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Abstract 
Presenting “cool” algorithms to CS2 students helps 
convince them that the study of data structures and 
algorithms is worthwhile.  An algorithm is perceived as 
cool if it is easy to understand, very fast on large data sets, 
uses memory judiciously and has a straightforward, short 
proof — or at least a convincing proof sketch — using 
accessible mathematics.  To illustrate, we discuss two 
related and relatively unknown algorithms: ProxmapSort, 
previously discussed in Part I of this paper, and 
ProxmapSearch, discussed here. 
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Introduction 
 In Part I of this paper, we presented the ProxmapSort 
sorting algorithm (also described in [1], [2], and [3]) and 
we showed that, if keys are “well distributed,” this 
algorithm sorts in time O(n) — faster than key-comparison 
sorting techniques, which can do no better than O(n log n).     
 In our CS2 classes, we have also been discussing the 
ProxmapSearch searching algorithm, which was discovered 
when preparing the instructor’s manual for [1].  It can be 
presented quickly once ProxmapSort has been covered.  
Students already know that binary search in ordered arrays 
is considered fast at O(log n) time and that searching based 
on open addressing hashing algorithms is O(1) if the array 
is relatively empty but tends to O(n) as the array becomes 
saturated.  So they are astonished to learn that 
ProxmapSearch finds a key in an average of 1.5 key 
comparisons, using information generated during a 
ProxmapSort of the original array, and that the result holds 
even when the array is full. 

ProxmapSort Prepares for ProxmapSearch 
In Part I of this paper we gave an example to introduce 
students to the main ideas in ProxmapSort. We include  
part of that example here (Fig. 1) to illustrate how 
ProxmapSearch uses the proxmap generated by 
ProxmapSort. 
 Example.  Consider a full array A[0..n –1] of n keys, 
with the keys drawn randomly and uniformly from the 
possible key values K in the range (0.0 ≤ K < 13.0), and let 
i in [0..n –1] be an index of that array. Assume that we 
have already applied ProxmapSort to sort A’s keys, using 
the hit count array H, the proxmap array P, and the 
insertion location array L as intermediaries. It is the 

proxmap array P[0..n–1] that must be retained after 
ProxmapSort is completed in order for ProxmapSearch to 
work properly.  

Keys to sort and their corresponding indices – array A 
6.7 5.9 8.4 1.2 7.3 3.7 11.5 1.1 4.8 0.4 10.5 6.1 1.8  
 0 1 2 3 4 5 6 7 8 9 10 11 12 

Hit Counts – array H 
 1 3 0 1 1 1 2 1 1 0 1 1 0 

Proxmap – array P 
 0 1 -1 4 5 6 7 9 10 -1 11 12 -1 

 
[ 0 ] [ 1 2 3 ] [ 4 ] [ 5 ] [ 6 ] [ 7 8 ] [ 9 ] [10] [11] [12] 

Insertion Locations – array L 
 7 6 10 1 9 4 12 1 5 0 11 7 1 

After moving keys into subarrays of the sorted array A 
 [ 0 ] [ 1 2 3 ] [ 4 ] [ 5 ]  [ 6 ] [ 7 8 ] [ 9 ] [10] [11] [12] 
 0.4 1.1 1.2 1.8 3.7 4.8 5.9 6.1 6.7 7.3 8.4 10.5 11.5  

Figure 1. Part of ProxmapSort example from Part I 
containing data used by ProxmapSearch 
 Choosing a MapKey function. Recall (from Part I) that 
we chose a map key function MapKey(K) = i such that  
(1) i is an array index (0 ≤ i < n), (2) K1 < K2 whenever 
MapKey(K1) < MapKey(K2), (3) for all i, the number of 
keys that map to i is nearly identical, and (4) MapKey is 
fast to compute.  In Fig. 1, we used MapKey(K) = floor(K), 
where (0.0 ≤ K < 13.0), and showed students how that 
choice met the above criteria.  

