
84

NOVEMBER • DECEMBER 1997 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

Omnia mutantur, nos et mutamur
in illis. (All things change, and
we change with them.)

—Matthias Borbonius
Delicie Poetarum

Germanorum, i. 685

When confronted with a new tech-
nology, we instinctively consider it
within the context of existing work
and practices. Such is the case with
the World Wide Web. But the Web
is more than a new technology for
leveraging existing work. It is, in fact,
an enabling technology with the
potential to change software develop-
ment as dramatically as the transistor
and microprocessor changed com-
puter architecture.

An enabling technology changes
the fundamental assumptions
ingrained in a discipline. The micro-
processor, for example, changed the
reliability, cost, circuit density, and
performance assumptions underlying
hardware design. As a result, new
applications and design approaches
for hardware systems became feasible.

Just as the microprocessor
changed the fundamental assump-

tions of hardware design, the Web
changes some of the assumptions
underlying software development.
Thus it has the potential to change
our notion of the software artifact
and the collaborative processes used
to construct it.

WHAT ASSUMPTIONS ARE
CHANGING?
It is impossible to accurately predict
the impact of the Web on software
development. Rapid change and
complex technological issues com-
bine to make any prediction highly
suspect. We instead focus on the
changing assumptions themselves
without trying to predict their conse-
quential effects.

■ Accessible, cheap, direct customer
channel. The Web has dramati-
cally reduced the costs and delays
associated with distributing
information. The result is a
cheap, direct, and easily accessi-
ble communication channel
between customers and software
vendors that makes software dis-

tribution a potentially collabora-
tive process.

Customers have already begun
using the Web to find and com-
pare products, request product
features, submit bug reports, and
receive product support. Indeed,
the Web provides an astonishing
amount of information about
commercial software products.
Surprisingly, software vendors
provide only a small part of this
product information. Users
themselves produce a large per-
centage by collaborating to com-
pile, maintain, and distribute
FAQs; by managing product-
related Web sites; and by partici-
pating in Usenet newsgroups,
mailing lists, and Internet Relay
Chat (IRC) discussions.

Although electronic software
distribution (ESD) was popular
among shareware vendors before
the advent of the Web, few large
commercial software vendors
used the technology. The ubiqui-
ty of the Web has mobilized the
software industry toward ESD
for secure sales and distribution
of software. Compared with tra-
ditional distribution channels,
which require product packaging,
shipping, warehousing, and retail
shelf space, ESD is significantly
faster and less expensive. Thus,
new distribution models, such as
weekly updates, become cost-
effective, as does the distribution
of small or inexpensive applica-
tions. Alternative software pricing
and licensing models, such as
per-use, per-function, subscrip-
tion, rental, and lease, also
become more practical.

■ Remote, frequently updated
resources. High software distribu-
tion costs and long lead times
forced commercial software ven-
dors to adopt product develop-
ment cycles of 12 to 18 months
or more. The Web significantly
reduces these costs and lets ven-
dors provide software updates,
documentation, tutorials, help
files, answers to FAQs, and bug
fixes as they become available, in
a timely, incremental, and cost-
effective manner. As a result,

C O L U M N
CO

LL
A

B
O

R
A

TI
V

E
W

O
R
K

THE WEB AS ENABLING
TECHNOLOGY FOR

SOFTWARE
DEVELOPMENT AND

DISTRIBUTION
Peyman Oreizy • University of California at Irvine • peymano@ics.uci.edu

Gail Kaiser • Columbia University • kaiser@cs.columbia.edu

.

products released via the Web typ-
ically have significantly shorter
development cycles and are com-
monly referred to as “developed
on Internet time.”

■ High software distribution costs
have traditionally discouraged
large-scale usability testing of early
prototypes. Long development
cycles combined with limited end-
user feedback increase product
development risk. Using the Web
as a cheap, direct, ubiquitous cus-
tomer channel for deploying early
prototypes enables direct collabo-
ration with more customers.
Aqueduct’s Profiler,* for example,
instruments software systems to
collect operational usage data and
transmit it to the software vendor
for detailed analysis. Such tech-
nologies, built atop the Web, pro-
vide better customer feedback and
facilitate vendor and user collabo-
ration.

