
Understanding and Applying 
Good Statistical Principles

Jessica Utts
Department of Statistics

University of California, Irvine
http://www.ics.uci.edu/~jutts

jutts@uci.edu



How Statistical Inference Works

 Create a model of a process or 
population
 May include unknown “parameters”
 “All models are wrong, but some are useful”

 Collect data
 Hypothesis tests 

 Compare the observed data to “chance”

 Confidence intervals
 Estimate the unknown “parameters”



Example: Ganzfeld & Remote Viewing

 Assume targets are arranged in packs of 4 
dissimilar choices.

 Target pack is randomly selected, then 
correct target within pack is selected

 Session takes place
 Judge shown the 4 choices from the pack
 Use “direct hit” only – judge either picks 

correct target or not.
 Data for experiment is number of direct hits



Model using binomial experiment

1. There are n "trials" where n is determined in 
advance. (I.e., no “optional stopping” allowed.)

2. There are the same two possible outcomes on 
each trial, called "success" and "failure" and 
denoted S and F. 

3. The outcomes are independent from one trial to 
the next. Knowledge of one does not help predict 
the next one. 

4. The probability of a "success" remains the same
from one trial to the next, and this probability is 
denoted by p. The probability of "failure" is (1 p)
for every trial. [Ganzfeld & r.v., p = ¼ by chance.]



Comment about this model

 Binomial model may be too simplistic
 Probability of a hit may depend on 

other factors, like creative or not, 
meditator or not, etc.

 Can use more complex models, but will 
not discuss today
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Probabilities for Binomial

 For a binomial experiment with n trials, 
if X = number of successes, then for k = 
0, 1, ..., n

 ି

 Ex: Suppose n = 10, p = .25, X = 4
ଵ!
ସ!  !

ସ =.146



Probability distribution, n = 10, p = .25
Probability of 4 hits = .146



Suppose there are 35 hits in 100 trials
Probability of 35 hits = .007



Probability Question

 When we observe k hits in n trials, we could 
ask:
 “What is the probability of exactly k hits by 

chance alone?” For example:
 Probability of 4 hits in 10 trials = .146
 Probability of 35 hits in 100 trials = .007

 More appropriate question:
 What is the probability of at least k hits by 

chance alone?
 This is the rationale behind the p-value of a test.



General Steps for Testing Hypotheses

1. Determine the null hypothesis 
and the alternative hypothesis.

2. Collect data and summarize with a 
single number called a test statistic.

3. Determine how unlikely test statistic 
would be if the null hypothesis were 
true. This is the p-value.

4. Make a statistical decision.
5. Make a conclusion in context.



Step 1: The Hypotheses

 General:
 Null hypothesis is there is no effect, no 

relationship, no difference, etc.
 Alternative hypothesis is that there is an effect

 Ganzfeld and remote viewing, 4 choices
 Use binomial experiment as the model
 Define p = probability of a direct hit
 Null hypothesis: p = ¼ (or .25)
 Alternative hypothesis: p > ¼ 



Step 2: Data and test statistic

 General:
 For a binomial experiment, test statistic = 

number of successes.
 For many other situations the test statistic is a 

z-score or t-score, measuring how far data 
value is from the null hypothesis value. 

 Ganzfeld and remote viewing:
 Test statistic = number of direct hits
 Sometimes use z-score instead (too detailed to 

explain here), but number of direct hits is better



Step 3: The p-value

 This is the trickiest part!
 It is a conditional probability
 The p-value is the answer to this question:

 What is the probability of observing a test 
statistic as large as the one observed or larger,

 in the direction that supports the alternative 
hypothesis,

 if the null hypothesis is true.



The p-value for ganzfeld & r.v.

 X = number of direct hits in n trials
 Null hypothesis is that probability of a hit 

on each trial is ¼ or .25
 Alternative hypothesis includes only values 

above ¼
 Therefore, if there are k hits, p-value is 
Probability of k or more hits for a binomial 
distribution with n trials and success p = ¼.