In general, the domain of the MapKey function is the 
space of all possible keys K and the range is the set of 
indices { i | 0 ≤ i < n } of the array A[0..n – 1]. Thus, 
MapKey: K → [0..n – 1]. In practice, it is convenient to 
separate the preparation of the MapKey function into two 
stages. The first stage involves choosing a function, 
UnitIntervalMap: K → [0, 1), that maps keys K ∈ K 
uniformly and evenly into floating point numbers in the 
half-open unit interval. Thus, for all K ∈ K, 
UnitIntervalMap(K) = r, where (0.0 ≤ r < 1.0). Then,  
in the second stage, given an array A[0..n – 1] containing n 
keys (and using Java notation), we set  

MapKey(K) = (int) Math.floor(n*UnitIntervalMap(K)). 
Thus, a suitable UnitIntervalMap can be chosen in advance 
of knowing the size n of the array A to be sorted, and, once 



n is known, its unit interval range can be scaled by n to 
yield a suitable MapKey function. 
 Critical proxmap properties. Recall from Part I that 
each hit count H[i] gives the size of the reserved subarray S 
that contains all keys K that map to location i and that the 
proxmap values stored in P[i] were computed during 
ProxmapSort according to the formula 

P[i] = –1 if H[i] = 0, otherwise P[i] = ∑ (0 ≤ j < i ) H[j]. 
This implies: (i) that each nonempty reserved subarray S 
starts at a location p = proxmap[MapKey(K)] that is the 
sum of the sizes of the reserved subarrays to its left (all of 
which contain keys smaller than those in S by MapKey 
property (2) above), and (ii) that the proxmap value  
P[i] is –1 for any empty subarray S (i.e., one for which S’s 
size, H[i], was  0). These two facts are crucial to 
understanding how ProxmapSearch works. 
ProxmapSearch 
 Overview. Consider the array A just sorted with 
ProxmapSort.  For any search key K, we know that 
MapKey(K) = i is an index of A[0..n – 1], so 0 ≤ i < n.  We 
now assume that the array A is extended by one item A[n] 
and that we store K in A[n] before starting to search for K. 
 To search for key K, p = proxmap[MapKey(K)] either has 
the value p = –1, in which case K is not in A because its 
corresponding reserved subarray is empty, or else, if p ≥ 0, 
then p gives the start of the subarray in which the key K 
must reside, if K is in A.  So we search upwards in A, 
moving past all locations A[p], A[p+1], … containing keys 
smaller than K, and we stop at the first location A[q] such 
that A[q] ≥ K.  If A[q] > K or if q = n, K was not in A, so 
we return –1.  Otherwise, by elimination, K = A[q], so we 
return the position q where we found it.   

Running through a few searches, using the ProxmapSort 
example data in Fig. 1 and using search keys K chosen 
from the interval (0.0 ≤ K < 13.0), quickly convinces 
students that ProxmapSearch works.  ProxmapSearch’s 
code is given in Fig. 2. 

int proxmapSearch(KeyType K, KeyType[ ] A, int numberOfKeys) 
{ 
 // get first location to search using the proxmap 
 int currentPosition = proxmap[MapKey(K)]; 
 
 if (currentPosition == -1)    // subarray empty 
  return -1;                         //  key not in A 
 
 A[numberOfKeys] = K; // save K in extension of A[0..n-1] at A[n] 
 
 // the subarray is nonempty; begin search at its proxmap location. 
  // see footnote 1 below for another version of this search loop. 
 int comparisonResult; 
 while (true) { 
  comparisonResult = A[currentPosition].compareTo(K); 
  if (comparisonResult >= 0) // exit search loop 

break;                           // if A[currentPosition] >= K 
  currentPosition++;    // keep looking if A[currentPosition] < K 
 }  
 

 if ((comparisonResult > 0) || (currentPosition == numberOfKeys)) 
   return -1;            // key K not contained in A 
  else 
     return currentPosition;    // K found in A; return its position 
 } 
 
/*  footnote 1: Many experts consider the use of a “break” statement 
 *  to exit from the middle of a “while loop” to be poor programming 
 *  practice. We employed a break because we were optimizing 
 *  ProxmapSearch’s speed. The break can be avoided at the 
 *  expense of evaluating the expression “(comparisonResult < 0)” 
 *  twice. One approach is: 
 * 
 *  int comparisonResult; 
 *  do { 
 *  comparisonResult = A[currentPosition].compareTo(K); 
 *  if (comparisonResult < 0) 
 *   currentPosition++;    // keep looking if A[currentPosition] < K 
 *  } while (comparisonResult < 0); // leave if A[currentPosition] >= K 
 */ 

Figure 2. The ProxmapSearch Algorithm 
 Distribution of reserved subarray sizes.  Our claim in 
Part I that the proxmap sends each key K to an insertion 
location that is usually in close proximity to its final 
position in sorted order, and the reason why 
ProxmapSearch starts searching for a key K at a location 
that is usually close to the place where K can be found in 
A, are based on the fact that most reserved subarrays are 
small. We can understand just how small they are on 
average by studying the distribution of their sizes. Our 
assumption of randomly and uniformly drawn keys 
produces subarrays whose sizes form a binomial 
distribution. The Poisson approximation to the binomial 
distribution (see [4], p. 143) closely estimates the fraction 
of the reserved subarrays of size k as 1/(k! e). Table 1 
shows the percentages of reserved subarrays of various 
sizes according to this approximation. 

