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Abstract

Marginal MAP problems are notoriously dif-
ficult tasks for graphical models. We derive
a general variational framework for solving
marginal MAP problems, in which we apply
analogues of the Bethe, tree-reweighted, and
mean field approximations. We then derive
a “mixed” message passing algorithm and a
convergent alternative using CCCP to solve
the BP-type approximations. Theoretically,
we give conditions under which the decoded
solution is a global or local optimum, and
obtain novel upper bounds on solutions. Ex-
perimentally we demonstrate that our algo-
rithms outperform related approaches. We
also show that EM and variational EM com-
prise a special case of our framework.

1 INTRODUCTION

Graphical models provide a powerful framework for
reasoning about structured functions defined over
many variables. The term inference refers generically
to answering probabilistic queries, such as computing
probabilities or finding optima. Although NP-hard in
the worst case, recent algorithms, including variational
methods such as mean field and the algorithms col-
lectively called belief propagation can approximate or
solve these problems in many practical circumstances.

Three classic inference tasks include maz-inference
problems, also called maximum a posteriori (MAP)
or most probable explanation (MPE) problems, which
look for the most likely configuration. A second type
are sum-inference problems, which calculate marginal
probabilities or the distribution’s normalization con-
stant (the probability of evidence in a Bayesian net-
work). Finally, marginal MAP, mized, or maz-sum-
inference tasks seek a partial configuration of variables
that maximizes those variables’ marginal probability.
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These tasks are listed in order of increasing diffi-
culty: max-inference problems can be shown to be NP-
complete, while sum-inference is #P-complete, and
mixed-inference is NPY P-complete (see e.g. Park and
Darwiche, 2004). Practically speaking, max-inference
tasks have a number of efficient algorithms such as
loopy max-product BP, tree-reweighted BP, MPLP,
and dual decomposition methods (see e.g., Koller and
Friedman, 2009; Sontag et al., 2011). Sum-inference
problems are similarly well-studied, and a set of algo-
rithms parallel to those for max-inference also exist.

Perhaps surprisingly, mixed max-sum inference is
much harder than either max- or sum- inference prob-
lems alone. A classic example illustrating this is Fig. 1,
where marginal MAP in a simple tree structure is still
NP-hard (Koller and Friedman, 2009). The difficulty
is caused in part because the max and sum operators
do not commute, so their order is not exchangeable.
For this reason, research on marginal MAP is still rel-
atively unexplored, with a few exceptions, e.g., Doucet
et al. (2002), Park and Darwiche (2004), Huang et al.
(2006), and Jiang and Daumé III (2010).

In this paper, we extend the concepts of variational
approaches to the marginal MAP problem, enabling a
host of techniques to be applied. These lead to new,
powerful algorithms for estimating and bounding the
marginal MAP solutions, for which some global or lo-
cal optimality conditions can be characterized. We re-
late our algorithms to existing, similar approaches and
validate our methods in experimental comparisons.

2 BACKGROUND

Graphical models capture the factorization structure
of a distribution over a collection of variables. Let
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where « indexes subsets of variables, and ®(0) is the
normalizing constant, called the log-partition function.
We associate p(z) with a graph G = (V, E), where each
variable x;, ¢ = 1...n is associated with a node : € V
and (ij) € F if {i,j} C « for some a. The set 7 is
then a set of cliques (fully connected subgraphs) of G.
In this work we focus on pairwise models, in which the
index set Z is the union of nodes and edges, Z = VUE.

2.1 SUM-INFERENCE METHODS

Sum-inference is the task of marginalizing (summing
out) variables in the model. Without loss of general-
ity, it can be treated as the problem of calculating the
log partition function ®(#). Unfortunately, straight-
forward calculation requires summing over an expo-
nential number of terms.

Variational methods are a class of approximation algo-
rithms that transform inference into a continuous op-
timization problem, which is then typically solved ap-
proximately. To start, we define the marginal polytope
M, the set of marginal probabilities 7 = {7, (24 )|a €
T} that correspond to a valid joint distribution, i.e.,

M = {7 : 3 distribution ¢(z), s.t. T4(2a) = Z q(z)}
\Tqo

For any 7 € M, there may be many such ¢, but there
is a unique distribution of form (1), denoted ¢, with
maximum entropy H(z;7) = —>_ ¢-(z)logg,(x).
We write H(z;q,) as simply H(x;7) for convenience.
A key result to many variational methods is the convex
dual form of the log-partition function,

©(0) = max(6, 7) + H(z; 7), (2)

where (0, 7) = E,_[0(x)] expresses the expected energy
as a vectorized inner product. The unique maximum
7* satisfies ¢, (z) = p(x;6). We call Fyum(1,0) =
(0, 7)+H (z; 7) the sum-inference free energy (although
technically the negative free energy).

Simply transforming a sum-inference problem into (2)
does not make it easier; the marginal polytope M and
the objective function’s entropy remain intractable.
However, (2) provides a framework for deriving algo-
rithms by approximating both the marginal polytope
and the entropy (Wainwright and Jordan, 2008).