■ New medium of software distribu-
tion. As the available communica-
tion and distribution medium has
evolved, so has the software arti-
fact. We can expect the software
artifact to continue evolving to
effectively utilize the Web’s unique
properties. This change has far-
reaching consequences, which we
discuss later.

■ Large, globally accessible informa-
tion space. The Web provides a
globally shared, hyperlinked infor-
mation space in which the physi-
cal location of information is
largely transparent to users. By
significantly reducing the difficul-
ty and costs associated with
browsing and extending shared
information spaces, the Web has
facilitated geographically distrib-
uted, collaborative development
of complex products. The Apache
Web Server project* and
Madefast* are examples of such
development. Recent efforts to
extend the Web infrastructure
with distributed authoring facili-
ties, such as WebDAV,* hold
promise in furthering collabora-
tive development.

■ Internet-based collaboration tools.
Although the recent flurry of
Internet-based collaboration tools,

such as Mirabilis’ ICQ* and
Microsoft’s Netmeeting,* are not
based on Web technologies per se,
the Web provided a critical mass
of users for such tools.
Netmeeting’s application-sharing
and videoconferencing capabili-
ties, for example, have been used
for customer support. Technical
support personnel can remotely
connect to customers’ machines
and interact with their applica-
tions to resolve problems.
Geographically distributed devel-
opers can use similar real-time col-
laboration tools for remote code
inspection and debugging.

■ Large information space searches. A
large information space requires a
practical and efficient mechanism
for locating information.
Keyword-based Web indexing
technologies, such as AltaVista*
and Excite,* make it feasible to
effectively search unstructured
information. Categorization-based
indexing, exemplified by Yahoo!,*
is an effective way to search small-
er information spaces.

Both keyword- and categoriza-
tion-based techniques have been
used for Web-based software com-
ponent repositories. For example,
Gamelan,* a popular Java compo-
nent and resource repository, has
indexed more than 10,000 arti-
facts. Such mechanisms help devel-
opers locate relevant reusable com-
ponents, designs, and expertise.

■ Simplicity, extensibility, and stan-
dardization. The Web is based on
several simple, extensible stan-
dards (such as URL, HTTP, and
HTML). Simultaneously achiev-
ing these properties has resulted in
significant benefits: simplicity
facilitated adoption, extensibility
facilitated evolution and cus-
tomization, and standardization
facilitated interoperability and
heterogeneity. Software developers
strive to build systems with similar
benefits but, arguably, are rarely as
successful. We should not under-
estimate the importance of these
properties.

Given the Web’s evolving nature, this
list of assumptions will undoubtedly

grow. The rest of this column explores
just the idea that the Web is a new
software medium. By addressing this
assumption in detail, we hope to
clearly demonstrate the Web’s dramat-
ic potential for changing the software
artifact and the collaborative processes
by which it is developed.

THE WEB AS A NEW
SOFTWARE MEDIUM
The software artifact has already
evolved to leverage the unique proper-
ties of past communication and distri-
bution media such as magnetic tapes,
floppy disks, CD-ROMs, and net-
worked PCs. The CD-ROM’s
tremendous capacity, for example,
provided a cost-effective medium for
distributing large software systems
and content. As a result, multimedia
reference and entertainment software
evolved as a new genre of software
systems that took advantage of the
medium’s unique properties.

The Web represents a new medi-
um of information exchange based
on a globally networked, distributed,
and linked information space. Even
though the medium is still young,
some of its effects on software are
already apparent. Miniature applica-
tions, or applets, have become com-
monplace on the Web. Several inter-
esting characteristics set applets
apart from traditional software
applications:

■ Applets are automatically down-
loaded, installed, and executed
without user involvement.

■ Applets reside on Web pages, exe-
cuting automatically when the
user arrives at the page and stop-
ping when the user leaves the
page.

■ Applets are embedded within the
information provided on a Web
page, as opposed to traditional
applications, which create and
embed the information.

■ Applets are dynamically, incre-
mentally, and transparently loaded
on an as-needed basis.

■ Applets are cached by the browser
for efficiency.

■ For security reasons, applets have
restricted access to the client envi-
ronment.

