
Using Sample-based Representations Under Communications

Constraints

ALEXANDER T. IHLER
JOHN W. FISHER III
ALAN S. WILLSKY

Massachusetts Institute of Technology

Created June, 2004; Revised December, 2004

LIDS Technical Report # 2601

Abstract

In many applications, particularly power-constrained sensor networks, it is important to
conserve the amount of data exchanged while maximizing the utility of that data for some
inference task. Broadly, this tradeoff has two major cost components—the representation’s
size (in distributed networks, the communications cost) and the error incurred by its use (the
inference cost).

We analyze this tradeoff for a particular problem: communicating a particle-based repre-
sentation (and more generally, a Gaussian mixture or kernel density estimate). We begin by
characterizing the exact communication cost of these representations, noting that it is less than
might be suggested by traditional communications theory due to the invariance of the represen-
tation to reordering. We describe the optimal, lossless encoder when the generating distribution
is known, and pose a sub-optimal encoder which still benefits from reordering invariance.

However, lossless encoding may not be sufficient. We describe one reasonable measure of
error for distribution-based messages and its consequences for inference in an acyclic network,
and propose a novel density approximation method based on KD-tree multiscale representations
which enables the communications cost and a bound on error to be balanced efficiently. We
show several empirical examples demonstrating the method’s utility in collaborative, distributed
signal processing under bandwidth or power constraints.

1 Introduction

Wireless sensor networks are increasingly utilized in a large number of applications, including track-
ing, surveillance, and environmental monitoring applications [1, 2]. They require significantly less
physical infrastructure than their wired counterparts and can be deployed at substantially lower
cost. Efficient utilization of finite energy resources is one of the most important requirements for
wireless sensor networks. The high energy cost of communications, relative to sensing or com-
putation, makes limiting inter-sensor communications while maintaining effectiveness a desirable
goal.

Unfortunately, reducing communications comes at the expense of the primary goal of a sensor
network: to accumulate and fuse information from distributed sensors. Power may be conserved
through intelligent routing of messages or data selection [3, 4]; however, it is also possible to
trade off the fidelity of the information with its communications cost. This is particularly true for
redundant representations (e.g., fine-grain discretizations or large collections of samples). The latter
compromise falls into the category of lossy source coding; approximating the data representation

1

x1 x2 x3

y3y2y1

S1 S2
S3

Figure 1: A simple (yet sufficiently general) graphical model description for the transmission prob-
lem. A sensor S1 wishes to send its information y1 to S2, who will use it to perform inference on
x2 (or pass it on to S3).

to fit within some communications budget [5]. Lossy data compression is generally examined from
the perspective of minimizing reconstruction error of the data; in contrast, analysis with respect to
inferential utility is relatively unexplored [6, 7].

In this paper, we explore the tradeoff between the cost of communication and the fidelity of
the data representation when the transmitted message is a distribution (or likelihood function).
Specifically, we evaluate the impact of message approximation on subsequent inference rather than
distortion measures on the original data. This has many similarities to standard density approxima-
tion tasks such as vector quantization for source coding [5] or “reduced-set” density estimation [8];
however, when communication resources are dear, a more careful examination of both error mea-
sures and communication cost is warranted.

We outline the problem statement in Section 2. Section 3 examines the cost of optimal, lossless
encoding of sample based representations, discussing some necessary features of any such encoder.
We then turn to lossy encoding—Section 4 describes one appropriate measure of error while Sec-
tion 5 presents a multi-resolution description for which one may efficiently balance communications
cost with the potential for error in subsequent inference. Section 6 describes a few additional
considerations and directions, and we conclude with examples and applications in Section 7.

2 Problem overview

We begin with a canonical inference problem in which to frame our analysis. Sensors S1 . . . S3 each
observe a local random variable y1 . . . y3 (respectively); each sensor Si then uses the observations
as information about a local latent variable xi. Our goal is for S1 to encode and transmit to
S2 information about y1 so as to compute the posterior marginal distribution p(x2|y1, y2, y3). An
additional goal is to propagate this information from S2 to S3 so as to compute p(x3|y1, y2, y3) as
well.

A graphical model [9] depicting this scenario is shown in Fig. 1. Graphical models are a popular
means of encoding statistical (in)dependency relationships; specifically, two random variables are
conditionally independent if they are separated in the graph by the conditioning variables. For
example, denoting y = [y1, y2, y3], the graphical model in Fig. 1 factors as

p(x1, x2, x3|y) = p(x1|y1)p(x2|y2, x1)p(x3|y3, x2) (1)

which respects the graph’s separation properties, e.g., that x1 and x3 are independent given x2.
Graphical models are often used to construct global inference algorithms via local information or
message passing. Local sensing, distributed in-network processing, and limited bandwidth combined
with finite energy resources necessitate a compromise between communication costs and information
content.