Many approximation methods replace M with the “lo-
cally consistent” set L(G); in pairwise models, it is
the set of singleton and pairwise beliefs {7;|i € V'} and
{mi;|(ij) € E} that are consistent on intersections:

{7imigl Y 7 (@i, ) = my(ay), y_ malws) = 13

Since not all such beliefs correspond to some valid joint
distribution, L(G) is an outer bound of M.

The free energy remains intractable (and is not even
well-defined) in L(G). We typically approximate the
free energy by a combination of singleton and pair-
wise entropies, which only require knowing 7; and
Tij. For example, the Bethe free energy approxima-
tion (Yedidia et al., 2005) is

max)<9,7> + ZHz(T) — Z Iij () (3)
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where H; = — in 7;log 7; is the entropy of variable
Tij

ZTi, and Iij = Zwi@j Tij log P
information. Loopy BP can be interpreted as a fixed
point algorithm to optimize the Bethe free energy. The
tree reweighted (TRW) free energy is another variant,

maX)<9,T>+ZHi(T)_ Z pijliz (1) (4)
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where {p;;} are edge appearance probabilities ob-
tained from a weighted collection of spanning trees of
G (Wainwright et al., 2005). The TRW free energy is
an upper bound of the true free energy, and is also a
concave function of 7 in L(G). Optimizing with a fixed
point method gives the tree reweighted BP algorithm.

Another, related approach restricts M to a subset of
distributions, in which both the set of constraints and
the entropy calculation are tractable, such as fully fac-
tored distributions. This leads to the class of (struc-
tured) mean field approximations.

2.2 MAX-INFERENCE METHODS

For max-inference, we want to calculate

Doc(0) = max{ 3 ()} 5)
aEl
and the optimal configuration z*. This problem can
be shown to be equivalent to

which attains its maximum when ¢.(x) = §(z = z*),
the Kronecker delta selecting the MAP configuration.
If there are multiple MAP solutions z*!, any convex
combination Y, ¢;6(x = x*') with >, ¢; = 1,¢; > 0
leads to a maximum of (6). Eqn. (6) remains NP-hard,;
most variational methods for MAP can be interpreted
as relaxing M to local constraints L(G), which leads to
a linear relaxation of the original integer programming
problem. Note that (6) differs from (2) only by its lack
of an entropy term; in the next section, we generalize
this similarity to the marginal MAP problem.

3 MARGINAL MAP

Marginal MAP is simply a hybrid of the max- and
sum- inference tasks. Let A be a subset of nodes V,
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Figure 1: An example where a marginal MAP query
on a tree requires exponential time. Summing over
the shaded nodes makes all the unshaded nodes inter-
dependent; see Koller and Friedman (2009) for details.

and B = V\ A be the complement of A. The marginal
MAP problem (mixed, or max-sum-inference) is

Q($B§ 9) = logZeXP(Z aa(xoc))

acl
D4p(0) = max Q(rp;0), (7)

where A is the set of sum nodes to be marginalized out,
and B is the max set, the variables to be optimized.

Although similar to max- and sum-inference, marginal
MAP is significantly harder than either. A classic ex-
ample in Fig. 1 shows that even on a tree, marginal
MAP can be NP-hard. The main difficulty arises be-
cause the max and sum operators do not commute,
which restricts efficient elimination orders to those
with all sum nodes z4 eliminated before any max
nodes xp. Marginalizing x4 may destroy any condi-
tional independence among the xp, making it difficult
to represent or optimize Q(zpg;0) even if the sum part
alone is tractable (such as when A forms a tree). De-
note G4 = (A, E4) the subgraph induced by A, i.e.,
Ea ={(ij) € Eli € A,j € A}, and similarly Gp and
Ep, with 0ap = {(ij) € Eli € A,j € B} the edges
that join sets A and B. The natural generalization of
an efficient tree structure to the marginal MAP prob-
lem occurs when G is a tree along an elimination order
that first eliminates all nodes in A, then those in B.
We call this type of graph an A-B tree.

For these reasons, there are relatively few algorithms
(particularly approximate algorithms) for marginal
MAP. Expectation-maximization (EM) or variational
EM provide one straightforward approach, by viewing
rp as the parameters and x4 as the hidden variables;
however, EM has many local maxima and is easily
stuck at sub-optimal configurations. Jiang and Daumé
III (2010) proposed a message passing algorithm com-
bining max-product and sum-product BP, but with
little theoretical analysis. Other state-of-the-art ap-
proaches include Markov chain Monte Carlo (Doucet
et al., 2002) and local search (Park and Darwiche,
2004). In this work, we propose a general variational
framework for approximation algorithms of marginal
MAP, and provide both theoretical and experimental
results to justify our algorithms.

4 A VARIATIONAL APPROACH

As one main result of this work, in this section we
derive a dual representation of the marginal MAP
problem (7). The dual form generalizes that of sum-
inference in (2) and max-inference in (6), and provides
a unified framework for addressing marginal MAP.

