantConnectorType

name
revision
representation
ascendant
{descendant}*

InterfaceType

name
direction
interfaceType

InterfaceInstance

name
componentType |
 variantComponentType

ComponentInstance

name
{sourceInterface
 [,myDestinationInterface]}*
{[mySourceInterface,]
 destinationInterface}*
connectorType|variantConnectorType

ConnectorInstance

Figure 2. Architectural System Model.

the specific ADL onto which the system model is mapped (e.g.,
Mae currently stores C2SADEL interface specifications).

To capture diverging paths of evolution, we have adopted inter-
file branching [32]: a new interface type is created that has its own
unique name and follows its own linear path of evolution. The
fields ascendant and descendant are used to keep track of inter-
file branches: upon creation of a new branch, the ascendant of the
new interface type is set to the original interface type. In addition,
the set of descendants of the original interface type is updated
with the new interface type. In essence, this creates a virtual tree
of branches that captures all ascendant and descendant relations
among a set of components that are derived from each other.

As an example, consider the following definition of revision 1 of
the tWordCount interface type used by the word processor exam-
ple discussed in Section 3.

Name = tWordCount
Revision = 1
Representation = { CountWords (text : String); }
Ascendant = { }
Descendant = { tFastWordCount 1 }

In this example, C2SADEL is used to specify the details of the
interface type in the representation field. The definition states that
tFastWordCount revision 1 is a new interface type derived from
tWordCount revision 1. Subsequent evolution of tFastWordCount
is captured in a separate branch.

An interface instance is defined in terms of a specific revision of
an interface type. Each instance has a name that distinguishes it
from other instances of the same type. Additionally, each interface
instance has a direction: “in” for provided services, “out” for re-
quired services, and “in/out” for services that are both provided
and required.

Components
Component types are used to hierarchically model the composition
of an architecture. In the definition of a component type, name,
revision number, representation, ascendant, and descendant serve
the same purpose as they do in the definition of an interface type.
Our system model captures many additional aspects of a compo-
nent type. Specifically, each component type is defined in terms
of interface instances, component instances, connector instances,
behaviors, constraints, subtype, and style. Interface instances
describe the services that are provided and/or required by a com-
ponent type. Component and connector instances define a compo-
nent type, resulting in the hierarchical construction of an architec-
ture out of finer grain elements. Behavior and constraint specifi-
cations can be associated with each component type and the rela-
tion of the component type to its predecessor (whether a branch or
revision) can be captured via the subtype field. The subtype rela-
tions that are currently captured allow a subtype to preserve its
supertype’s interface, behavior, or both [21]. Similarly to the
representation, the language in which behaviors, constraints, and
subtypes are specified is opaque to the system model and mapped
onto a specific ADL by the tools that use the system model. Fi-
nally, the specific rules of architectural style to which the internal
composition of a component type has to adhere are captured in the
style field. Therefore, styles can be defined on a per-component
type basis.

The interface, component, and connector instances that constitute
a component type may be optional. Specifically, each instance
may be guarded by a property consisting of a name/value pair.
Depending on the actual property value provided by an architect,
the instance may or may not be included in the architecture. Note
that multiple instances may depend on the same name/value pair,
allowing the inclusion or exclusion of multiple architectural ele-
ments through the specification of a single property.

Consider the following definition of revision 3 of the tSpell-
Checker component type.

Name = tSpellChecker
Revision = 3
Interface = { iSpellCheck }
Component = { iTokenizer,

 iResultCollector,
 iStatistics, collectStatistics, true }
Connector = { iC2bus1,

 iC2bus2, collectStatistics, true,
 iC2bus3 }

Behavior = { iSpellCheck* }
Constraint = { }
Representation = { <<omitted for brevity>> }
Ascendant = { tSpellChecker 2 }
Descendant = { }
Style = { C2 }
SubType = { beh \and int }

In this example, the tSpellChecker component type exposes one
interface and has a defined behavior in which the interface can be
invoked over and over again. The component type is hierarchi-
cally constructed out of the iTokenizer, iResultCollector, and iSta-
tistics component instances, which are connected by the iC2bus1,
iC2bus2, and iC2bus3 connector instances.1 Although not in-
cluded in the example, the specifications of these connector in-
stances establish connections among the component instances,
thereby implicitly defining the topology of the tSpellChecker
component type. The iStatistics component instance and the
iC2bus2 connector instance are optional, depending on the value
of the property collectStatistics. Note that the instances do not
have revision numbers associated with them because each in-
stance is defined elsewhere in terms of a specific revision of a
specific type.