C O L L A B O R A T I V E W O R K

85

IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ NOVEMBER • DECEMBER 1997

.

In effect, the software artifact has
inherited several properties of the
Web medium. In the context of these
six applet characteristics, software
behaves like just another browser con-
tent type. Consider the actions a Web
browser performs to display a Web
page: the browser retrieves and parses
the HTML text, retrieves any embed-
ded elements, determines the content
type of each embedded element, and
invokes the appropriate content han-
dler to display the content. In the case
of an embedded applet, the browser’s
content handler is a virtual machine
interpreter that regards the content as
executable instructions.

Although these characteristics seem
odd at first, they make sense when we
realize that on the Web the goal is to
communicate information. Whether
we use HTML, animated GIFs,
applets, or Dynamic HTML is incon-
sequential. On the Web, information
matters; software is incidental.

Until recently, the Web was based
solely on a “pull” content model, with
users explicitly requesting information
from a provider. But new technologies
such as Marimba’s Castanet* have
extended the medium to support a
“push” content model as well. In the
push model, users subscribe to an
information source that automatically
transmits the information to them
whenever it changes, much like televi-
sion and radio.

Software distributed using the
push model has several unique char-
acteristics:

■ Customers “subscribe” to soft-
ware, enabling software updates to
be automatically downloaded and
installed without user involve-
ment. This blurs the traditional
distinction between software ver-
sions.

■ Fine-grained control over software
subscription enables customers to
tailor the software to their particu-
lar needs.

Push technology also enhances Web-
based collaboration, since either party
may initiate interaction. Several users
who have registered interest in the
same piece of information, for exam-
ple, are automatically notified when-

ever any one of them updates that
information. For instance, when code
components are modified, software
developers working on dependent
code can be notified automatically of
updates that affect their work. This
eliminates the need to periodically
poll for changes to the information.

EVALUATING EXISTING
TECHNOLOGIES
Existing technologies provide only
some of the capabilities needed to
effectively leverage and experiment
with the Web’s unique aspects. Let’s
examine the effectiveness of four cur-
rent technologies in enabling software
systems to leverage the Web for com-
munication and distribution.

Browser Plug-Ins
Web browser plug-ins* enable inde-
pendent extension of content types,
thereby enabling third-party develop-
ers to extend the Web browser with-
out changing browser source code.
Each plug-in encapsulates the func-
tionality necessary to display a partic-
ular content type as a software com-
ponent (typically implemented as a
dynamic link library). Web browsers
augment their internally supported
content types with those supported by
plug-ins. If a plug-in provides the
viewer for a particular content type,
the browser dynamically loads and
executes the plug-in to display the
content within a particular window
region.

The plug-in mechanism is ade-
quate for supporting new content
types but fails to leverage several of
the Web’s unique properties. For
example, users must explicitly down-
load and install plug-ins, and that
typically requires quitting and restart-
ing the browser before new plug-ins
can be used.

ActiveX and Java Applets
ActiveX* components and Java*
applets are the two most popular
mechanisms for implementing applets.
From our perspective, the most signifi-
cant differences between the two are
that they adopt different security
models and that ActiveX components
are applets written for specific plat-
forms, whereas Java applets are byte-

code interpreted and chiefly platform
independent. The ActiveX security
model resembles that of a retail soft-
ware store. The user is asked to
approve the installation and subse-
quent execution of an applet on the
basis of the name of the company that
developed the applet. Once approved,
an applet has unrestricted access to the
client machine. With Java applets,
most Web browsers implement a
“sandbox” security model whereby
applets execute within a severely
restricted environment on the client
machine. This restricted execution
environment prevents applets from
acting maliciously, so that users need-
n’t make security decisions.

Unlike plug-ins, ActiveX and Java
applets can be automatically down-
loaded, installed, and executed with
little user involvement. But both suf-
fer several shortcomings that restrict
how much they can leverage the
medium. Both technologies restrict
the applet’s execution context to a sin-
gle Web page. Thus, an applet’s execu-
tion context cannot be preserved
beyond a Web page unless the context
is transmitted to the Web server as the
user leaves the source page and is sub-
sequently downloaded when the user
arrives at the destination page.