Theorem 4.1. ® 45 has a dual representation
C4ap(0) = max{(0,7) + H(zalzp;7)},  (8)

where M is the marginal polytope; H(xalxp) =
—> .- (x)]ogqr(xalrp) is the conditional entropy,
with q,(x) being the mazimum entropy distribution
corresponding to 7.5 If Q(xp;0) has a unique maz-
imum x, the mazimum 7 of (8) is also unique, with
G(ep) = 8(zp = v}) and g*(zalzy) = plzalry:6);
if there are multiple (global) mazima z%, ¢:(zp)
can be any convexr combination of these optima, i.e.,
qi(zp) =, cié(zp = a3) with >, ¢; =1 and ¢; > 0.

Proof. For an arbitrary distribution ¢(z), consider the
conditional KL divergence

q(zalzp)

E[D(a(wales)p(@ales; 0)] = 3 ala)log ZE2 0

x

= —H(zalrp; q) + Egllogp(zalzp)]
= —H(zalrp; q) + Eq[0(2)] - Eg[Q(xp;0)] > 0.

where the last inequality follows from the nonnega-
tivity of KL divergence, and is tight iff ¢(zalzp) =
p(zalzp;0) for all z4 and zp that g(zp) # 0. There-
fore, we have

ap(0) > Eq[Q(zp;0)] > Eg[0(2)] + H(zalzp; q)-

It is easy to show that the two inequality signs are
tight if and only if ¢(z) equals ¢ (z) as defined above.
Substituting E,[0(x)] = (0, 7) completes the proof. [

Note that since H(za|xp) = H(z) — H(zg), Theorem
4.1 transforms the marginal MAP problem into the
maximization of a “truncated” free energy

Friz(1,0) = (0,7) + H(xalzg) = Fsum/(7,0) — H(xp)

where the entropy H(xp) of the max nodes xp are re-
moved from the sum-inference free energy Fj,,,. This
generalizes sum-inference (2) and max-inference (6),
where the max sets are empty and all nodes respec-
tively. Intuitively, by subtracting the entropy H(zp)
in the objective, the marginal ¢,(zp) tends to have
lower entropy, causing its probability mass to concen-
trate on the optimal set {x%}.

! Although the optimal 7 has some zero entries, the max-
imum entropy distribution remains unique (Jaynes, 1957).



The optimal 7* of (8) can be interpreted as corre-
sponding to a distribution obtained by clamping the
value of xp at the optimal B-configuration =7 on the
distribution p(z;6), i.e., ¢« (z) = p(z|zp = %;0).

On the other hand, for any marginal MAP solution 2%,
the 7% with ¢*(z) = p(z|zp = 2%;0) is also an opti-
mum of (8). Therefore, the optimization in (8) can be
restricted to M* = {7|¢,(x) = p(z|zp = x75;0),Vz} €
XIBland 9 = > wci Pa}, corresponding to the set of
distributions in which xp are clamped to some value.
That is, we also have ®4p = max,em+ Finiz(T,0).
More generally, the same holds for any set N that sat-
isfies M* € N C M without affecting the optimum.
Among these sets, M is of special interest because it
is the smallest convex set that includes M*, i.e., it is
the convex hull of M*.

Theorem 4.1 transforms the marginal MAP problem
into a variational form, but does not decrease the hard-
ness — both the marginal polytope M and the free en-
ergy Fpi.(7,0) remain intractable. Fortunately, the
well established techniques for sum- and max-inference
can be directly applied to (8), giving a new way to
derive approximate algorithms. In the spirit of Wain-
wright and Jordan (2008), one can either relax M to a
simpler outer bound like L(G), and replace Fy,;,(7,0)
by some tractable form to give algorithms similar to
LBP or TRBP, or restrict M to a subset in which con-
straints and free energy are tractable to give a mean
field-like algorithm. In the sequel, we introduce sev-
eral such approximation schemes. We mainly focus on
BP analogues, although we briefly discuss mean field
when we connect to EM in section 7.

Bethe-like free energy. Motivated by the reg-
ular Bethe approximation (3), we approximate the
marginal MAP dual (8) by

(bbethe(e) = TIEI]lLa(’)C{?) Fbethe (Ta 9)7 (9)

Fbethe (7— 9
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where we call Fpetne a “truncated” Bethe free energy,
since it can be obtained from the regular sum-inference
Bethe free energy by truncating (discarding) the en-
tropy and mutual information terms that involve only
max nodes. If G is a A-B tree, ®pespe equals the true
® 4 B, giving an intuitive justification. In the sequel we
give more general conditions under which this approx-
imation can give the exact solution. We find that this
simple scheme can usually give high quality empirical
approximations. Similar to the regular Bethe approx-
imation, (9) leads to a nonconvex optimization, and
we can derive both message passing algorithms and
provably convergent algorithms to solve it.

obooobdsds

Figure 2: (a) A type-I A-B subtree and (b) a type-1I
A-B subtree of the hidden Markov chain in Fig. 1.