Variants
In addition to “regular” component types, our system model is
able to represent variant component types. These component types
encapsulate sets of alternative component instances, one of which
is used at a time. For example, revision 2 of the tWordCounter
variant component type is defined as follows.

Name = tWordCounter
Revision = 2
VariantPropertyName = method
Component = {iCounterViaWhiteSpace, quickdirty,

 iTokenizingCounter, quick,
 iSpecialCharacterCounter, accurate }

1 The internal architecture of tSpellChecker component type is
shown in Figure 3.

Ascendant = { tWordCounter 1 }
Descendant = { }
SubType = { beh }

Three alternative component instances constitute the tWordCoun-
ter variant component type. One instance is selected to be in-
cluded in an architecture based on the value of the variant prop-
erty method (e.g., if the value is quick, iTokenzingCounter will be
instantiated).

Isolating variability as a separate type represents a departure from
most CM system models, which manage variability and evolution
in a single data structure—the version tree. However, our choice
is consistent with Adele [9] and Koala [39], which successfully
have used similar approaches in isolating variant handling as spe-
cific variant “points” in an architectural configuration.

Note that the definition of a variant component type does not con-
tain interface instances. As a rule, a variant component type ex-
hibits the (unique) interfaces exposed by all of its components.
Selection of a particular variant may result in an illegal architec-
tural configuration if other components use interfaces that are not
exposed by the selected variant component. It has already been
demonstrated by Koala that the added benefits of flexibility and
evolvability outweigh this problem [39]. Moreover, behavior and
constraint specifications can be leveraged to ensure consistency of
a particular configuration once a variant has been instantiated.

Component instances, connector types, variant connector types,
and connector instances complete Mae’s architectural system
model. Component instances are simply named instances of a
component type or variant component type. Following the view of
Darwin [20], our system model defines connector types (variant
connector types) in the same hierarchical manner as component
types (variant component types). As can be seen in Figure 2, how-
ever, connector instances are different from component instances
in that each connector instance has an associated set of links that
connect sets of component instances. Since two schools of thought
exist in the field of software architecture (one in which connectors
do not have interfaces [35] and one in which they do [1]), our
system model supports connector instances that link component
interfaces, both directly and via the connector’s interfaces.

Discussion
Our system model borrows from many previous contributions and
unifies them in a single, flexible representation that is unique in
marrying architecture and CM concepts. This combination of
concepts is a key contribution of our approach: it creates an ad-
vanced, rich kind of system model that is centered on the explicit
use of architectural entities. Although clearly related, each con-
cept in this model serves a very distinct purpose:

• Revisions capture linear evolution;
• Inter-file branches capture diverging paths of evolution;
• Subtyping captures the specific evolution constraints be-

tween two successive versions (whether revisions or
branches) of an architectural element, demanding the preser-
vation of specific properties (interface and/or behavior);

• Variant component and connector types capture alternatives
within an architecture in specific, localized variation points;

• Options capture architectural elements whose inclusion in a
configuration is not mandatory;

• Behaviors and constraints capture compatibility rules and
expectations of each component and connector type; and

• Styles capture the composition rules of each component and
connector type.

A strength of our model is that the orthogonal nature of the con-
cepts allows them to be meaningfully combined. For example, a
variant component type such as tWordCounter can evolve just like
a “regular” component type (i.e., one that is not a variant). As
another example, it is possible to use subtyping to capture addi-
tional information about the relationships among the multiple
variants of tWordCounter: iTokenizingCounter may be an inter-
face subtype of iCounterViaWhiteSpace.2 In this case, capturing
and exploiting the relationship between variants (a CM concept)
and subtyping (an architectural concept) provides a benefit that
neither was able to provide alone: variants afford architects with
flexibility in specifying and evolving an architecture, while sub-
typing constrains that flexibility to ensure desired system proper-
ties during evolution.

5. IMPLEMENTATION
To demonstrate the utilities of the architectural system model, we
have developed a prototype architecture evolution environment
called Mae. The current implementation of Mae consists of an
extension and loose integration of DRADEL, an environment for
supporting architecture-based analysis and development, and Mé-
nage, a graphical environment for specifying versioned software
architectures. This particular combination provides the functional-
ity needed to manage architectural evolution: like any architecture
development environment, architectures can be created, manipu-
lated, and analyzed; in addition, all changes to the architecture are
captured and related to each other using the system model de-
scribed in the previous section.

Shown in Figure 3, the graphical user interface of Mae consists of
two windows through which all user interaction is coordinated.
The first window is a generic interface for the specification of
evolving architectures. It is complemented by the second window
that creates the binding from the generic interface to a specific
architecture description language—in this case, C2SADEL [22].
With this explicit separation of concerns, our environment is more
amenable to adapting to other ADLs: only the language binding
needs to be replaced while the generic interface may be reused.

