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Abstract 
Presenting “cool” algorithms to CS2 students helps 
convince them that the study of data structures and 
algorithms is worthwhile.  An algorithm is perceived as 
cool if it is easy to understand, very fast on large data sets, 
uses memory judiciously and has a straightforward, short 
proof — or at least a convincing proof sketch — using 
accessible mathematics.  To illustrate, we discuss two 
related and relatively unknown algorithms: ProxmapSort, 
discussed here, and ProxmapSearch, to be discussed in 
Part II. 
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Introduction 
When teaching CS2 students, it is sometimes challenging 
to stimulate interest in algorithms and the proofs of their 
performance.  We’ve noted that the students who “tune 
out” when we attempt to teach them run-of-the-mill 
algorithms “tune in” when we teach them “cool” 
algorithms — those that are easy to grasp, very fast, stingy 
with memory, and have short proofs or convincing proof 
sketches that students can readily follow. 
 We have been presenting the ProxmapSort sorting 
algorithm, described in [1], [2], and [3], to CS2 students for 
several years.  Students are amazed to learn that, if keys are 
“well distributed,” this algorithm sorts in time O(n), much 
faster than the comparison-based sorting techniques that 
they have just learned can do no better than O(n log n).  
Because the proof of ProxmapSort’s performance we’ve 
known until recently was too advanced for our CS2 
classes, we had to resort to a hand wave.  We’ve since 
discovered a new proof, presented below, that CS2 
students can grasp.   
 We have also begun discussing the ProxmapSearch 
searching algorithm, which uses the proxmap generated 
during a ProxmapSort of the original array.  Students are 
astonished to learn that ProxmapSearch finds a key in an 
average of 1.5 key comparisons. The ProxmapSearch 
algorithm, its analysis, and an application showing that it 
“scales up,” are presented in Part II of this paper.  
ProxmapSort 
We introduce students to ProxmapSort by example and 
then discuss the algorithm more generally.  Then we 
analyze the algorithm’s performance.  
 Example.  Consider a full array A[0..n –1] of n keys, 
with the keys drawn randomly and uniformly from the  

 
possible key values, and let i in [0..n –1] be an index of A. 
We want to sort A’s keys into array A2.  (See Fig. 1.) 

Keys to sort and their corresponding indices – array A 
6.7 5.9 8.4 1.2 7.3 3.7 11.5 1.1 4.8 0.4 10.5 6.1 1.8  
 0 1 2 3 4 5 6 7 8 9 10 11 12 

Hit Counts – array H 
 1 3 0 1 1 1 2 1 1 0 1 1 0 

Proxmap – array P 
 0 1 -1 4 5 6 7 9 10 -1 11 12 -1 

 
[ 0 ] [ 1 2 3 ] [ 4 ] [ 5 ] [ 6 ] [ 7 8 ] [ 9 ] [10] [11] [12] 

Insertion Locations – array L 
 7 6 10 1 9 4 12 1 5 0 11 7 1 

Moving keys into subarrays of the sorted array A2 
[ 0 ] [ 1 2 3 ] [ 4 ] [ 5 ] [ 6 ] [ 7 8 ] [ 9 ] [10] [11] [12] 
 -.- -.- -.- -.- -.- -.- -.- -.- -.- -.- -.- -.- -.-  
  -.- -.- -.- -.- -.- -.- -.- 6.7 -.- -.- -.- -.- -.-  
  -.- -.- -.- -.- -.- -.- 5.9 6.7 -.- -.- -.- -.- -.-  
  -.- -.- -.- -.- -.- -.- 5.9 6.7 -.- -.- 8.4 -.- -.-  
  -.- 1.2 -.- -.- -.- -.- 5.9 6.7 -.- -.- 8.4 -.- -.-  
  -.- 1.2 -.- -.- -.- -.- 5.9 6.7 -.- 7.3 8.4 -.- -.-  
  -.- 1.2 -.- -.- 3.7 -.- 5.9 6.7 -.- 7.3 8.4 -.- -.-  
  -.- 1.2 -.- -.- 3.7 -.- 5.9 6.7 -.- 7.3 8.4 -.- 11.5 
  -.- 1.1 1.2 -.- 3.7 -.- 5.9 6.7 -.- 7.3 8.4 -.- 11.5  
  -.- 1.1 1.2 -.- 3.7 4.8 5.9 6.7 -.- 7.3 8.4 -.- 11.5  
 0.4 1.1 1.2 -.- 3.7 4.8 5.9 6.7 -.- 7.3 8.4 -.- 11.5 
 0.4 1.1 1.2 -.- 3.7 4.8 5.9 6.7 -.- 7.3 8.4 10.5 11.5  
 0.4 1.1 1.2 -.- 3.7 4.8 5.9 6.1 6.7 7.3 8.4 10.5 11.5  
 0.4 1.1 1.2 1.8 3.7 4.8 5.9 6.1 6.7 7.3 8.4 10.5 11.5  

