
Using O(n) ProxmapSort and O(1) ProxmapSearch
to Motivate CS2 Students, Part I

Thomas A. Standish Norman Jacobson
Donald Bren School of Information and Computer Sciences

University of California, Irvine
Irvine, California 92697-3425

{standish, jacobson}@ics.uci.edu
Abstract
Presenting “cool” algorithms to CS2 students helps
convince them that the study of data structures and
algorithms is worthwhile. An algorithm is perceived as
cool if it is easy to understand, very fast on large data sets,
uses memory judiciously and has a straightforward, short
proof — or at least a convincing proof sketch — using
accessible mathematics. To illustrate, we discuss two
related and relatively unknown algorithms: ProxmapSort,
discussed here, and ProxmapSearch, to be discussed in
Part II.
Keywords
CS2, ProxmapSearch, ProxmapSort, searching, sorting
Introduction
When teaching CS2 students, it is sometimes challenging
to stimulate interest in algorithms and the proofs of their
performance. We’ve noted that the students who “tune
out” when we attempt to teach them run-of-the-mill
algorithms “tune in” when we teach them “cool”
algorithms — those that are easy to grasp, very fast, stingy
with memory, and have short proofs or convincing proof
sketches that students can readily follow.
 We have been presenting the ProxmapSort sorting
algorithm, described in [1], [2], and [3], to CS2 students for
several years. Students are amazed to learn that, if keys are
“well distributed,” this algorithm sorts in time O(n), much
faster than the comparison-based sorting techniques that
they have just learned can do no better than O(n log n).
Because the proof of ProxmapSort’s performance we’ve
known until recently was too advanced for our CS2
classes, we had to resort to a hand wave. We’ve since
discovered a new proof, presented below, that CS2
students can grasp.
 We have also begun discussing the ProxmapSearch
searching algorithm, which uses the proxmap generated
during a ProxmapSort of the original array. Students are
astonished to learn that ProxmapSearch finds a key in an
average of 1.5 key comparisons. The ProxmapSearch
algorithm, its analysis, and an application showing that it
“scales up,” are presented in Part II of this paper.
ProxmapSort
We introduce students to ProxmapSort by example and
then discuss the algorithm more generally. Then we
analyze the algorithm’s performance.
 Example. Consider a full array A[0..n –1] of n keys,
with the keys drawn randomly and uniformly from the

possible key values, and let i in [0..n –1] be an index of A.
We want to sort A’s keys into array A2. (See Fig. 1.)

Keys to sort and their corresponding indices – array A
6.7 5.9 8.4 1.2 7.3 3.7 11.5 1.1 4.8 0.4 10.5 6.1 1.8
 0 1 2 3 4 5 6 7 8 9 10 11 12

Hit Counts – array H
 1 3 0 1 1 1 2 1 1 0 1 1 0

Proxmap – array P
 0 1 -1 4 5 6 7 9 10 -1 11 12 -1

[0] [1 2 3] [4] [5] [6] [7 8] [9] [10] [11] [12]

Insertion Locations – array L
 7 6 10 1 9 4 12 1 5 0 11 7 1

Moving keys into subarrays of the sorted array A2
[0] [1 2 3] [4] [5] [6] [7 8] [9] [10] [11] [12]
 -.- -.- -.- -.- -.- -.- -.- -.- -.- -.- -.- -.- -.-
 -.- -.- -.- -.- -.- -.- -.- 6.7 -.- -.- -.- -.- -.-
 -.- -.- -.- -.- -.- -.- 5.9 6.7 -.- -.- -.- -.- -.-
 -.- -.- -.- -.- -.- -.- 5.9 6.7 -.- -.- 8.4 -.- -.-
 -.- 1.2 -.- -.- -.- -.- 5.9 6.7 -.- -.- 8.4 -.- -.-
 -.- 1.2 -.- -.- -.- -.- 5.9 6.7 -.- 7.3 8.4 -.- -.-
 -.- 1.2 -.- -.- 3.7 -.- 5.9 6.7 -.- 7.3 8.4 -.- -.-
 -.- 1.2 -.- -.- 3.7 -.- 5.9 6.7 -.- 7.3 8.4 -.- 11.5
 -.- 1.1 1.2 -.- 3.7 -.- 5.9 6.7 -.- 7.3 8.4 -.- 11.5
 -.- 1.1 1.2 -.- 3.7 4.8 5.9 6.7 -.- 7.3 8.4 -.- 11.5
 0.4 1.1 1.2 -.- 3.7 4.8 5.9 6.7 -.- 7.3 8.4 -.- 11.5
 0.4 1.1 1.2 -.- 3.7 4.8 5.9 6.7 -.- 7.3 8.4 10.5 11.5
 0.4 1.1 1.2 -.- 3.7 4.8 5.9 6.1 6.7 7.3 8.4 10.5 11.5
 0.4 1.1 1.2 1.8 3.7 4.8 5.9 6.1 6.7 7.3 8.4 10.5 11.5