Tree-reweighted free energy. Following TRW, we
construct an approximation of marginal MAP using a
convex combination of A-B subtrees. Suppose Tap =
{T'} is a collection of A-B subtrees of G, where each T
is assigned a weight wp with wp > 0 and ZTGT wr =
1. For each A-B tree T = (V, Er), define

ZH Z Iij(T);

i€A (ij)EET\EB

Hr(zalzp;T)

this is always a concave function of 7 € L(G), and
H(zalrp;7) < Hp(zalxp;7T). More generally, we

have H(zalzp) < ) peqrwrHr(xalrp) which can be
transformed to

Ftrw(Q T 0 T +ZH Z Piinj, (11)
1EA (ij)EEAUAAB
where p;; = ZT:(ij)eET wr are the usual edge appear-

ance probabilities. Replacing Ml with L(G) and F with
F}..y leads to an approximation of (8)

Dy (0) = Trerﬁ)((?) Fipoy(T,0). (12)

Since L(G) is an outer bound of M, and Fy., is a
concave upper bound of the true free energy, we can
guarantee that ®4,.,, is always an upper bound of ® 45,
to our knowledge the first known upper bound for
marginal MAP.

Selecting A-B subtrees. Selecting A-B subtrees for
approximation (12) is not as straightforward as select-
ing subtrees in regular sum-inference. An important
property of an A-B tree T is that no two edges of T
in 0ap can be connected by edges or nodes of T in
G 4. Therefore, one can construct an A-B subtree by
first selecting a subtree in G 4, and then join each con-
nected component of G4 to at most one edge in J4p.
Two simple, extreme cases stand out:

(i) type-I A-B subtrees, which include a spanning tree
of G4 and only one crossing edge in Jap;

(ii) type-II A-B subtrees, which include no edges in
G 4, but several edges in 4 g that are not incident
on the same nodes in G 4.

See Fig. 2 for an example. Intuitively, type-I subtrees
capture more information about the summation struc-
tures of G 4, while type-II subtrees capture more infor-
mation about Jjp, relating the sum and max parts.



If one restricts to the set of type-I subtrees, it is possi-
ble to guarantee that, if G 4 is a tree, the summation
component will be exact (all p;; = 1 for (ij) € Ea),
in which case it will be possible to make some theo-
retical guarantees about the solution. However in ex-
periments we find it is often practically beneficial to
balance type-I and type-II when choosing the weights.

Global Optimality. It turns out that the above ap-
proximation schemes can give exact solutions under
some circumstances. We initially assume that G4 is
tree, i.e., the sum part is tractable to calculate for a
given B-configuration. (Note that the marginal MAP
problem remains hard even in this case, as suggested
by Fig. 1.) Suppose we approximate ® 45(0) by

Diree = Trelﬁé)w,ﬂ + ZHi —‘Z I — | Z pijLij
eV (ij)EEa  (ij)€DaB

(13)
where {p;;|(ij) € Oap} can take arbitrary values,
while {p;;|(ij) € E4} have been fixed to be ones; this
assumption guarantees that the sum part is “intact”
in the approximation. Finally, we assume that (13) is
globally optimized.

Theorem 4.2. Suppose G 4 is a tree, and we approz-
imate D ap(0) using Piree defined in (13). We have

(1) @irec(0) > Pap(0). If the there exist x%; such that
Q(x%;0) = Diree(9), we have Pprec(0) = Pap(h),
and x5 is an optimal marginal MAP solution.

(ii) Suppose 7 is a global mazimum of (13), and
{7} (z:)]i € B} are integral, i.e., 77 (x;) =0 or 1,
then {xf = argmax,, 77 (x;)|i € B} is an optimal
solution of the marginal MAP problem (7).

Proof. As discussed in Section 4, the optimization in
(8) can be restricted on M*, the subset of M in which
7(xp) are integral, that is, ®ap = max,ecm+ Finiz-
Note that the objective function in (13) equals the true
free energy F,i,(7,60) when 7 € My and G4 is a tree
(since I;; = 0, (ij) € Oap, for V7 € MJ). This means
that(13) is a relaxation of ® 45 = max ey Finie. A
standard relaxation argument completes the proof. [

Theorem 4.2 gives some justification for both the
Bethe free energy, in which p;; = 1 for all (i) € dap,
and the TRW free energy with only type-I subtrees, in
which Y, pi; =1, p;; > 0. However, it may have lim-
ited practical application. On the one hand, the Bethe
free energy is usually non-concave, and it is hard to
show that a solution is globally optimal. The concav-
ity is controlled by the value of {p;;|(ij) € Oap}; small
enough p;; (as in TRW) guarantees concavity. On the
other hand, the values of {p;;|(ij) € Oap} also con-
trol how likely the solution is to be integral — larger
pi; emphasizes the mutual information terms, forcing

the solution towards integral points. Thus in practice
the solution of the TRW free energy is less likely to be
integral than the Bethe free energy, causing difficulty
in applying Theorem 4.2 to TRW solutions as well. In
general, the values of {p;;|(ij) € 0ap} reflect a tradeoff
between concavity and integrality. Interestingly, as we
will show later, the EM algorithm can be also viewed
as optimizing an objective of the form (13) by setting
pij — +oo, which strongly forces solution integrality,
but causes a highly non-convex objective. It appears
that by setting p;; = 1, the Bethe free energy obtains
a good tradeoff, giving excellent performance.