The generic interface for specifying evolving software architec-
tures is divided into three parts: the canvas, which allows an
architect to define a new (version of a) component, connector, or
interface type; the version tree (top) associated with the artifact
being defined; and the design palette (left), which lists all versions
of all types already defined. In the figure, version 3 of the tSpell-
Checker component type is being defined in terms of specific
instances of several other component types, including tTokenizer
version 5, tResultCollector version 1, and (optionally, as indicated
by the white borders) tStatistics version 2. Note the use of specific
version identifiers in the hierarchical construction of the tSpell-
Checker component type: not only is a particular version of
tSpellChecker defined (3), but the versions of the instances out of

2 Interface subtyping preserves the original interface, but is al-
lowed to alter the behavior accessed via that interface [21].

which it is created are also explicitly defined as prescribed by our
system model.

To manage the multitude of changes that may occur when an ar-
chitecture evolves, Mae supports a check-out/check-in policy for
all architectural elements; architects check out one or more ele-
ments, make changes to them, and check them back in once the
modifications are complete. As a result, a version history of archi-
tectural elements is incrementally created, allowing the architect
to retrieve and examine previous versions, and also to undo
changes. Note that changes may pertain to any aspect of our sys-
tem model. Besides the “normal” types of changes regarding the
actual architectural hierarchy and types, behaviors, constraints,
subtype relations, styles used in a component or connector type,
and even the set of properties associated with a particular version
of a component or connector type may all change. In all these
cases, however, the change has to be explicitly captured and a
new version of the architectural element has to be created.

Once an evolving architecture has been specified, Mae supports
the selection of a particular configuration out of the multitude of
available architectural configurations. First, a specific revision of
the architecture has to be selected. Within this revision, variants
and options may still be undefined. The variants and options that
are included in the final configuration are determined by the prop-
erty values supplied to Mae by a developer: each variant and op-
tion whose property values match those supplied by the developer
are included. To support a developer in this selection process,
Mae provides a number of analyses. First, a developer is able to
request the set of currently undefined properties, which are in
effect, the set of decisions that still need to be made before a sin-
gle architectural configuration can be selected. Second, a devel-
oper can use Mae to analyze the properties and determine any
conflicting properties. In the example of Section 3, one of the
SpellChecker variants requires the inclusion of the SpellCheckRe-
pository component and, as such, this component specifies the
property “includeSpellCheckRepository” to be true. If a devel-
oper, on the other hand, selects the value of this property to false,
effectively overwriting the desired value, Mae warns the devel-
oper that this selection may lead to problems.

After a particular version of the architecture has been selected,
Mae generates the C2SADEL [22] specification for the selection.
To do so, Mae maps the generic concepts of the model (e.g., rep-
resentation, behavior, and constraints) onto specific language
constructs in C2SADEL. The functions displayed in the bottom
window of figure 3 become available for various purposes. First,
the generated C2SADEL specification can be parsed and checked
for adherence to the topological rules of the C2 style.3 Then,
analysis tools can be used to further verify the semantic correct-
ness of the C2SADEL specification. Specifically, type checking
can be used for two kinds of analyses: (1) given a specification of
an architecture, Mae can analyze each component to ensure that
the interfaces and behaviors it requires are satisfied by the com-
ponents along its communication links [41], and (2) given a set of
component specifications, Mae can analyze whether their speci-
fied interface and/or behavior subtyping relationships hold [18].

In addition to verifying C2SADEL specifications, Mae inherits a
number of facilities from DRADEL that can actively assist archi-
tects and software developers. First, an architect can use the com-
pliance checker to uncover whether any subtyping relationships
among arbitrary components exist (see Section 6). Second, soft-
ware developers can generate, from the C2SADEL specification, a
partial Java implementation of the system. Specifically, Mae gen-
erates templates for the components that make up the system,
reuses standard implementations for the connectors, and automati-
cally generates the component that represents and instantiates the
system configuration. In doing so, Mae uses a version of the C2
implementation and execution framework [25].

Our prototype implementation of Mae is not yet complete as of
yet. The integration between the two components (DRADEL and
Ménage) can be made much tighter such that, for example, type
checking occurs automatically and instantaneously rather than
“after the fact.” Moreover, we intend to significantly extend the
number of analyses provided by Mae, since the particular combi-
nation of features captured in the system model requires the crea-
tion of new analyses that relate and explore information not com-
monly available before (one such analysis is discussed in the next
section). It is important to observe that Mae already provides
complete support for capturing all aspects of the architectural
system model discussed in the previous section. As such, we have
used Mae, e.g., to capture the evolution of our example word
processor system, and have been able to use Mae’s system model
as the basis of the research directions introduced in the next sec-
tion.