Figure 1. ProxmapSort Example
 Choose a map key function MapKey(K) = i such that
(1) i is an array index (0 ≤ i < n), (2) K1 < K2 whenever
MapKey(K1) < MapKey(K2), (3) for all i, the number of
keys that map to i is nearly identical, and (4) MapKey is
fast to compute. [1], [2] and [3] give strategies for
determining a suitable map key function for a variety of
situations. For this example, given that the possible key
values are in the range (0.0 ≤ K < 13.0), we choose
MapKey(K) = floor(K) and show students how that choice
meets the above criteria.
 For each array index i that is a map key value, we
compute a “hit count” of the number of keys that map to i.
We use the hit count array H[0..n –1] to hold these counts,
where H[i] = the number of occurrences of keys K in A

such that MapKey(K) = i. To compute H, we initialize H
to contain all zeros and then scan sequentially through the
keys K in A, incrementing H[MapKey(K)] for each key K.
 Next, we convert the hit counts to a proxmap. The term
proxmap is short for proximity map because it maps each
key onto a location in A2 that is usually in close proximity
to its final resting place in sorted order.

Each group of keys mapping to the same i will eventually
be placed in the same reserved subarray (subarray for
short). The value of H[i] gives the exact size of this
subarray. When all the subarrays are placed next to one
another in ascending order in A2, their beginning locations
in A2 define a proxmap that specifies an approximate
mapping of each key to its final place in the sorted array. In
Fig. 1 the proxmap values are stored in the array P. Each
P[i] points to the starting location of its respective reserved
subarray, unless H[i] = 0, in which case P[i] = –1 to denote
an empty subarray. From the proxmap definition formula

P[i] = –1 if H[i] = 0, otherwise P[i] = ∑ (0 ≤ j < i) H[j],
we see that each non-empty subarray starts at a location
P[i] that is just the sum of the subarray sizes to its left.
 We next compute an array of insertion locations
L[0..n – 1]. L[i] stores the location of the beginning of the
subarray in A2 where key A[i] is to be inserted. So, for
each key A[i], L[i] = proxmap(MapKey(A[i])). We
compute this by setting L[i] = P[MapKey(A[i])].
 Now we do the actual sorting. For each key A[i] (for i =
0, 1,…, n – 1),we insertion-sort A[i] into its reserved
subarray in A2 starting at location L[i]. Thus, if position
L[i] is empty, we place K there. If not, we insert K into the
sequence of keys starting at L[i] so that ascending order is
preserved, moving all keys larger than K (if any) to the
right to make a place to insert K into its correct location.
Since each subarray is perfectly sized to hold its keys,
inserting elements into A2 will never cause a key to collide
with the keys in its neighboring subarray, nor will “holes”
remain in the array where no key is placed. Since the keys
in each subarray are guaranteed to be larger than the keys
in the subarray to its left, inserting keys in order into each
subarray results in A2 being sorted.

At this point, we show students step-by-step how the
example in Fig. 1 works.

 Efficiencies. We next tell students about some storage
efficiencies that can be obtained. After P[i] has been
computed and H[i] has been added to a running total, H[i]
is no longer needed. Thus, the hit counts and proxmap can
share the same array, saving us n memory slots.
 Note that we are computing map keys both to determine
the H values and again to determine the L values. If it is
faster to look up previously computed map key values than
it is to compute them again, we can save time by
computing the map key values just once and storing them
in L. These map key values can share the L array with the
insertion locations since, once a location is computed, the