We give a more practical statement of optimality in
Section 5.1, related to local optima.

5 MIXED MESSAGE PASSING

We see that the general objective function

max (0,7) + ZwiHi - Z wijlij, (14)

Tel(&) iev (i))eE

can be used to approximate sum-inference, max-
inference and mixed-inference problems simply by tak-
ing different weights w;, w;;. If w; = 1 for Vi € V,
(14) addresses the sum-inference problem, and loopy
BP and its variants can be derived as fixed point opti-
mizers of (14). If w; = 0 for Vi € V, (14) addresses the
max-inference problem, and max-product BP variants
can be derived as a zero-temperature limit of sum-
product BP, as w; and w;; approach zero. We have
shown that mixed-inference lies between the two ends
of the spectrum — as w; = 0 only for Vi € B, (14) ad-
dresses the mixed-inference problem. Given these con-
nections, we can expect some “mixed” message pass-
ing algorithms for marginal MAP that combine max-
product BP and sum-product BP by allowing weights
in the max set to approach zero, while keeping weights
in the sum set equal to one. In this section, we de-
rive such a “mixed” message scheme, and discuss an
optimality property of its fixed points using a repa-
rameterization interpretation.

To start, consider the case when w; and w;; are strictly
positive. Using a Lagrange multiplier method similar
to Yedidia et al. (2005) or Wainwright et al. (2005), we
can show that the fixed point of the following message
passing scheme is a stationary point of (14):

M (15) <= [ (imei) V" (i i) ]
Ti(:) o (i) (15)
PYis Wi
Tij(xij) OCTZ‘Tj(;m-_).T;.%,)l/ ij
i—g 1Tl —4

where m.; = erN(i) m_y; i the product of the
messages sent to i. Unfortunately, if some weights



are zero the message passing algorithm can not be
derived directly, mainly because the inequality con-
straints 7;; > 0 (which can be ignored for strictly
positive weights) must be explicitly considered. (For
detailed discussion of this issue, see Wainwright and
Jordan (2008) and Yedidia et al. (2005)). However,
we can apply (15) on positive weights that are close
to zero, and hope the solution is close enough to the
marginal MAP solution. Let F(7,0) be a surrogate
free energy of marginal MAP as defined in (11) and
(10) (e.g., F can be either Fj.,, or Fyetne). Let

H(zp;m) =Y Hi(r)— > pilii(7),

i€eB (ij)€EEB
where p;; > 0 for (ij) € Ep. For € > 0, define
F(r,0) = F(1,0) + el (zp; 7)
= 0,7+ > wi(H— Y wij(e)

eV (ij)eE

where w;(€) = €, w;j(e) = ep;; for i € B, (ij) € Ep
and w;(e) = 1, w;j(e) = p;; otherwise. We can see
that w;(e) and w;;(e) are positive by definition, and
can therefore solve 7*(e) = arg maxTe]L(G){FS} using
message update (15) for small € > 0 and hope that
7*(€) approaches the solution 7* of F' as € — 0.

Unfortunately, this is not always true. Weiss et al.
(2007) showed that for max-inference (i.e., when F' =
(0,7)), 7*(€) approaches 7* only when the augmented
term H (xp) is concave. We generalize this result to
arbitrary F, and give an error bound for concave F.

We say that H (zp;7) is provably concave if it
can be reformed into H(zp;7) = Yien kil (x;) +
> (ijyery KijH (xi|z;) for some positive r; and ;.
This is equivalent to saying k; + ZjeN(i) kij = 1,
Kij + Kj; = pij. Following Weiss et al. (2007), we
call such set of weights {p;;|(ij) € Eg} “provably con-
cave”. We can establish the following result.

Theorem 5.1. Let 7 be a stationary point of F/(r,0)
in L(G), and 7*(¢) a stationary point of F<(t,0) =
F(1,0) + eH (xp;7) in L(G). If H(xp;7) is provably
concave, we have

(i) Let {ex} be a sequence of positive numbers that
approaches zero and 7*(00) be a limit point of
{*(ex)|k = 1,2,---}; then 7%(c0) is a station-
ary point of F(7,0) inIL(G) (regardless of whether
F(1,0) is concave).

(ii) Further, if F(7,0) is a concave function of T in
L(G), we can give an error bound

0 < F(r*,0)—F(7*(¢),0) < eH(x;7*(€)) < €| B|log | X]|

where |X| is the number of states that x; can take
(1X| = 2 for binary variables), and | B| is the num-
ber of nodes in B.