6. DEMONSTRATIONS
Mae and its underlying system model were devised for a single
purpose only: to manage architectural evolution. However, as our
research progressed, we recognized that the particular combina-
tion of architectural and CM information captured in our system
model opens up a number of new opportunities in the field of
software architecture. For example, the integrated nature of the
system model affords the introduction of enhanced support for
architectural design, the creation and use of multi-versioning con-

3 Although Mae’s system model supports the specification of
different styles, the reuse of DRADEL in our prototype currently
limits the verification of styles to C2 only.

Figure 3. The Mae environment

nectors, and the automatic derivation of architectural change
scripts. Although our research in each of these areas is prelimi-
nary, we include their discussion here as a further demonstration
of the usefulness of Mae’s system model.

Enhanced Design Experience
Existing CM systems and architectural design environments do
not provide functionality to actively support their users in choos-
ing appropriate versions of the artifacts to be incorporated in a
configuration. Consider, for example, a developer who has to
replace a faulty new version of a component with an older ver-
sion. Usually, the overall configuration has evolved in parallel
with individual components and connectors and the developer has
to search for a version of the component that is compatible with
the rest of the configuration. In a typical CM system, such a
search involves the developer checking out a version of the com-
ponent, compiling the system, and subsequently executing and
testing the system to verify its correctness. If the tests fail, the
developer checks out yet another version of the component and
repeats the process until eventually (and hopefully) a suitable
version is found. In a typical architectural design environment
even this process cannot be supported: because versioning infor-
mation is not captured in these environments, the search normally
relies on the memory of the developer and the sporadic commen-
tary that may have been captured to select appropriate compo-
nents as candidates to replace the faulty component.

Compared to most CM systems, however, architectural design
environments do have available much auxiliary information that is
usually reserved for analysis purposes. For example, once a par-
ticular architectural configuration has been created, it can be ana-
lyzed for behavioral consistency. These kinds of analyses have
thus far been performed after the fact.4

One of the opportunities we are exploring with Mae is that the
particular combination of information that is captured in its archi-
tectural system model is well suited for analyses of particular
system model actions beforehand. In particular, we are exploring
the ways in which Mae can enhance the design process by allow-
ing designers to ask “questions” regarding the architecture. One
such question leverages Mae’s integration of versioning and sub-
typing information: developers can ask Mae to list those versions
in the version history of a component that exhibit a particular
subtyping relationship. This kind of inquiry helps in the replace-
ment problem described above: Mae is able to suggest candidate
versions of components to replace an existing version. For exam-
ple, a developer can ask Mae for those versions that are behavior-
ally consistent with the existing version—in effect asking for
those versions that are guaranteed to have no adverse influence on
the remainder of the architecture.

We have implemented this idea in Mae. Specifically, Mae trav-
erses the ascendant and descendant relations of a component and
determines the kind of subtype relation that each of the traversed
versions exhibits with respect to the original version of the com-
ponent. In doing so, it not only traverses the revision history, but
also follows branches ”backwards” and “forwards.” For each
visited component version, Mae determines the subtyping rela-

4 Argo’s design critics [30] are an exception since they perform
analyses while an architecture is being designed.

tionship. As illustrated in Figure 4, Mae then displays the result-
ing list of subtype relations. This significantly narrows the search
space for a suitable component version. In the example shown,
none of the other versions of the tSpellChecker component exhib-
its the desired subtyping relationship (preservation of interface
and behavior) with version 3, but in a larger version tree several
versions are likely to be behavior or interface compliant with the
component version to be replaced.

This small enhancement to Mae represents only our first attempt
at leveraging Mae’s system model to enhance the design experi-
ence. We plan to develop and implement other analyses that help
a developer in decision making. Example queries will allow a
developer to ask such questions as “Which component version
preserves the desired architectural style?” or “Which components
can be suitably used as variants while being behaviorally consis-
tent?” Rather than being a passive environment that only stores
the effects of changes, we plan to further grow Mae into an envi-
ronment that uses advanced architectural analyses to actively par-
ticipate in ensuring correct architectural evolution.

Multi-Versioning Connectors
We have already discussed how consistent evolution via subtyp-
ing is ensured by Mae at the architectural level. However, there is
no guarantee that implemented components will preserve the
properties and relationships established at the architectural level.
As discussed in Sections 4 and 5, Mae’s system model can be
leveraged to address this problem. Specifically, the model pro-
vides the following three capabilities: (1) an infrastructure that
allows implementation and execution of architectures; (2) the
ability to generate a (partial) implementation of an architecture
from its ADL model; and (3) the ability to associate implemented
modules (e.g., Java classes and interfaces) with the elements in
Mae’s architectural system model (e.g., components, connectors,
interfaces, and configurations).