2

We focus on calculating the posterior marginal distributions p(xi|y) on tree-structured graphs,
a task which may be accomplished using the belief propagation (or sum-product) algorithm [10].
In regard to Figure 1, and without loss of generality, we analyze the computation of posterior
distribution of x2:

p(x2|y) ∝ p(x2)p(y1|x2)p(y2|x2)p(y3|x2). (2)

while minimizing communications from S1, momentarily ignoring the inference tasks of the other
sensors. This situation arises, for example, if S2 were responsible for fusing information or com-
municating it to an outside user. It may be considered a special case of more general, symmetric
inference problems.

We will assume that the message m12 transmitted from S1 to S2 is a function, and specifically
may be either of the local posteriors p(x2|y1), p(x1|y1) or likelihoods p(y1|x2), p(y1|x1). We also
assume that both S1 and S2 share the prior model p(x1, x2), in which case all four functions may
be considered essentially equivalent, since given any of these functions (and similar information
from S3), it is straightforward for S2 to calculate p(x2|y) using Bayes’ rule. For concreteness, we
will take m12 = p(y1|x2); typically each message (function) is normalized for numerical stability. A
primary assumption of sending a distribution message rather than the raw data is that the size of
S1’s observation y1 is larger than the representation size of the likelihood p(y1|x2) (parameterized
by x2). This may be the case for a number of reasons—the yi may be high-dimensional (e.g.,
high-resolution imagery), or may be a large set of accumulated data (e.g., an entire observation
history).

This formulation easily extends to larger tree-structured graphs, in which case y1 represents all
information separated from sensor S2 by S1. Tree structured graphical models have already found
application in sensor networks [11]. While certain problems on sensor networks may be described
by loopy (non-tree structured) graphical models [12], inference in these situations (and thus the
communications/error tradeoff) is considerably more complex and remains a subject of ongoing
research.

2.1 Message Representation

While there are many possible representations for the inter-sensor messages we concentrate on
sample-based representations, assuming that each message is described by a kernel density esti-
mate [13]

m(x) =
∑

i

wi Kσi(x− µi) Kσi(x− µi) = N (x; µi, σ
2
i) (3)

where K is a Gaussian kernel with diagonal covariance matrix specified by the vector σ2
i , making

m(x) a Gaussian sum. Though not necessary, assuming a diagonal covariance simplifies much of
the subsequent discussion.

Gaussian sum-based messages are common in a number of applications. For example, they
represent a generalization of the distribution estimates in particle filtering algorithms (in which
σi ≡ 0) [14, 15], and more recently appear in stochastic approximations to belief propagation on
general graphical models [16].

3 Lossless Transmission of Sample-Based Representations

We begin by considering the task of lossless encoding. We shall see that the communications cost
of a sample-based representation is significantly less than might be indicated by naive application

3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

4 Optimal Conditional Order Statistics

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

4 Positive Random Walk

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

7

8
Communications Savings

Number of samples

S
av

in
gs

 p
er

 s
am

pl
e

(b
its

)

Optimal performance
Random Walk
Positive RW

(a) (b) (c)

Figure 2: Deterministic ordering reduces the entropy of the sample set. Optimal encoding can
be accomplished via the order statistics (a), if the distribution is known; alternatively, a random
walk-based conditional distribution (b) can be used instead, though the per-symbol savings (c) will
be reduced.

of classical source coding results. In the following we assume that S2 provides no feedback and
that the message m(x2) takes the form (3) in which the µi are drawn i.i.d. from some distribution
p(µ), and wi = 1/N for all i. The bandwidth σi ≡ σ is assumed to be known at the receiver,
either transmitted once and the cost neglected or computed deterministically from the data. The
consequence of these assumptions is that we may analyze the asymptotic costs involved with the
transmission of the data set {µi}. Specifically, we show that the invariance of the representation
to reordering of the {µi} leads to significant communication savings.

3.1 Optimal Communications

A standard information-theoretic result is that the minimum cost of transmitting large volumes of
continuous-valued data can be expressed in terms of the differential entropy. That is, a sequence
of N i.i.d. random variables µi ∼ p(µ) with entropy H(p) can be sent up to some resolution β (in
bits) with expected cost

(β + H(p)) ·N (4)

Encoders which achieve this for known p include the classic Huffman and arithmetic codes [5]. For
small values of N and β, quantization effects and other factors may influence the actual performance
of a source coding scheme. However, for simplicity we focus here on the ideal case.