Proof. The proof of (i) involves showing 7*(c0) satis-
fies the KKT condition of max,cy(q) F. The second
inequality in (i) follows by showing that F¢(7*(¢), )
is a point on the dual function of F', which gives an
upper bound of F; the third inequality in (ii) follows
from the fact that H(x;) <log|X| and I;; > 0. O

In practice, there is usually no reason to run the algo-
rithm with very small ¢; we instead directly take the
limit on the message passing scheme, using

lim [y f(a)"/*]" = max f(x)

w—0t

where f(z) is an arbitrary positive function and w —
0T represents w approaching 0 from the positive side.
We can show that the message scheme in (15) with
w;(€), w;j(e) then approaches a “mixed” message
scheme as ¢ — 0, which depends on the node type
of source and destination:

A=V Myi—j [Z(Ipimwi)(%)l/Pij]PiJ
Tq J ¢

’(/}ij )

Mj—i

B — B: mj_; < max(y;me;) ( (16)
Zq

B—A: mi;« | Z ( %] )Upﬂpij

z; €arg max{y;m~; } I

where V= AU B are all nodes. Sum-product mes-
sages are sent from sum nodes to any other nodes; max-
product messages are sent between max nodes; and the
messages sent from max nodes to sum nodes are novel
and will be interpreted in the sequel as solving a type
of local marginal MAP problem.

Interestingly, our method bears similarity to, but has
key differences from the recent method of Jiang and
Daumé III (2010), who propose a similar hybrid mes-
sage passing algorithm, but that sends the usual max-
product messages from max to sum nodes. It turns out
that this difference is crucial for the analysis of opti-
mality conditions, as we discuss later.

We define a set of “mixed-marginals” as:
bi(;) o< (Yimn;)
bij(wi5) o< bibj(iwij )P (17)

MyG— MG 4
The maximum of the mixed-marginals z; €
arg max,, b;(z;),vi € B can be extracted as an esti-
mate of the marginal MAP solution, as is typical in
max-product BP. We will prove that such z7 are lo-

cally optimal under some conditions.

The mixed-marginals are not expected to approach the
optimum 7%, but are rather softened versions of 7*.
The following theorem clarifies their relationship:



Theorem 5.2. Let {7, 7ijc} be a fized point
of weighted message passing (15) under weights
{wi(e), wi;(e)}. Define

bi,e - (Ti,s)e Vie B

bi,e = Tie Vie A

bij’e = bi,eblj,e(_,_:—i];,’_;le )6 V(Zj) € Fp

by = bichje(;72)  V(ij) € EaUdas,

then {b; ¢, bij .} approaches the mized-marginals (17)
of the fized point of the mized message scheme (16).

Proof. The result follows directly from application of
the zero temperature limit; see Section 4 in Weiss et al.
(2007) for a similar proof for max-product. O

5.1 LOCAL OPTIMALITY VIA
REPARAMETERIZATION

An important interpretation of the sum-product and
max-product algorithms is the reparameterization
viewpoint (Wainwright et al., 2003; Weiss et al., 2007).
Message passing can be viewed as moving mass be-
tween the sum-marginals (resp. max-marginals), in a
way that leaves their product a reparameterization of
the original distribution; at any fixed point, the sum
(resp. max) marginals are guaranteed to satisfy the
sum (resp. max) consistency property.

Interestingly, the mixed-marginals have a similar repa-
rameterization interpretation.

Theorem 5.3. The mized-marginals (17) at the fized
point of the mized message scheme (16) satisfies

Admissibility:
bi'(xivx') pij
eV (ij)eE NV

Mizxed-consistency:

(a) Zbij(xi,xj)zbj(xj), Vie A,je AUB

(b) maxbij(sci,:cj) :bj({Ej), VZEB,] €B
(C) Z bij(xi,xj) ij(l‘j), ViEB,j €A
x;Earg max b;
Proof. Directly substitute (16) into (17). O

The three mixed-consistency constraints exactly map
to the three types of message updates in (16). Con-
straint (c) is of particular interest: it can be inter-
preted as solving some local marginal-MAP problem
r; = arg max sz bi;j. It turns out that this constraint
is a crucial ingredient of mixed message passing, en-
abling us to prove local optimality of a solution.

Suppose C is a subset of max nodes in B, Goua =
(CUA, Ecyua) is the subgraph of G induced by nodes
CUA, where Ecua = {(ij) € Eli,j € CUA}. We call
Geua a semi-A-B subtree if the edges in Ecua\Ep
form an A-B tree. In other words, Goua is a semi-
A-B tree if it is an A-B tree when ignoring the edges
within max set.

Theorem 5.4. Let {b;,b;;} be a set of mized-
marginals that satisfy the admissibility and mized-
consistency of Theorem 5.3. Suppose the mazxima of b;,
bi; are all unique. Then there exist a B-configuration
T satisfying x] € argmaxb; forVi € B and (z},z}) €
argmax b;; for ¥(ij) € Ep. Suppose C is a subset of
B such that Goua 1s a semi-A-B tree, we have that
xy is locally optimal in the sense that Q(z%;0) is not
smaller than any B-configuration that differs from z7j
only on C, if all the following conditions are satisfied:

(i) pij =1 for (ij) € Ea.
(11) 0< Pij <1 fO?" (Z]) € EcuaNoag.
(iil) {psijl1(ij) € Ecua N Eg} is provably concave.