In this section we focus on a novel capability enabled by Mae that
directly leverages its implementation/execution infrastructure. We
have enhanced that infrastructure with special-purpose software
connectors intended to aid component testing and reliable compo-
nent upgrades. These connectors, called multi-versioning connec-
tors (MVC),5 allow any component in a system to be replaced with
a set of its versions (variants) that will execute in parallel. This
capability was inspired by the approach for reliable component

5 This usage of the MVC acronym is entirely unrelated to the
Model-View-Controller approach to constructing Smalltalk appli-
cations [13].

 Architectural compliance mismatch

TypeMismatch;

Cannot determine type match for component SpellChecker-1's operation
op_word under typing relationship: behavior;
Checking SpellChecker-2 and SpellChecker-3;
TypeMismatch;
Cannot match component SpellChecker-2's interface element
CountWords; under typing relationship: name;
Checking SpellChecker-1 and SpellChecker-3;

Figure 4. Mae’s status window

upgrade suggested by Cook and Dage [8]. Their approach treats
individual procedures as components, allows multiple such proce-
dures to be executed simultaneously, and provides a means for
comparing their execution results. We have realized that a similar
capability is needed at the level of coarser-grained components to
aid architectural evolution. At the same time, the increased granu-
larity of the involved components has resulted in several chal-
lenges that Cook and Dage never faced, but that we had to over-
come in our implementation of MVC [29].

To enable architecture-level “multi-versioning” of components,
such component versions are “wrapped” by a pair of MVCs as
shown in Figure 5. MVCs insulate the rest of an application from
the fact that a given component is multi-versioned. The role of an
MVC is to invoke all component versions for each message it
receives from below (MVC bottom) or above (MVC top), and to
propagate to the rest of the system any messages created by the
multi-versioned components. Each MVC propagates messages
from only one of the multi-versioned components, designated as
authoritative (i.e., nominally correct) with respect to the invoked
operation. At the same time, each MVC logs the results of all the
multi-versioned components’ invocations and compares them to
the results produced by the authoritative version. Additionally,
MVCs perform comparisons of the multi-versioned components’
performance (i.e., execution speed), relative correctness (i.e.,
whether they are producing the same results as the authoritative
version) and reliability (i.e., number of failures during an execu-
tion). MVCs allow component authority for a given operation to
be changed at any point in time.

MVCs allow the insertion of new component versions into a sys-
tem during runtime (e.g., versions 2 and 3 of Word Counter in
Figure 5), without removing the old version. MVCs also allow
multiple components that provide complementary functionality to
be used in concert to accomplish the desired functionality of a
single component. Finally, MVCs leverage the ability of the im-
plementation infrastructure to log execution history in order to
undo runtime changes to an application. MVCs support two kinds
of architecture-level undo: restoring a multi-versioned compo-
nent’s state to any point in the past and reversing the insertion and
removal of component versions.

Our support for MVCs directly leverages Mae’s system model,
which relates component versions at the architectural level, to

ensure the preservation of these relationships in the implemented
components. For example, if a subtyping relationship is defined
between two versions of a component, MVC can be used to en-
sure that the implemented versions indeed preserve the specified
relationship. Mae’s versioning information can aid this task; e.g.,
by ensuring that the tested versions belong to the same version
tree.

Automated Change Script Generation
Explicit software architecture descriptions have already been used
to assist in the management of dynamic, run-time change. One
particularly promising approach uses extension wizards to dy-
namically update Java systems [25]. These wizards can be consid-
ered architecture-level patches: they contain a series of differences
between an actual architecture and a new, desired version of the
same architecture. A typical wizard is divided into two separate
parts: one part contains the logical “recipe” describing the modifi-
cations to be made in terms of architectural operations, while the
other part contains the Java class files that are to be added to the
system. A trivial example of an extension wizard is provided by
the following logic to dynamically add the optional iSpellChecker
component to an instance of the word processor:

Add iSpellChecker
Weld iSpellChecker.top to Conn1.bottom
Weld iSpellChecker.bottom to Conn2.top
Start iSpellChecker

First, the component is added to the architecture, then it is prop-
erly connected to the remainder of the architecture, and, finally, it
is activated. Other primitives are available to replace and remove
components (and connectors).

One drawback of the current approach to extension wizards is that
they have to be created by hand, without any automated assis-
tance. In the case of large software architectures and many differ-
ences between versions, this can be a very cumbersome and error-
prone task. Mae provides an opportunity to alleviate this problem:
its system model contains all the information necessary to auto-
mate architectural differencing. Specifically, Mae integrates the
architectural entities that change with the versioning information
that describes the changes. It is this integration that facilitates the
automation.