map key value for that location will no longer be needed.
 If the original array of keys is not required after the
algorithm completes, the keys can be sorted directly in A,
eliminating the need for A2. To accomplish this in situ
sorting, we take a “musical chairs” approach.
 We start with all keys having status NOT_YET_MOVED.
We begin with A[0], storing this key in the keyToInsert
variable. A[0] is now marked EMPTY. We head to L[0],
the start of the keyToInsert’s subarray. The key there has
not yet been moved, so we swap it with the keyToInsert to
place the key into its appropriate subarray. Once inserted,
this key is marked as MOVED. We now have a new
keyToInsert. We go to the start of its subarray, and if the
item at this location is NOT_YET_MOVED, we swap it as
before. If it is EMPTY, then we just place the key into this
empty spot and go looking for a new key to insert, which is
just the next key marked as NOT_YET_MOVED that we
encounter when scanning A in left-to-right order.
 If the key we encounter in the subarray was MOVED there,
then either we swap that key with the keyToInsert or leave
that key alone, whichever leaves the smaller of the two
keys at the start of the subarray (as we want the keys in
order). We then move to the next subarray item and check
again. If the next key location is marked EMPTY, we place
the keyToInsert in this empty location and scan to find a
new key to insert. But if the next key location is marked
NOT_YET_MOVED, we swap it with the keyToInsert as
before. Finally, if the next key location was marked
MOVED, we again leave the smaller of the keyToInsert or
the current key and move right to check the next subarray
item. If no more NOT_YET_MOVED keys are encountered
when scanning left-to-right, the sorting process is
complete.
 As we will see in Part II of this paper, ProxmapSearch
needs to use the proxmap values stored in P[i] that were
computed during ProxmapSort (using the formula given
above). If ProxmapSearch is not going to be performed
later, then further space savings can be obtained by storing
the status flags in the proxmap array, since at this point in
ProxmapSort, the proxmap values are no longer needed.
 ProxmapSort algorithm. We present the ProxmapSort
algorithm to students in the form of a Java method
(Fig. 2) that reflects the approach just explained. We
further note how this method could be used in the larger
context of an object-oriented Java implementation (because
we use an object-oriented approach and Java 5.0 for our
laboratory exercises). Implementations of ProxmapSort in
Pascal, C and Java 1.2 can be found in [1], [2] and [3],
respectively.
Analysis of Running Time. It’s easy to show that the
worst case running time of ProxmapSort is O(n2).
Consider a data distribution so skewed, or a MapKey
function so poorly chosen, that all keys map to one
location. Then all keys will be insertion-sorted into the
same subarray, and insertion sort is O(n2).

 proxmapSort(KeyType[] A, int numberOfKeys)
 {
 final int EMPTY = 0;
 final int NOT_YET_MOVED = 1;
 final int MOVED = 2;

 int[] proxmap = new int[numberOfKeys];
 int[] locations = new int[numberOfKeys];

int[] status = new int[numberOfKeys];

 // compute hit counts; they share storage with the proxmap.
 // map keys and locations also share the same storage.

// MapKey() is the map key function
 for (int i = 0; i < numberOfKeys; i++) // no hits yet
 proxmap [i] = 0;
 for (int i = 0; i < numberOfKeys; i++) {
 int hitLocation = MapKey(A[i]);
 locations[i] = hitLocation;
 proxmap [hitLocation]++;
 }

 // convert hit counts to a proxmap
 int nextStart = 0;
 for (int i = 0; i < numberOfKeys; i++) {
 if (proxmap[i] > 0) {
 int thisSubarraySize = proxmap[i];
 proxmap [i] = nextStart;
 nextStart += thisSubarraySize;
 }

else
 proxmap[i] = -1; // indicates empty subarray
 }

 // compute the insertion locations
 for (int i = 0; i < numberOfKeys; i++)
 locations[i] = proxmap [locations[i]];

 // rearrange A[i] in situ into ascending sorted order.
 // status flags can use proxmap's memory
 // if proxmap not needed for later ProxmapSearch
 for (int i = 0; i < numberOfKeys; i++)
 status[i] = NOT_YET_MOVED;

 for (int i = 0; i < numberOfKeys; i++) {
 // next key NotYetMoved is next key to insert
 if (status[i] == NOT_YET_MOVED) {
 int targetLocation = locations[i];
 KeyType keyToInsert = A[i];
 status[i] = EMPTY;
 boolean notInserted = true;

 while (notInserted) {
 KeyType tempKey; // key being processed

 // if target position has key that has not been
 // moved, swap it with key stored there; note
 // key ís moved; key swapped out is next to move
 if (status[targetLocation] == NOT_YET_MOVED) {
 tempKey = A[targetLocation];
 A[targetLocation] = keyToInsert;
 keyToInsert = tempKey;
 status[targetLocation] = MOVED;
 targetLocation = locations[targetLocation];
 }
 // target MOVED, key belongs in this location; swap it in

else if (status[targetLocation] == MOVED) {
 if (keyToInsert.compareTo(A[targetLocation]) < 0) {
 tempKey = A[targetLocation];
 A[targetLocation] = keyToInsert;
 keyToInsert = tempKey;