Example: Suppose n = 45, k = 15
Probability of at least 15 hits is .1327



Steps 4 and 5: Make a decision

 Standard is to use .05 “level of significance”
 If p-value > .05

 Cannot reject the null hypothesis
 Result is not “statistically significant”

 If p-value ≤ .05
 Reject the null hypothesis
 Accept the alternative hypothesis
 Result is “statistically significant”



Some issues with p-values

 A p-value is not the probability that the 
null hypothesis is true, as some think.

 A p-value > .05 does not mean the null 
hypothesis is true and can be accepted.

 A p-value < .05 does not mean the 
effect is large, even if the p-value is 
much smaller than .05.



Two examples, both with 1/3 hits

 If n = 45, hits = 15, p-value = .1327.
 Do not reject the null hypothesis.

 If n = 300, hits = 100, p-value = .000747
 Clearly reject the null hypothesis 



Two Types of Error: Type 1 

 Only happens when the null hypothesis is true
 The error is that the null hypothesis is rejected
 Similar to a “false positive”
 Probability of a Type 1 error is whatever is used 

as the level of significance, usually .05. 
 The claim about “extraordinary claims requiring 

extraordinary evidence” is saying that the level 
of significance should be set very low, to avoid 
a Type 1 error.



Example: For n = 100, 
when is null rejected?

Would need at least 33 hits because when 
null is true, probability that X ≥ 33 is .0446
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Binomial, n=100, p=0.25

If null is true, 
a Type 1 
error occurs 
if X ≥ 33. 
Probability of 
that is .0446.



Two Types of Error: Type 2 

 Only happens when the alternative hypothesis 
is true

 The error is that the null hypothesis is not
rejected

 Similar to a “false negative”
 Unlike the null hypothesis, the alternative 

hypothesis includes a whole range of values
 Probability of a Type 2 error depends on what 

value in the alternative hypothesis is true.
 Power = 1 – Probability of Type 2 error



How is Power Calculated?

 Specify a value in the alternative 
hypothesis (let’s call it pa ) for which you 
want power

 Specify the number of trials you will do
 Specify the level of significance (.05?)
 Find the number of successes that would 

lead to rejecting the null hypothesis
 Power = the probability of that many or 

more successes, if the value pa is true



Example of finding power

 Experiment has 100 sessions, use .05 level 
of significance; find power if true p = .33

 How many successes are required to reject 
the null hypothesis?
 With 33 successes, p-value is .0446
 With only 32 successes, p-value is .069
 So need 33 or more successes to reject null.

 Power = Prob. of at least 33 successes 
when the true hit rate is .33 = .5375



Type 1 error (left) and Power (right)

Picture when p = .25
Shaded area = prob of 33 
or more hits = .0446

Picture when p = .33
Shaded area = prob of 33 
or more hits = .5375
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Power curves: 
One-sided binomial test of p = .25

0.800.700.600.500.400.330.30

1.0

0.8

0.6

0.4

0.2

0.0

Actual p

Po
w

er

Power Curve for One Proportion

n = 20

n = 50

n = 100

Power for true hit rate of 0.33:
for n = 20, 50, 100 is 
0.23, 0.38, 0.54



Useful website for finding power

 http://www.statpages.org
 Click on “power, sample size and 

experimental design”
 Click on the type of test you want, e.g.

Power/Sample size to compare a 
proportion to a specific value

 Put in your values
 Can also specify power and find required 

number of trials to achieve it.



Confidence Intervals

• A parameter is a population characteristic – value 
is usually unknown. Ex: True probability of a success.

• A statistic, or estimate, is a characteristic of a sample. 
A statistic estimates a parameter. Ex: Hit rate in a study.

• A confidence interval is an interval of values 
computed from sample data that is likely to include 
the true population value. 

• The confidence level (often .95) for an interval 
describes our confidence in the procedure we used. We 
are confident that most of the confidence intervals we 
compute using our procedure will contain the true 
population value.



The Confidence Level Concept

 Applet to demonstrate confidence 
interval concept

http://www.rossmanchance.com/applets/
NewConfsim/Confsim.html

 Note that on average, about 19 out of 
20 or 95 out of 100 of all 95% 
confidence intervals should cover the 
true population value.