We have developed and are currently implementing a differencing
algorithm that, given two versions of an architecture, automati-
cally generates the logical part of an extension wizard. Thanks to
Mae’s integrated architectural system model, the algorithm itself
is fairly simple: it fully exploits both the architectural and CM
information in performing a comparative hierarchical traversal of
the composition of two versions of an architecture. In doing so, it
follows the standard practice adhered to in the differencing tech-
niques used in the field of CM [4].

The use of the integrated system model also ensures a degree of
confidence in a change, not present if the information comes from
different sources. For example, a CM system used to manage
different versions of an architectural description may not be able
to guarantee that component foo in version 1 is the same as com-
ponent foo in version 2. Mae’s system model naturally provides
this guarantee with the information that it captures.

Spell
Checker

Font
Dialog

GUI
driver

Color
Dialog

Canvas

Word
Counter

W o r d
Counter

version 1

W o r d
Counter

version 2

W o r d
Counter

version 3

MVC top

MVC bottom

Figure 5. Multi-Versioning Connectors.

7. RELATED WORK
Few approaches have combined architecture and CM concepts in
addressing architectural evolution. Two notable exceptions are
UniCon [34] and Koala [39]. UniCon was the first ADL to incor-
porate constructs for capturing variant component implementa-
tions. Based on a property selection mechanism, each component
in a given architectural configuration is instantiated with a par-
ticular variant implementation. Compared to Mae, UniCon is lim-
ited: its system model does not provide facilities for capturing
architectural revisions and options. Moreover, the primary focus
of UniCon is on implementation-level variability, not on variabil-
ity at the level of the definitions of architectural elements.

Koala is closest to Mae in the advanced modeling facilities that it
provides for capturing product family architectures. Specifically,
Koala naturally models variability and optionality via a property
mechanism similar to Mae’s. Using a versioning system, Koala is
even able to capture the evolution of a product family architec-
ture. However, two critical differences exist between Koala and
Mae. First, Koala does not integrate versioning information inside
its representation; it uses an external CM system instead. This has
the drawback of creating another, independent source of informa-
tion to be used in capturing architectural evolution. Second, Koala
does not provide mechanisms for capturing subtypes, behavior
and constraint specifications, and styles. Mae extensively uses this
kind of information in providing the functionality described in
Sections 5 and 6.

Several other approaches in the fields of CM and software archi-
tecture laid the foundation for the work presented in this paper. In
the field of CM, PROTEUS introduced a system model in which
components were explicitly recognized [37]. Adele introduced
interfaces to be used in verifying the consistency of selected con-
figurations [9]. Finally, Inscape used obligations, pre- and post-
conditions in a manner similar to Mae’s use of behavior and con-
straint specifications to guarantee proper interactions among com-
ponents put together in a configuration [27].

In the field of software architecture, several approaches have ex-
tensively used explicit software connectors; prominent examples
are Wright [1], UniCon [34], and C2 [35]. Rapide [19] uses an
OO-like inheritance mechanism to support component evolution,
while Acme [11] supports structural subtyping. DRADEL [22]
was the first approach to introduce behavioral subtyping [18,41]
into an ADL. Finally, GenVoca [2] and Aesop [10] were early
examples of approaches that used styles as a means of guiding and
controlling architectural evolution.

Our approach leverages and tightly integrates all these contribu-
tions to provide a novel environment in which the problem of
architectural evolution is managed in a meaningful, useful, and
complete fashion.

8. CONCLUSIONS
This paper has presented a novel approach to managing architec-
tural evolution. The essence of the approach lies in the use of a
generic system model that integrates CM concepts, such as revi-
sions, variants, and configurations, with architectural concepts,
such as components, connectors, subtypes, and styles. By map-
ping the generic system model onto a specific ADL, many differ-
ent analyses become available that can be adapted for the purpose

of maintaining the consistency of the architectural configurations
captured by the model.

With the advent of our system model, we have only begun to ex-
plore the richness of the problem of properly managing architec-
tural evolution from the time a system is designed to its eventual
deployment and execution in the field. Our evolutionary design
environment, Mae, and its novel capabilities discussed in Sec-
tion 6 represent only the starting point: even though each capabil-
ity is certainly useful at this moment, none is complete as of yet.
We continue to explore more advanced functionality by further
enhancing our prototypes. Specifically, we intend to address the
following three issues in the near future: (1) extending Mae with
additional design-time functionality by providing additional types
of analyses and advanced change-based versioning support [7];
(2) tightly integrating development-time architectural evolution
with the evolution of a deployed system at run-time; and (3) en-
hancing multi-versioning connectors and the run-time infrastruc-
ture to further increase the reliability of system upgrades. More-
over, our long-term interests are to further investigate the relation-
ship among typing, software architecture, and configuration man-
agement in addressing evolution: these techniques are related and,
at times, equivalent. A deeper understanding of their relationship
and tradeoffs among them is much needed. We believe that the
current Mae prototype forms a solid foundation upon which we
can perform all of these investigations.