 }
 // prepare to check next subarray location
 targetLocation++;
 }
 else {
 // the target is empty; insert the key and mark
 // as MOVED; we’re done with this cycle of key moves
 A[targetLocation] = keyToInsert;
 status[targetLocation] = MOVED;
 notInserted = false;
 }
 }
 }
 }
 }

Figure 2. The ProxmapSort Algorithm
 However, given an array A of n keys drawn from a
uniform random distribution, ProxmapSort takes an
average of 1.5 n – 0.5 unit operations in its key insertion
phase, and O(n) average time to sort all the keys.
 Proof: Because the preliminary passes used by
ProxmapSort to compute hit counts, the proxmap, insertion
locations and initial values of the flags take a fixed number
of unit operations per key, it takes O(n) time to prepare for
the key insertion phase. For ProxmapSort to be O(n), it
remains to show that the key insertion phase is also O(n).
 During the insertion phase we are essentially starting
with an empty destination array of n cells and inserting
new keys one-by-one. Consider the situation when we are
about to insert the ith key (1 ≤ i ≤ n). At this moment, i – 1
keys have already been inserted in subarrays that have been
uniformly and randomly chosen. So the average length of
the sequence of keys in a subarray just before we insert the
ith key is (i – 1)/n. Therefore to insert the ith key costs
1 + (i – 1)/n basic unit operations (comparing keys,
swapping keys, moving to the right one slot, and/or
dropping a key into a slot). Thus, to insert all n keys into
the array requires

∑
=

⎟
⎠
⎞

⎜
⎝
⎛ −
+

n

i n
i

1

11 = + ∑
=

n

i 1
1

n
1 ∑

=
−

n

i
i

1
)1(= n +

n
1

⎟
⎠

⎞
⎜
⎝

⎛ −
2

)1(* nn

= n + (n – 1)/2 = n + n/2 – 1/2 = 1.5n – 0.5 .

 To show students that the results obtained theoretically
hold in practice, we present a table comparing predicted
results with the number of unit operations used in actual
executions of ProxmapSort (Table 1). The predictive
power of theory becomes quite apparent.

Data for ProxmapSort Insertion Phase
100 Trials

 Array av. observed predicted
 size n #. of operations #. of ops

 64 1.504*n 1.492*n
 128 1.498*n 1.496*n
 256 1.504*n 1.498*n
 512 1.502*n 1.499*n
 1024 1.499*n 1.500*n

Table 1. Observed vs. Predicted Data for ProxmapSort

 To drive home just how fast ProxmapSort is, we compare
its actual running times to the running times of other
sorting methods students have studied (Table 2).
 The numbers in Table 2 are running times measured in
milliticks (60,000ths of a second). The results are averaged
over 100 trials using randomly-chosen single-precision
floating point keys. Students can see that ProxmapSort
significantly outperforms the others if its keys are
uniformly distributed.

 array size = 64 128 256 512 1024
 QuickSort 0.40 0.98 2.22 4.94 10.86
 HeapSort 0.61 1.43 3.28 7.43 16.57
 ProxmapSort 0.38 0.75 1.51 3.00 5.99
 ShellSort 0.42 1.04 2.37 5.44 11.97
 BubbleSort 2.76 11.36 46.42 189.35 766.22
 InsertionSort 1.12 4.47 17.58 69.89 280.27
 SelectionSort 1.40 5.56 22.18 88.66 354.48
 MergeSort 0.99 2.28 5.13 11.45 25.11

Table 2. Comparing Different Sorting Methods
 We also note that ProxmapSort takes about 2n extra
space, which is more than many other sorts. We thus have
a nice illustration of the classic issue of space/time trade-
off.
ProxmapSearch
In Part II of this paper, we discuss ProxmapSearch, which
uses the proxmap generated by ProxmapSort to search for
keys in an array A[0..n – 1]. We show that ProxmapSearch
uses only 1.5 key comparisons on average. We also
discuss an “inverted” phone book of 1,000,000 entries,
showing that ProxmapSearch “scales up,” i.e., continues to
perform well as the search array gets very large.
Conclusions
Our experience presenting many algorithms to CS2
students has shown us that students quickly develop a real
appreciation for theoretical computer science when they
see how its practice produces algorithms such as
ProxmapSort and ProxmapSearch. Cool algorithms really
do show that theory is cool.

References
[1] Standish, T. A., Data Structures, Algorithms, and

Software Principles, Addison-Wesley, Reading, MA,
1994.

[2] Standish, T.A., Data Structures, Algorithms, and
Software Principles in C, Addison-Wesley, Reading,
MA, 1995.

[3] Standish, T.A., Data Structures in Java, Addison-
Wesley, Reading, MA, 1998.