Figure 1. ProxmapSort Example 
 Choose a map key function MapKey(K) = i such that  
(1) i is an array index (0 ≤ i < n), (2) K1 < K2 whenever 
MapKey(K1) < MapKey(K2), (3) for all i, the number of 
keys that map to i is nearly identical, and (4) MapKey is 
fast to compute.  [1], [2] and [3] give strategies for 
determining a suitable map key function for a variety of 
situations.  For this example, given that the possible key 
values are in the range (0.0 ≤ K < 13.0), we choose 
MapKey(K) = floor(K) and show students how that choice 
meets the above criteria. 
 For each array index i that is a map key value, we 
compute a “hit count” of the number of keys that map to i.  
We use the hit count array H[0..n –1] to hold these counts, 
where H[i] = the number of occurrences of keys K in A 



such that MapKey(K) = i.  To compute H, we initialize H 
to contain all zeros and then scan sequentially through the 
keys K in A, incrementing H[MapKey(K)] for each key K. 
 Next, we convert the hit counts to a proxmap.  The term 
proxmap is short for proximity map because it maps each 
key onto a location in A2 that is usually in close proximity 
to its final resting place in sorted order. 

Each group of keys mapping to the same i will eventually 
be placed in the same reserved subarray (subarray for 
short).  The value of H[i] gives the exact size of this 
subarray.  When all the subarrays are placed next to one 
another in ascending order in A2, their beginning locations 
in A2 define a proxmap that specifies an approximate 
mapping of each key to its final place in the sorted array. In 
Fig. 1 the proxmap values are stored in the array P.  Each 
P[i] points to the starting location of its respective reserved 
subarray, unless H[i] = 0, in which case P[i] = –1 to denote 
an empty subarray.  From the proxmap definition formula 

P[i] = –1 if H[i] = 0, otherwise P[i] = ∑ (0 ≤ j < i ) H[j], 
we see that each non-empty subarray starts at a location 
P[i] that is just the sum of the subarray sizes to its left. 
 We next compute an array of insertion locations  
L[0..n – 1].  L[i] stores the location of the beginning of the 
subarray in A2 where key A[i] is to be inserted. So, for 
each key A[i], L[i] = proxmap(MapKey(A[i])).  We 
compute this by setting L[i] = P[MapKey(A[i])]. 
 Now we do the actual sorting.  For each key A[i] (for i = 
0, 1,…, n – 1),we insertion-sort A[i] into its reserved 
subarray in A2 starting at location L[i].  Thus, if position 
L[i] is empty, we place K there.  If not, we insert K into the 
sequence of keys starting at L[i] so that ascending order is 
preserved, moving all keys larger than K (if any) to the 
right to make a place to insert K into its correct location.  
Since each subarray is perfectly sized to hold its keys, 
inserting elements into A2 will never cause a key to collide 
with the keys in its neighboring subarray, nor will “holes” 
remain in the array where no key is placed.  Since the keys 
in each subarray are guaranteed to be larger than the keys 
in the subarray to its left, inserting keys in order into each 
subarray results in A2 being sorted.  

At this point, we show students step-by-step how the 
example in Fig. 1 works. 

 Efficiencies.  We next tell students about some storage 
efficiencies that can be obtained.  After P[i] has been 
computed and H[i] has been added to a running total, H[i] 
is no longer needed.  Thus, the hit counts and proxmap can 
share the same array, saving us n memory slots. 
 Note that we are computing map keys both to determine 
the H values and again to determine the L values.  If it is 
faster to look up previously computed map key values than 
it is to compute them again, we can save time by 
computing the map key values just once and storing them 
in L.  These map key values can share the L array with the 
insertion locations since, once a location is computed, the 