The problem of communicating a kernel density estimate is considerably simpler requiring only
the transmission of the set of samples {µ1, . . . , µN} independent of ordering1. The maximal im-
provement is bounded by the reduction in entropy of the reordered samples. We assume sufficient
resolution such that no two samples fall within the same bin (i.e., the µi each differ by more than
2−β). We denote the complete sample sequence µN = [µ1, . . . , µN] and its distribution by p(µN).
A determinstically re-ordered set (e.g., sorted by value) is denoted µs

N = [µ(1), . . . , µ(N)] with
distribution2 ρ(µN).

1Interestingly, reordering has also been applied to sequence coding applications; for example, a reversible reordering
procedure is used in the Burrows-Wheeler transform [17] for (discrete-alphabet) source coding to capture redundancy
in non-i.i.d. sequences.

2Throughout this paper, we will adhere to the convention of using the symbol ρ for distributions of deterministically
ordered quantities such as the µ(i).

4

It can be shown that for any deterministic ordering [18],

ρ(µN) =

{
N ! p(µN) µN “in order”: µN = µs

N

0 otherwise.
(5)

This is because there are N ! = N · (N − 1) · · · 1 sets µN (corresponding to N ! possible orderings)
which map to the same µs

N . Consequently, it can be shown that the entropy of the sorted data µs
N

is given by
H(ρ(µN)) = H(p(µN))− log2 N !

indicating savings up to log N ! bits over the cost of sending the sequence naively.3

Equation (5) is a classic result from the analysis of order statistics, defined to be the ascending
sorted values for a set of one-dimensional (1-D) random variables. Order statistics provide a natural
and well-studied deterministic order in 1-D. While our notation for µ(i) is consistent with order
statistics, the previous analysis is independent of the method of ordering, and thus generalizes to
arbitrary dimension.

Fig. 2(a) illustrates the savings by way of a simple example. We show five samples drawn
from p(µ) uniformly distributed on the interval [0, 1) (shown as arrows), the distribution p(µ) and
the conditional distribution of the ith order statistic ρ(µ(i)|µ(i−1)) for each i. Each µ(i) has lower
entropy than p(µ), a difference which translates into lower transmission costs.

3.2 Sub-optimal Encoding

Typically p(µ) is unknown and the distributions ρ(µ(i)) are non-stationary, i.e., they depend on i;
the reduced cost of optimal transmission is due to ρ(µ(i)|µ(i−1)) changing predictably as a function
of i and µ(i−1). A (suboptimal) way to exploit this property for unknown p is to assume conditional
stationarity, i.e., ρ(µ(i)|µ(i−1), . . .) is constant for all i. While in general this assumption does not
hold, even a simple conditionally stationary code yields some degree of predictive power. A common
example is linear predictive coding (LPC) [5]. For now, we focus on 1-D distributions and ascending
sample order, deferring higher-dimensional distributions to Section 5.

One example of a simple yet useful LPC is a random-walk code. For purposes of illustration,
we compare two suboptimal, random walk based approximations to the optimal encoder for one-
dimensional samples distributed uniformly on [0, 1). The first method encodes each sample using
the conditional distribution

ρ̂(µ(i)|µ(i−1)) = N (µ(i);µ(i−1), σ
2) (6)

while the second encodes according to the one-sided random walk

ρ̂(µ(i)|µ(i−1)) =

{
2N (µ(i) ; µ(i−1), σ

2) µ(i) ≥ µ(i−1)

0 otherwise.
(7)

where σ2 is equal to the variance of p(µ) divided by N (i.e., σ2 = 1
12N) and N (·) is a Gaussian dis-

tribution. Fig. 2(b) shows the conditional distributions induced by the one-sided random walk (7),
as compared to the optimal distributions in Fig. 2(a). We may also measure the performance of
each suboptimal code using the per-sample savings (in bits) achieved as a function of N ; optimally,
this is 1

N log2 N !, while for any stationary code it is approximately zero. Fig. 2(c) shows curves
comparing the per-sample savings of the optimal encoder, the zero-mean random walk (6), and
one-sided random walk (7).

3Note that this is no longer accurate if we allow multiple, equal-value (at the resolution β) samples, since this
would result in fewer than N ! possible distinct orderings.