Proof. Since the maximum of b;, b;; are unique, we
have b;j(z;,27) = bi(z;) for i € A, j € B. The fact
that Goua is a semi-A-B tree enables the summation
part to be eliminated away. The remaining part only
involves the max nodes, and the analysis of Weiss et al.
(2007) applies. O

For Goua to be a tree, the sum graph G4 must be a
tree. Thus, Theorem 5.4 implicitly assumes that the
sum part is tractable. For the Markov chain in Fig. 1,
Theorem 5.4 implies only that the solution is locally
optimal up to Hamming distance one, i.e., coordinate-
wise optimal. However, the local optimality guaran-
teed by Theorem 5.4 is in general much stronger when
the sum part is disconnected, or the max part has inte-
rior regions that do not connect to the sum part.

We emphasize that mixed-consistency constraint (c)
plays an important role in the proof of Theorem 5.4,
canceling the terms that involve variables in B\C. The
hybrid algorithm in Jiang and Daumé IIT (2010) also
has an reparameterization interpretation, which re-
places our constraint (c¢) with simple max-consistency;
however this change invalidates Theorem 5.4.

6 CONVERGENT ALGORITHMS
BY CCCP

The mixed message scheme (16) is interesting, but may
suffer from convergence problems, as can happen to
loopy BP or tree reweighted BP. We apply a concave-
convex procedure (CCCP) used to derive convergent
algorithms for maximizing the Bethe and Kikuchi free
energy (Yuille, 2002) to our problem.



Suppose E(7,0) = (8, 7) + H is our surrogate free en-
ergy, where H is the approximation of the conditional
entropy term. Let us decompose the entropy term into
positive and negative part H = H+ — H~, where

H+*Zw+H — Z w” i

eV (ij)eE (18)
ST X vty
eV (ij)eE

Suppose max,c () (0, 7)+HT is easy to solve. We can
optimize the marginal MAP free energy by iteratively
linearizing the H~ term, giving

’I’L

0"“ =0}, +w;;log p n, gnrt =0; +w,; logT
TiTj

7"« arg max (0" 7+ HY. 19

5 max (0"1,7) (19)

where we use the fact that the gradient of H; and
Ij wr.t. 7 and 7;; are —logT; and log% respec-
tively. If both HT and H~ are concave, the iterative
linearization process (19) is called the concave-convex
procedure (CCCP), and it is guaranteed to monotoni-
cally increase the objective function. See Yuille (2002)
for a detailed discussion.

This iterative linearization process has an appealing
interpretation. Recall that the free energy of marginal
MAP is obtained by dropping the entropy of the max
nodes from the sum-inference free energy. Eq. (19)
essentially “adds back” the lost entropy terms, while
canceling their effect by adjusting 8 in the opposite di-
rection. This concept is distinct from the technique we
used when deriving mixed message passing, in which
a truncated entropy term was re-added but weighted
with a e-small temperature.

In practice, we does not necessary require H+ and H~
to be concave; in particular, it may be appealing to
choose (0, 7) + H* to coincide with the Bethe free en-
ergy for sum-inference when using the truncated Bethe
approximation. This has the interpretation of trans-
forming the marginal MAP problem into a sequence
of sum-inference problems, and often appears to give
a better fixed point solution.

7 CONNECTIONS TO EM

A natural algorithm for solving the marginal MAP
problem is to use the expectation-maximization (EM)
algorithm, by treating zp as the parameters and x4
as the hidden variables. In this section, we show that
the EM algorithm can be seen as a coordinate ascent
algorithm on a mean variant of our framework.

To connect to EM, let us restrict M to M*, set of
distributions with a product form on pairs (x4, 2p),

e., M* = {r € Mlg,(z) = ¢-(za)g-(xp)}. Since
M* € M* C M, meaning that the set of optimal ver-
tices are included in M*, max, cppx Finiz (T, 0) remains
exact; however, M* is no longer a convex set.

Denoting M4 as the marginal polytope over x4, and
similarly for Mg, it is natural to consider a coordinate
update for the restricted optimization:

Sum: 74 < argmax (Egn (0),74) + H,,(74)
TAEMA B
. n+1
Max: 757 argmax. <qu+1 0),78) (20)

where ¢’ (z4) and ¢} (xp) are the maximum entropy
distribution of 7j € M4 and 73 € Mp. Note that
the sum and max step each happen to be the dual of a
sum-inference and max-inference problem respectively.
If we go back to the primal, and update the primal
configuration 5 instead of 75, (20) can be rewritten

E step : qTrl(xA) < p(zalzy;0)
Mstep: o e argmaxE (), O

which is an EM update viewing xp as parameters and
x4 as hidden variables. EM is also connected to co-
ordinate ascent on variational objectives in Neal and
Hinton (1998) and Wainwright and Jordan (2008).

When the E-step or M-step are intractable, one can
insert various approximations. In particular, approxi-
mating M4 by a mean-field inner bound sz leads to
variational EM. An interesting observation is obtained
by using Bethe approximation (3) to solve the E-step
and linear relaxation to solve the M-step; in this case,
the EM-like update is equivalent to solving

+ZH— > I (22)

(ij)EEA

max
reLX (G)

where L*(G) is the subset of L(G) in which
Tij(@i, x;) = Ti(xs)Ti(x;) for (ij) € Oap. Equiva-
lently, L*(G) is the subset of L(G) in which I;; = 0
for (ij) € dap. Therefore, (22) can be treated as an
special case of (13) by taking p;; — 400, forcing the
solution 7* to fall into L*(G). The EM algorithm rep-
resents an extreme of this tradeoff, encouraging vertex
solutions by sacrificing convexity. The optimality re-
sult in Theorem 4.2 also applies to EM, but EM solu-
tions are likely to be stuck in local optima due to the
high non-convexity.