Confidence Interval Width

The width of a confidence interval is 
determined by:
 Sample size (n = number of trials)

 Larger n provides greater accuracy, so more 
narrow interval

 Confidence level
 Higher confidence requires wider interval
 Extreme would be 100% confident that true 

hit rate is between 0 and 1!



Examples of Confidence Intervals

 Using exact binomial, C.I. for true prob of hit
 http://www.statpages.org/confint.html

 100 sessions, 33 hits, 95% C.I. is .239 to .431
 45 sessions, 15 hits (33% hits): 

 90% confidence interval is .218 to .466
 95% confidence interval is .200 to .490
 99% confidence interval is .157 to .535

 45 sessions, 18 hits (40% hits):
 95% C.I. is .257 to .557
 Lower end just barely above .25, even with 40% hits!



Relationship between test and C.I.

 For a two-sided alternative hypothesis of the 
form “Population value ≠ null value”
 If the null value is covered by a 95% C.I., then 

you cannot reject the null hypothesis at .05. The 
null value is a plausible value.

 If the null value is not covered by 95% C.I., you 
can reject the null hypothesis (and accept the 
alternative) at .05.

 For a one-sided  (>) alternative, use a 90% 
C.I. and reject null hypothesis at .05 if the 
entire interval is above null the value.



Confidence interval or hypothesis test?
I recommend presenting both!

 Confidence interval gives the magnitude 
of the effect.

 Confidence interval illustrates how much 
uncertainty there is (width of the 
interval)

 Confidence intervals are easier to 
interpret

 But, hypothesis tests provide information 
on how unlikely results would be if the 
null hypothesis were true.



Effect Size

 An effect size measures how far the true 
parameter value is from the null value, 
usually in terms of standard deviations.

 Effect size for binomial is harder to 
interpret, so we’ll switch to a more 
mundane example.



Effect size for comparing heights

 Suppose you want to compare the heights 
of college women and their mothers to 
see if the average heights are equal.

 Measure n pairs and find differences.
 Hypotheses: 

 Null: Mean of population of differences = 0
 Alternative: Mean of population is > 0 

 Effect size = True difference/(Std. dev.)  
= number of standard deviations true 
difference is from 0.



Effect size, continued

 Estimated effect size = ௌ		ௗ
ௌ௧ௗ.ௗ௩.	ௗ௦

 Test statistic is t = × Est. effect size
 Example: Data from my class

 n = 93 pairs, mean diff = 1.30 in., s.d. = 2.6 in.
 Estimated effect size = 1.3/2.6 = 0.5
 Test statistic is t = × 0.5 = 4.8, p-value ≈ 0
 Conclude women students today are taller than 

their mothers, on average. 



Illustration of effect size

Mean of 
1.3 is 0.5 
standard 
deviations 
above null 
value of 0.



Cohen’s suggested guidelines for a 
Small, medium, large effect size

 0.2 is a small effect size and can only be 
detected using statistics

 0.5 is a moderate effect size and can be 
detected by someone used to working with 
that type of data (Ex: difference in heights)

 0.8 is a large effect size and should be 
detectable without statistics

 Note: Ganzfeld hit rate of .33 is effect size 
of about 0.18, so it’s a small effect size.



Hypothesis testing paradox:
Effect size versus p-value

 Researcher conducts test with n = 100 and 
finds t = 2.50, p-value = 0.014, reject null

 Just to be sure, repeats with n = 25
 Uh-oh, finds t = 1.25, p-value = 0.22, cannot 

reject null! The effect has disappeared!
 To salvage, decides to combine data, so now 

n = 125. Finds t = 2.795, p-value = 0.006!
 Paradox: The 2nd study alone did not replicate 

finding, but when combined with 1st study, 
the effect seems even stronger than 1st study!



What’s going on?

 The test statistic and p-value depend on 
the sample size.

 Both studies have the same effect size
 Combined data also has that effect size 

 effect size is test statistic/

Study n Test 
statistic

P-value Effect
size

1 100 2.50 0.014 0.25

2 25 1.25 0.22 0.25

Combined 125 2.795 0.006 0.25



Why Effect Sizes are Important

 Unlike p-values, they don’t depend on sample 
size (but accuracy of estimating them does).