9. ACKNOWLEDGEMENTS
This material is based upon work supported by the National Sci-
ence Foundation under Grant No. CCR-9985441. Effort also
sponsored by the Defense Advanced Research Projects Agency,
Rome Laboratory, Air Force Materiel Command, USAF under
agreement numbers F30602-99-C-0174 and F30602-00-2-0599.
The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copy-
right annotation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of the Defense Advanced Research
Projects Agency, Rome Laboratory or the U.S. Government.

REFERENCES
1. Allen R., and Garlan D., A Formal Basis for Architecture

Connection. ACM Transactions on Software Engineering
and Methodology, 6(3): p.213-249, 1997.

2. Batory D., and O’Malley S., The Design and Implementation
of Hierarchical Software Systems with Reusable Compo-
nents. ACM Transactions on Software Engineering and
Methodology, 1(4), October 1992.

3. Bell Labs Lucent Technologies, Sablime v5.0 User's Refer-
ence Manual: Murray Hill, New Jersey, 1997.

4. Buffenbarger J, Syntactic software merging, In Software
Conguration Management: ICSE SCM-4 and SCM-5,
Springer-Verlag. pp.153-172, 1995

5. Burrows C., and Wesley I., Ovum Evaluates Configuration
Management, Burlington, Massachusetts: Ovum Ltd., 1998.

6. Compare D., Inverardi P., and Wolf A.L., Uncovering Archi-
tectural Mismatch in Component Behavior. Science of Com-
puter Programming, 33(2): pp.101-131, 1999.

7. Conradi R., and Westfechtel B., Version Models for Soft-
ware Configuration Management. ACM Computing Surveys,
30(2): pp.232-282, 1998.

8. Cook J.E., and Dage J.A., Highly Reliable Upgrading of
Components, in Proceedings of the 1999 International Con-
ference on Software Engineering, pp.203-212, 1999.

9. Estublier, J. and Casalles, R., The Adele Configuration Man-
ager, in Configuration Management, W.F. Tichy, Editor,
Wiley: London, Great Britain. pp.99-134, 1994.

10. Garlan D., Allen R., and Ockerbloom J., Exploiting Style in
Architectural Design Environments in Proceedings of
SIGSOFT’94: Foundations of Software Engineering,
pp.175–188, New Orleans, Louisiana, USA, December 1994.

11. Garlan D., Monroe R., and Wile D., ACME: An Architecture
Description Interchange Language in Proceedings of
CASCON’97, November 1997.

12. Hall, R.S., Heimbigner, D.M., and Wolf, A.L., A Coopera-
tive Approach to Support Software Deployment Using the
Software Dock, in Proceedings of the 1999 International
Conference on Software Engineering, pp.174-183, 1999.

13. Krasner G. E., and Pope S. T, A Cookbook for Using the
Model-View-Controller User Interface Paradigm in Small-
talk-80. Journal of Object-Oriented Programming, 1(3):26–
49, August/September 1988.

14. Kuusela, J., Architectural Evolution, in Proceedings of the
First Working IFIP Conference on Software Architecture,
Kluwer Academic: Boston, Massachusetts. 1999.

15. Lampen, A. and Mahler, A., An Object Base for Attributed
Software Objects, in Proceedings of the EUUG Autumn'88
Conference: Cascais, Portugal. pp.95-105, 1988.

16. Larsson, M. and Crnkovic, I., New Challenges for
Configuration Management, in Proceedings of the Ninth
International Symposium on System Configuration
Management. pp.232-243, 1999.

17. Le Metayer D., Software Architecture Styles as Graph
Grammars, in Proceedings of FSE4, San Francisco, p.15-23,
October 1996.

18. Liskov B. H., and Wing J. M., A Behavioral Notion of Sub-
typing. ACM Transactions on Programming Languages and
Systems, vol. 16, no. 6, pp. 1811-1841, November 1994.

19. Luckham D. C., and Vera J., An Event-Based Architecture
Definition Language. IEEE Transactions on Software Engi-
neering, vol. 21, no. 9, pp. 717-734, September 1995.

20. Magee J., and Kramer J., Dynamic Structure in Software
Architectures, in Proceedings of the Fourth ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
pp.3-13, 1996.