8 EXPERIMENTS

We first illustrate our algorithm on the hidden Markov
chain example shown in Fig. 1, and then show its be-
havior on a harder, Ising-like model.



Hidden Markov chain. We define a distribution on
the HMM in Fig. 1 with 20 nodes by

p(x) o exp [291(561) + Z Hij(x,-,xj)]

(ij)eE

with € {—1,0,+1}. We set 0;;(k,k) = 0 for all
(ij) and k, and randomly generate 6;(k) ~ N (0,0.1),
0;;(k,1) ~ N(0,0) for k # I, where o is a coupling
strength. Our results are averaged over 100 sets of
random parameters for each o € [0, 1.5].

We implemented the truncated Bethe approximation
(Mix-Bethe) and two versions of truncated TRW ap-
proximations: Mix-TRW1 which assigns all weights uni-
formly on the set of type-I subtrees, and Mix-TRW2
which assigns weight 0.5 uniformly over type-I sub-
trees, and weight 0.5 uniformly over type-II trees. To
avoid convergence issues, we use CCCP for all our algo-
rithms. For comparison, we implemented max-product
BP (Max-product), sum-product BP (Sum-product)
and Jiang and Daumé I1T (2010)’s hybrid BP (Jiang’s
method), where we extract a solution by maximizing
the max-marginals or sum-marginals of the max nodes.
Note that these three message passing algorithms are
“non-iterative”; since the hidden Markov chain is a
tree, they terminate in a number of steps equal to the
graph diameter. In some sense, this fact suggests that
their power to solve the (still NP-hard) marginal MAP
problem should be limited. We also implemented stan-
dard EM, starting from 10 random initializations and
picking the best solution.

We show in Fig. 3(a) the percentage of correct solu-
tions (configurations of all max nodes) for different
algorithms, and Fig. 3(b) their relative energy errors
as defined by Q(&p5;0) — Q(xp;0), where xp is the
estimated solution and x% is the true optimum. Our
Mix-Bethe returns the highest percentage (> 80%) of
correct solutions across the range of o, followed by
Mix — TRW2. Surprisingly, Mix-TRW1 usually works less
well than Mix-Bethe and Mix-TRW2 despite having bet-
ter theoretical properties. This can be explained by
the fact that Mix-TRW1 rarely returns integer solutions.
In general, we note that the truncated TRW approx-
imations, including Mix-TRW1 and Mix-TRW2, appear
less accurate than the Bethe approximation (also a
well known fact for max- and sum- inference) but are
able to provide upper bounds, shown in Fig. 3(b).

Fig. 3(c) shows the algorithms’ behavior over time for
o = 0.8, where each iteration is one CCCP step for
Mix-Bethe and Mix-TRW2 and an EM step for the EM
algorithm. The EM update, while monotonic, is eas-
ily stuck at sub-optimal points; experimentally we ob-
served that EM always terminated after only a few
(2-3) iterations.

Ising grid. We also tested the algorithms on a
marginal MAP problem constructed by a 10 x 10 Ising
grid, in which the max and sum nodes are distributed
in a chessboard pattern (Fig. 4). Note that in this case
the sum graph (shaded) is not a tree.

We generate parameters randomly as before, but for
binary states, giving “mixed” (attractive and repul-
sive) potentials; we also generated attractive-only po-
tentials by taking the absolute value of 8;;. Since
G is no longer a tree, Max-Product, Sum-product
and Jiang’s method may fail to converge, in which
case we tried adding damping (0.1) and additional
iterations (200). We also ran a convergent alterna-
tive: CCCP for Sum-product, and sequential TRW for
Max-product. Each algorithm reports its best result
over all these options.

Fig. 4(b)-(c) shows the approximate relative error de-
fined by Q(zp;0) — Q(Zp;60), where &5 is best solu-
tion that we find across all algorithms. Mix-Bethe
performs very well across all o for both mixed and at-
tractive couplings. For attractive couplings, the three
message passing algorithms also perform well; this is
probably because the attractive models typically have
two dominant modes, making the problem easier.

9 CONCLUSION

We have presented a general variational framework for
solving marginal MAP problems approximately. The-
oretically, our algorithms are justified by showing con-
ditions under which the solutions are global or local
optima. Our experiments demonstrate that our trun-
cated Bethe approximation performs extremely well
compared to similar approaches.

Future directions include improving the performance
of the truncated TRW approximation by optimizing
weights, deriving optimality conditions that may be
applicable even when the sum component does not
form a tree, studying mean field-like approximations,
and extending these algorithms to “generalized” mes-
sage passing on higher order cliques.
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