Subarrays of Size k 
as a Percentage of all Subarrays 

 subarray  fraction       percentage 
  size k   of total      of total 
  0    0.36788    36.788%  
  1    0.36788    36.788% 
  2    0.18394    18.394% 
  3    0.06131      6.131% 
  4    0.01533      1.533% 
  5    0.00307      0.307% 
  6    0.00051      0.051% 
  7    0.00007      0.007% 
  ≥ 8    0.00001      0.001% 
 total =   1.00000    100.000% 

Table 1. Percent of Subarrays of Given Size k 
Thus, Table I implies that, in a ProxmapSorted array, 

fewer than 0.4% of the subarrays will contain more than 
four keys.  
 Analysis of Running Time. As discussed above, if the 
keys in A were uniformly and randomly chosen, and 
MapKey(K) maps all possible search keys K uniformly and 
evenly onto the array indices of A, most of the subarrays 
will be small.  ProxmapSearch will check at most the keys 



in one subarray S and the first key past the end of S, so it 
ought to be fast. In the case of successful search, the proof 
of ProxmapSearch’s performance is easy for CS2 students 
to follow, but the proof for unsuccessful search uses, in a 
simple way, probabilities resulting from Bernoulli trials, an 
approach that is not always familiar to CS2 students. Still, 
both proofs can be sketched quickly and convincingly. 
 Successful ProxmapSearch. Successful search for a key 
K in an array of length n is breathtakingly fast, taking on 
average C = 1.5 – 1/(2n) key comparisons. 
 Proof: The start of the search is at location  
p = proxmap[MapKey(K)], where p gives the start of a 
subarray S containing j keys that contains K.   
 Thus, after uniform and random insertion of i keys into 
A, the average size of j is 1 + (i – 1)/n, and after inserting 
all n keys into A the average size of j is j = 1 + (n – 1)/n.  
When we search for K in S, it could be in any of these j 
possible positions with equal probability, so the average 
number of key comparisons needed to find it successfully, 
C, is just 

(1 + 2 + ... + j)/j = j * (j + 1)/2 * (1/j) = (j + 1)/2. 
Substituting j = 1 + (n – 1)/n in this expression gives 
   C = (1 + (n – 1)/ n + 1)/2 = 1.5 – 1/(2n). 
 Unsuccessful ProxmapSearch. The average number of 
key comparisons C´ for an unsuccessful search is  
C´ = 1.5 – (1 – 1/n)n, and for large n, C´ ≅ 1.5 – 1/e — even 
faster than successful search! 
 Proof: When searching for a key K that is not in A, 
p = proxmap[MapKey(K)] could lead to an empty subarray 
(indicated by p = –1).  If so, no key comparisons are 
required to determine that K is not in A.  The proxmap 
could instead lead to a non-empty subarray S.  If so, we 
must search in S, and possibly one key position past the 
end of S, to determine that K is not in A.  We need to know 
the expected size j of S to determine the average number of 
key comparisons needed to know that K is not in A.  
 The probability that a subarray of A will be empty is the 
probability that none of the n keys in A maps to a given 
location in A under MapKey(K).  This is given by having 
k = 0 successes in n Bernoulli trials b(k, n, p) with 
probability p = 1/n for success and q = (n – 1)/n for failure 
(see [4], p. 137).  Thus,  

b(k, n, p) =  pk qn–k = (1/n)k ((n –1)/n)n–k . ⎟⎟
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By setting k = 0 (for 0 successes) and recalling that 0! = 1, 

this simplifies to 
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11 , a quantity that eventually 

approaches the limit 1/e = 0.36788 as n gets larger (cf. [4], 
p. 142).  Recall that roughly 36.8% of the subarrays in a 
proxmap-sorted array are empty. Now, let f =1– (1 – 1/n)n 
be the fraction of subarrays in A that are non-empty.  If all 
n keys in A are stored in the n*f non-empty subarrays of A, 
then the average size j of a non-empty subarray is j = 1/f. 