 They are a measure of the true effect or 
difference in the population.

 They can be compared even when different 
units or different tests are used.

 Replication should be defined as getting 
approximately the same effect size, not as 
getting approximately the same p-value! 



Bayesian Analysis

 Completely different statistical “model” 
 Frequentist method: Parameters, such as 

binomial probability of success, are 
considered fixed but unknown.

 Bayesian method: Uncertainty about 
parameters is modeled by putting a 
distribution of possibilities on them.

 Prior belief in null vs alternative hypothesis 
is stated explicitly.



How to Incorporate Prior Beliefs

 Two ways, both required in a Bayesian 
analysis:
 What do you think is the probability that the 

alternative hypothesis (psi) is true?
 If the psi hypothesis is true, how large do you 

think the effect size is? (Or, what do you think 
is the probability of a hit?)

 This 2nd question is often ignored in doing 
Bayesian analysis. Can be very misleading 
if not done right! And, can be hidden in 
the analysis.



More Details

Simple Bayesian analysis of Ganzfeld:
 “Prior” distribution on the hit rate 

provides the range of values one believes 
it could be, along with how likely they 
are.

 Combine prior distribution with data to 
get a “posterior” distribution for the hit 
rate.



Utts, Norris, Suess, Johnson (ICOTS 8)
56 studies, n = 2124, X = 709 (33.4%)

Simple analysis: 3 Prior Sets of Belief about p
 Skeptic:

 Most likely value for p is .25 (chance)
 95% certain p is below .255

 Believer:
 Most likely value for p is .33
 95% certain p is below .36

 Open-minded observer
 Most likely value for p is .25 (chance)
 95% certain p is below .30



Posterior for p, Skeptic and Believer

Data shifted the skeptic’s 
belief very slightly. 
Posterior median = .2578

Data reduced the 
range of the believer’s 
likely values for p



Open-minded: One study and all data

One study, n = 50, 36% 
hits, shifted the open-
minded belief slightly. 

Open-minded, all 
data, allows data to 
play major role



Summary of Simple Bayesian Analysis
(ICOTS paper for more complex analysis)

 Skeptic’s opinion was not changed much by 
the data, even with 2124 trials and 33% 
success rate.

 Open-minded prior allowed data to have a 
larger influence.

 Helps explain why extreme skeptics still are 
not convinced by the evidence, even with a 
p-value of 2.26 × 10−18

 Allows skeptics and believers to see why 
they disagree!



Bayesian Analyses of Bem’s experiments
Wagemakers et al; Bem, Utts, Johnson

 Wagenmakers et al put prior probability 
on the psi hypothesis = 10−20 ≈ 0!

 Then, they used a prior distribution on 
values in the alternative with too much 
weight on large effects: 
 57% chance that the true effect exceeds 

Cohen’s “large” effect size of 0.8 (hit rate 
about 63%) 

 6% chance that it exceeds effect size of 10 
(hit rate greater than 1)! 



Bayesian Analyses of Bem’s experiments
Continued…

 So of course for that prior, data came 
closer to null than to this unrealistic 
alternative.

 We used more reasonable prior, putting 
90% chance of effect size being less than 
.5 (hit rate of about 48%). 



Bayesian Results

 Bayes Factor = Odds of alternative versus null, 
assuming equal prior belief:
 Wagenmakers et al too-wide prior: 0.632 to 1
 Our (more realistic) prior: 13,669 to 1
 Multiply by your prior odds to get posterior odds

 Posterior probability of true null in all 9 studies:
 Wagenmakers et al’s too-wide prior: 0.61
 Bem et al’s realistic prior: 7.3 ×10-5

 Using p-values: 2.68 × 10-11 (two-tailed)



Summary

 Hypothesis tests, confidence intervals and 
Bayesian analysis are all methods for 
assessing the evidence.

 Unless the null hypothesis is exactly true, 
hypothesis test p-values depend on n.

 Effect sizes are a better way to measure 
the magnitude of an effect than testing.

 Bayesian methods require explicit 
statement of one’s beliefs – that’s why I 
like them!



QUESTIONS?
Contact info:
jutts@uci.edu

http://www.ics.uci.edu/~jutts