map key value for that location will no longer be needed. 
 If the original array of keys is not required after the 
algorithm completes, the keys can be sorted directly in A, 
eliminating the need for A2.  To accomplish this in situ 
sorting, we take a “musical chairs” approach. 
 We start with all keys having status NOT_YET_MOVED.  
We begin with A[0], storing this key in the keyToInsert 
variable.  A[0] is now marked EMPTY.  We head to L[0], 
the start of the keyToInsert’s subarray.  The key there has 
not yet been moved, so we swap it with the keyToInsert to 
place the key into its appropriate subarray.  Once inserted, 
this key is marked as MOVED.  We now have a new 
keyToInsert.  We go to the start of its subarray, and if the 
item at this location is NOT_YET_MOVED, we swap it as 
before.  If it is EMPTY, then we just place the key into this 
empty spot and go looking for a new key to insert, which is 
just the next key marked as NOT_YET_MOVED that we 
encounter when scanning A in left-to-right order. 
 If the key we encounter in the subarray was MOVED there, 
then either we swap that key with the keyToInsert or leave 
that key alone, whichever leaves the smaller of the two 
keys at the start of the subarray (as we want the keys in 
order).  We then move to the next subarray item and check 
again.  If the next key location is marked EMPTY, we place 
the keyToInsert in this empty location and scan to find a 
new key to insert.  But if the next key location is marked 
NOT_YET_MOVED, we swap it with the keyToInsert as 
before.  Finally, if the next key location was marked 
MOVED, we again leave the smaller of the keyToInsert or 
the current key and move right to check the next subarray 
item.  If no more NOT_YET_MOVED keys are encountered 
when scanning left-to-right, the sorting process is 
complete. 
 As we will see in Part II of this paper, ProxmapSearch 
needs to use the proxmap values stored in P[i] that were 
computed during ProxmapSort (using the formula given 
above).  If ProxmapSearch is not going to be performed 
later, then further space savings can be obtained by storing 
the status flags in the proxmap array, since at this point in 
ProxmapSort, the proxmap values are no longer needed. 
 ProxmapSort algorithm. We present the ProxmapSort 
algorithm to students in the form of a Java method 
(Fig. 2) that reflects the approach just explained.  We 
further note how this method could be used in the larger 
context of an object-oriented Java implementation (because 
we use an object-oriented approach and Java 5.0 for our 
laboratory exercises).  Implementations of ProxmapSort in 
Pascal, C and Java 1.2 can be found in [1], [2] and [3], 
respectively. 
Analysis of Running Time. It’s easy to show that the 
worst case running time of ProxmapSort is O(n2).  
Consider a data distribution so skewed, or a MapKey 
function so poorly chosen, that all keys map to one 
location.  Then all keys will be insertion-sorted into the 
same subarray, and insertion sort is O(n2). 



 proxmapSort(KeyType[] A, int numberOfKeys) 
 { 
  final int EMPTY = 0;   
  final int NOT_YET_MOVED = 1;  
  final int MOVED = 2; 
 
  int[] proxmap = new int[numberOfKeys]; 
  int[] locations = new int[numberOfKeys]; 

int[] status = new int[numberOfKeys]; 
 
  // compute hit counts; they share storage with the proxmap. 
  // map keys and locations also share the same storage. 

// MapKey() is the map key function 
  for (int i = 0; i < numberOfKeys; i++) // no hits yet 
   proxmap [i] = 0; 
  for (int i = 0; i < numberOfKeys; i++) { 
   int hitLocation = MapKey(A[i]); 
   locations[i] = hitLocation; 
   proxmap [hitLocation]++; 
  } 
 
  // convert hit counts to a proxmap 
  int nextStart = 0; 
  for (int i = 0; i < numberOfKeys; i++) { 
   if (proxmap[i] > 0) { 
    int thisSubarraySize = proxmap[i]; 
    proxmap [i] = nextStart; 
    nextStart += thisSubarraySize; 
   } 

else 
    proxmap[i] = -1;  // indicates empty subarray 
  } 
 
  // compute the insertion locations 
  for (int i = 0; i < numberOfKeys; i++) 
   locations[i] = proxmap [locations[i]]; 
 
  // rearrange A[i] in situ into ascending sorted order. 
  // status flags can use proxmap's memory 
  // if proxmap not needed for later ProxmapSearch 
  for (int i = 0; i < numberOfKeys; i++)  
   status[i] = NOT_YET_MOVED; 
 
  for (int i = 0; i < numberOfKeys; i++) { 
   // next key NotYetMoved is next key to insert 
   if (status[i] == NOT_YET_MOVED) { 
    int targetLocation = locations[i]; 
    KeyType keyToInsert = A[i]; 
    status[i] = EMPTY; 
    boolean notInserted = true; 
 
    while (notInserted) { 
     KeyType tempKey;  // key being processed 
 
     // if target position has key that has not been  
     // moved, swap it with key stored there; note 
     // key ís moved; key swapped out is next to move 
     if (status[targetLocation] == NOT_YET_MOVED) { 
      tempKey = A[targetLocation];    
      A[targetLocation] = keyToInsert;   
      keyToInsert = tempKey;      
      status[targetLocation] = MOVED; 
      targetLocation = locations[targetLocation]; 
     } 
     // target MOVED, key belongs in this location; swap it in 

else if (status[targetLocation] == MOVED) {   
      if (keyToInsert.compareTo(A[targetLocation]) < 0) {  
       tempKey = A[targetLocation];   
       A[targetLocation] = keyToInsert; 
       keyToInsert = tempKey; 