21. Medvidovic, N., Rosenblum, D. S., and Taylor, R. N. A Type
Theory for Software Architectures. Technical Report, UCI-
ICS-98-14, University of California, Irvine, April 1998.

22. Medvidovic N., Rosenblum D. S., and Taylor R. N., A Lan-
guage and Environment for Architecture-Based Software
Development and Evolution, in Proceedings of the 1999 In-
ternational Conference on Software Engineering, pp.44-53,
1999.

23. Medvidovic N., and Taylor R.N., A Classification and Com-
parison Framework for Software Architecture Description
Languages. IEEE Transactions on Software Engineering
26(1), pp. 70–93, January 2000.

24. Mehta N., Medvidovic N., and Phadke S., Towards a Taxon-
omy of Software Connector, in Proceedings of the 22nd In-

ternational Conference on Software Engineering (ICSE
2000), pp. 178–187, Limerick, Ireland, June 2000.

25. Oreizy P., Medvidovic N., and Taylor R. N., Architecture-
Based Runtime Software Evolution in Proceedings of the
20th International Conference on Software Engineering,
pp.177-186, Kyoto, Japan, April 1998.

26. Parisi F., and Wolf A.L., Foundations for Software Configu-
ration Management Policies Using Graph Transformations,
in Fundamental Approaches to Software Engineering 2000,
Springer-Verlag. pp. 304-318, 2000.

27. Perry D.E., The Inscape Environment, in Proceedings of the
Eleventh International Conference on Software Engineering,
pp. 2-11, 1989.

28. Perry D.E., and Wolf A.L. Foundations for the Study of
Software Architectures. ACM SIGSOFT Software Engineer-
ing Notes, vol. 17, no. 4, pp. 40-52, October1992.

29. Rakic M., and Medvidovic N., Increasing the Confidence in
Off-the-Shelf Components: A Software Connector-Based
Approach. To appear in Proceedings of the 2001 Symposium
on Software Reusability, Toronto, Canada, May 2001.

30. Robbins J., Redmiles D., Software Architecture Critics in the
Argo Design Environment. Knowledge-Based Systems. Spe-
cial issue: The Best of IUI’98.

31. Rochkind M.J., The Source Code Control System. IEEE
Transactions on Software Engineering, SE-1(4): 1975.

32. Seiwald C., Inter-file Branching - A Practical Method for
Representing Variants, in Proceedings of the Sixth Interna-
tional Workshop on Software Configuration Management,
Springer-Verlag. pp. 67-75, 1996.

33. Shaw M., and Garlan, D., Software Architecture: Perspec-
tives on an Emerging Discipline: Prentice Hall, 1996.

34. Shaw, M., et al., Abstractions for Software Architecture and
Tools to Support Them. IEEE Transactions on Software En-
gineering, 21(4): pp. 314-335. 1995

35. Taylor R.N., et al., A Component- and Message-Based Ar-
chitectural Style for GUI Software. IEEE-TSE. 22(6), 1996.

36. Tichy W.F., RCS, A System for Version Control. Software -
Practice and Experience. 15(7): pp. 637-654, 1985.

37. Tryggeseth E., Gulla B., and Conradi R., Modeling Systems
with Variability Using the PROTEUS Configuration Lan-
guage, in Proceedings of the Fifth International Workshop
on Software Configuration Management, Springer-Verlag.
pp. 216-240, 1995.

38. van der Hoek A., A Generic, Reusable Repository for Con-
figuration Management Policy Programming, University of
Colorado at Boulder: Boulder, Colorado, 2000.

39. van Ommering R., et al., The Koala Component Model for
Product Families in Consumer Electronics Software. IEEE
Computer, 33(2): pp. 78-85, 2000.

40. Wiborg Weber D., Change Sets versus Change Packages:
Comparing Implementations of Change-Based SCM, in Pro-
ceedings of the Seventh International Workshop on Software
Configuration Management, pp. 25-35, 1997.

41. Zaremski A. M. and Wing J. M. Specification Matching of
Software Components. ACM Transactions on Software En-
gineering and Methodology, vol. 6, no. 4, pp. 333-369, Octo-
ber 1997.

	ABSTRACT
	Keywords

	INTRODUCTION
	BACKGROUND
	Software Architecture
	Configuration Management

	EXAMPLE APPLICATION
	ARCHITECTURAL SYSTEM MODEL
	Types and Instances
	Interfaces
	Components
	Variants
	Discussion

	IMPLEMENTATION
	DEMONSTRATIONS
	Enhanced Design Experience
	Multi-Versioning Connectors
	Automated Change Script Generation

	RELATED WORK
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