 In general, we compute proxmap[MapKey(K)] = p, and if 
p ≥ 0, we start comparing K to the keys A[p], A[p+1], ... , 
A[p+j].  As soon as we find the first key in A that is greater 
than K or we find K in A[n], we can conclude that K is not 
in A[0..n – 1].  Because there is an equal chance of finding 
that K is not in the subarray after looking at any key in it or 
at the key right after its last key, the average number of key 
comparisons needed to find that K is not in the subarray is 
(1 + 2 + ... + (j+1)) /(j+1) = (j+2)/2 = 1+j/2.  But since this 
search applies only to the fraction f = 1 – (1 – 1/n)n of 
subarrays in A that are non-empty, the average number of 
key comparisons needed to determine that K is not in A is  

f  * (1+j/2)   =   f * (1 + (1/f )/2)   =   f + 1/2 
= 1 – (1 – 1/n)n + 0.5 = 1.5 – (1 – 1/n)n. 

 Because (1 – 1/n)n tends to 1/e as n increases, for large n 
we can say that C´ is about 1.5 – 1/e. 
 Comparing Actual and Predicted Results. As with 
ProxmapSort, we show students data to demonstrate how 
well the algorithm performs in practice and how well 
theory agrees with observed results.  
 Table 2 shows predicted results for successful and 
unsuccessful ProxmapSearch for various array sizes.  The 
last row shows the limits that are approached for infinitely 
large n.  Even for small n, the results are reasonably close 
to the theoretical limits. 

ProxmapSearch’s  
Predicted Average Number of Keys Inspected 

in Successful and Unsuccessful Searches 
array 
size n 

av. keys in 
successful 

search 

av. keys in 
unsuccessful 

search 

av. zero length 
subarray hits

sum of 
last two 
columns 

 64 1.49219 1.13501 0.36499 1.50000 
 128 1.49609 1.13356 0.36644 1.50000 
 256 1.49805 1.13284 0.36716 1.50000 
 512 1.49902 1.13248 0.36752 1.50000 
 1024 1.49951 1.13230 0.36770 1.50000 
 ∞  1.50000 1.13212 0.36788 1.50000 

Table 2. Predicted Data for ProxmapSearch 

 Table 3 shows the observed average number of key 
comparisons used in successful and unsuccessful proxmap 
searches for arrays of various sizes, using single-precision 
floating point numbers as keys.  It’s apparent how well 
theoretical and observed results agree. 

ProxmapSearch 
Average Number of Keys Inspected in  

Successful and Unsuccessful Searches: 10000 Trials 
array
size 

av. keys in 
successful 

search 

av. keys in 
unsuccessful 

search 

av. zero length
subarray hits 

sum of last  
two columns

 64 1.49177 1.13538 0.36491 1.50029 
 128 1.49640 1.13506  0.36633 1.50139 
 256 1.49868 1.13075 0.36741 1.49816 
 512 1.49870 1.13211 0.36734 1.49945 
 1024 1.49919 1.13209 0.36814 1.50023 

Table 3. Experimental Data for ProxmapSearch 



Learning about algorithms that scale up 
The ProxmapSearch algorithm “scales up”— it continues 
to work well as the search array gets really big.  Students 
readily understand this concept, as we just showed them 
that ProxmapSearch takes 1.5 comparisons on average to 
find keys, regardless of the array’s size. 
 An impressive illustration is a “reverse phone book” of 
1,000,000 phone numbers.  First, choose a good hash 
function h(n) (see [5]) that spreads out clusters of phone 
numbers n with the same area codes and prefixes so that 
the h(n) are distributed uniformly — which is needed for 
ProxmapSort and ProxmapSearch to work well.  Second, 
proxmap-sort the hash codes h(n) of all phone numbers in 
the reverse phone book.  To find the owner N of the phone 
number n, we proxmap-search for the key h(n) to find the 
record (h(n), n, N) containing N.   

Conclusions 
Our experience presenting many algorithms to CS2 
students has shown us that students quickly develop a real 
appreciation for theoretical computer science when they 
see how its practice produces algorithms such as 
ProxmapSort and ProxmapSearch.  Cool algorithms really 
do show that theory is cool. 
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