The sandbox security model fur-
ther restricts Java applets because they
cannot tailor their behavior to the
user’s environment, since they are pre-
vented from querying and otherwise
accessing the client machine.
Furthermore, only applets down-
loaded from the same Web page are
allowed to communicate directly with
each other. Applets are otherwise
restricted to communication with
their host machine, and applets
downloaded from different Web pages
must communicate through their
respective hosts.

Castanet
Marimba’s Castanet* represents early
efforts at extending the Web medium
to support the push model for soft-
ware deployment. Two components
make up Castanet’s functionality: the
Castanet Tuner and the Castanet
Transmitter. The Castanet Tuner exe-
cutes on client machines, letting users
subscribe to and receive content from

C O L U M N

86

NOVEMBER • DECEMBER 1997 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

.

multiple content providers. The
Castanet Transmitter executes on the
server, maintaining a list of sub-
scribers and efficiently distributing
the content to them as it changes.

Content distributed through
Castanet is browser independent and
persists until the user explicitly can-
cels the subscription. This alleviates
the execution context limitations
inherent in the Java applet and
ActiveX mechanisms. The Castanet
Transmitter can also personalize con-
tent on the basis of information col-
lected from individual users.

Castanet can distribute any con-
tent, including software applications,
but during subscription users must
approve content containing software.
Once approved, applications have
unrestricted access to the client
machine. Java applications may
optionally execute within a restricted
environment similar to that of a Web
browser without user approval.

PROTOTYPING A
FLEXIBLE ENVIRONMENT
FOR APPLETS
Although existing technologies have
enabled software systems to leverage
some aspects of the Web medium,
their current limitations and assump-
tions prevent us from freely exploring
the medium. For example, existing
technologies discourage—and in
some cases prevent—interapplet com-
munication.

At UC Irvine, we are prototyping
an environment that overcomes some
of the limitations found in existing
technologies. Although our prototype
is in many ways incomplete, initial
experiments have been encouraging.

Our environment consists of a Web
browser, a component repository, a

command shell, and a component
integration tool. The command shell
works much like a Unix command
shell in that it lets users compose
behaviors by combining components
from the repository. Components in
the environment adhere to a canoni-
cal structure that requires them to
communicate exclusively using a mes-
sage broadcast mechanism. Through
the command shell, users can directly
control the message routing mecha-
nism and modify the component
bindings during runtime.

New components are added to the
repository using the browser. A user
who locates a desired component on
the Web installs it by selecting its
hyperlink. The browser responds by
downloading the binary file repre-
senting the component and invoking
the component integration tool. This
tool places the component in the
repository and executes its installa-
tion script. As part of installation, the
component can examine and modify
the user’s environment or install
other components.

Although simplistic, our environ-
ment is unique in that the explicit
communication model encourages
intercomponent communication,
even if the components are from dif-
ferent vendors. Components may also
query and adapt to the user’s chang-
ing environment.

CONCLUSIONS
The Web’s unique properties raise
many interesting issues and questions
for software developers. Emerging
Web-related technologies should
compel us to change fundamental
assumptions and reevaluate our
approaches to software development
and distribution. ■

ACKNOWLEDGMENTS
Mark Bergman, Erin Bradner, Debbie Dubrow,
Peter Kammer, and Roy Fielding provided valu-
able insights on this work.

C O L L A B O R A T I V E W O R K

87

IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ NOVEMBER • DECEMBER 1997

URLs FOR THIS COLUMN
*ActiveX •
www.microsoft.com/activex/
*AltaVista •
www.altavista.digital.com/
*Apache Web Server project •
www.apache.org/
*Aqueduct Software •
www.aqueduct.com/
*Excite • www.excite.com/
*Gamelan • www.gamelan.com/
*Java • www.javasoft.com/
*Madefast • madefast.stanford.edu/
*Marimba’s Castanet •
www.marimba.com/
*Microsoft’s Netmeeting •
www.microsoft.com/netmeeting/
*Mirabilis’ ICQ • www.icq.com/
*Netscape’s Plug-in Developer’s
Guide
home.netscape.com/eng/mozilla/
3.0/handbook/plugins/pguide.htm
*WebDAV • www.ietf.org/html.
charters/webdav-charter.html
*Yahoo! • www.yahoo.com/

.