      } 
      // prepare to check next subarray location 
      targetLocation++;       
     } 
     else { 
      // the target is empty; insert the key and mark      
      // as MOVED; we’re done with this cycle of key moves 
      A[targetLocation] = keyToInsert;   
      status[targetLocation] = MOVED; 
      notInserted = false;       
     } 
    } 
   } 
  } 
 } 

Figure 2. The ProxmapSort Algorithm 
 However, given an array A of n keys drawn from a 
uniform random distribution, ProxmapSort takes an 
average of 1.5 n – 0.5 unit operations in its key insertion 
phase, and O(n) average time to sort all the keys. 
 Proof: Because the preliminary passes used by 
ProxmapSort to compute hit counts, the proxmap, insertion 
locations and initial values of the flags take a fixed number 
of unit operations per key, it takes O(n) time to prepare for 
the key insertion phase.  For ProxmapSort to be O(n), it 
remains to show that the key insertion phase is also O(n).   
 During the insertion phase we are essentially starting 
with an empty destination array of n cells and inserting 
new keys one-by-one.  Consider the situation when we are 
about to insert the ith key (1 ≤ i ≤ n).  At this moment, i – 1 
keys have already been inserted in subarrays that have been 
uniformly and randomly chosen.  So the average length of 
the sequence of keys in a subarray just before we insert the 
ith key is (i – 1)/n.  Therefore to insert the ith key costs 
1 + (i – 1)/n basic unit operations (comparing keys, 
swapping keys, moving to the right one slot, and/or 
dropping a key into a slot).  Thus, to insert all n keys into 
the array requires 
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= n + (n – 1)/2 = n + n/2 – 1/2 = 1.5n – 0.5 . 

 To show students that the results obtained theoretically 
hold in practice, we present a table comparing predicted 
results with the number of unit operations used in actual 
executions of ProxmapSort (Table 1).  The predictive 
power of theory becomes quite apparent. 

Data for ProxmapSort Insertion Phase 
100 Trials 

  Array   av. observed  predicted 
  size n  #. of operations  #. of ops 

  64    1.504*n    1.492*n  
  128    1.498*n    1.496*n 
  256    1.504*n    1.498*n 
  512    1.502*n    1.499*n 
  1024    1.499*n    1.500*n 

Table 1. Observed vs. Predicted Data for ProxmapSort  



 To drive home just how fast ProxmapSort is, we compare 
its actual running times to the running times of other 
sorting methods students have studied (Table 2).  
 The numbers in Table 2 are running times measured in 
milliticks (60,000ths of a second).  The results are averaged 
over 100 trials using randomly-chosen single-precision 
floating point keys.  Students can see that ProxmapSort 
significantly outperforms the others if its keys are 
uniformly distributed. 

 array size = 64 128 256 512 1024 
 QuickSort 0.40 0.98 2.22 4.94 10.86 
 HeapSort 0.61 1.43 3.28 7.43 16.57 
 ProxmapSort 0.38 0.75 1.51 3.00 5.99 
 ShellSort 0.42 1.04 2.37 5.44 11.97 
 BubbleSort 2.76 11.36 46.42 189.35 766.22 
 InsertionSort 1.12 4.47 17.58 69.89 280.27 
 SelectionSort 1.40 5.56 22.18 88.66 354.48 
 MergeSort 0.99 2.28 5.13 11.45 25.11 

Table 2. Comparing Different Sorting Methods 
 We also note that ProxmapSort takes about 2n extra 
space, which is more than many other sorts.  We thus have 
a nice illustration of the classic issue of space/time trade-
off. 
ProxmapSearch 
In Part II of this paper, we discuss ProxmapSearch, which 
uses the proxmap generated by ProxmapSort to search for 
keys in an array A[0..n – 1].  We show that ProxmapSearch 
uses only 1.5 key comparisons on average.  We also 
discuss an “inverted” phone book of 1,000,000 entries, 
showing that ProxmapSearch “scales up,” i.e., continues to 
perform well as the search array gets very large. 
Conclusions 
Our experience presenting many algorithms to CS2 
students has shown us that students quickly develop a real 
appreciation for theoretical computer science when they 
see how its practice produces algorithms such as 
ProxmapSort and ProxmapSearch.  Cool algorithms really 
do show that theory is cool. 
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