5

4 Message Approximation

The analysis of the previous section provides a baseline of optimal lossless communications for
sample-based message transmission. Lossy encoding, however, requires a measure of error between
two possible messages. While source coding approaches typically consider a distortion measure
on the data itself, we are interested in measures which relate to errors in the estimated posterior
distribution. Ideally, we desire local rules which, when utilized at all sensors, lead to global bounds
or estimates on the error at each sensor. One measure with this property is the maximum log-error

∆(m, m̂) = max
x
|log m(x) / m̂(x)| , (8)

for which a more detailed discussion is given in [19]. By controlling a similar measure d, defined as

d(m, m̂) = max
x

min
α
|α + log m(x) / m̂(x)|

the measure ∆ is well-behaved with respect to inference operations in a graphical model. The two
are related for normalized messages m, m̂ by the inequalities

d(m, m̂) ≤ ∆(m, m̂) ≤ 2d(m, m̂)

Additionally, d has three important properties relevant to bounding errors:

For messages m, m̂, m̃, d(m, m̃) ≤ d(m, m̂) + d(m̂, m̃)
For m2 ∝ m12m32, m̂2 ∝ m̂12m̂32, d(m2, m̂2) ≤ d(m12, m̂12) + d(m32, m̂32)
For f ∗m =

∫
f(x, z)m(z)dz, f > 0 d(f ∗m, f ∗m̂) ≤ d(m, m̂)

Together, these properties enable one to bound the influence of a particular message approximation
on any other message or posterior marginal in the graphical model, and more generally bound the
error from a set of message approximations by the sum of their individual errors. The measure
∆(·) is a strict measure; for example, it requires nearly identical tail behavior for continuous
distributions. There are several means to ensure this for Gaussian mixture distributions. For
example, if the mixture components which determine the tail behavior can be identified they may be
preserved to high precision. Another possibility is that a single mixture component determines the
tail behavior of the overall distribution, as when one very broad (possibly low-weight) component
dominates the rest of the distribution in very low-likelihood regions. Such components are often
added to model outlier processes [20, 12], and may be either deterministically added at the receiver
or transmitted with high precision.4

Evaluating the error ∆(·) between two Gaussian mixtures is also non-trivial. It may be per-
formed either by discretization and direct evaluation in relatively low (1-2) dimensions, or via
gradient search. Although gradient search can be susceptible to local maxima, the form of (8)
as the ratio of Gaussian mixtures leads one to expect that the global maximum may be found
with relative ease by local optimization from each of the mixture centers, similar to that outlined
by [21]. Thus, estimating ∆(·) requires O(N) operations. For comparing a single Gaussian to a
kernel density estimate (a task important for the next section), one may also estimate ∆(·) by
simply evaluating the magnitude of the log-ratio at each kernel center µi and selecting the largest.

4A similar solution involves the addition of a small but non-zero constant to the distribution estimate (or imposition
of a threshold away from zero), essentially modeling the inclusion of a small uniform (rather than Gaussian) outlier
component.

6

x xx x x x xx

x xx x x x xx

x xx x xx x x

x xx x xx x x

5 6 74

2 3

1

8 9 10 11 12 13 14 15

Figure 3: A one-dimensional KD-tree representing a mixture of 8 Gaussian kernels, and caching
means and covariances at each level (resulting in a hierarchy of Gaussian approximations). The
nodes have been labeled by the numbers 1, . . . 15 for the discussion in the text.

x xx x xx x x

Figure 4: The Gaussian mixture approximation derived from the density set S = {4, 10, 11, 6, 7}
on the KD-tree in Fig. 3

5 A Multi-scale Description

Given a measure of message error, we discuss a method to trade off communications and fidelity.
Multi-scale descriptions have been proven to be useful in many data compression applications [22,
23]; they first capture large-scale phenomena then encode a series of “refinements” to describe
finer details. Generally, the multi-scale description is hand-selected (e.g., wavelet decompositions,
Fourier coefficients, etc.), and the refinement information forms a tree-like structure that can then
be optimized to trade off representation size with reconstruction quality.

We consider a particular multi-scale description of the kernel density estimate based on KD-
trees (“k-dimensional trees”), a common data structure used for storing and summarizing sets
of real-valued samples. KD-trees cache various statistics of subsets of the samples, in our case
estimates of their mean and covariance, which we use to define a multi-resolution Gaussian mixture
model. This is, of course, only one possible encoding choice, but we shall see that it results in an
elegant approximation algorithm. We first describe a class of multi-scale mixture models defined
by a KD-tree, then show how it may be applied both to encode and to control error in the message.

5.1 KD-tree Gaussian Mixtures

KD-trees [24] are a well-known data structure for rapidly performing locality-based computations
on large sets of continuous-valued points. They are binary tree structures whose leaf elements
each store (in our application) one µi and associated covariance σ2

i . Internal (non-leaf) nodes
store any of a number of sufficient statistics of the data represented by their children, allowing
many computations to be performed without accessing the individual leaf nodes and leading to
considerable speedups. Here, we use the KD-tree structure to define a hierarchy of Gaussian
approximations to subsets of the message m(x). The sufficient statistics stored at each node are
the mean and covariance of the Gaussian sum defined by the node’s children, along with a weight
wi representing the total weight contained in its subtree (i.e., for an equal-weight kernel density
estimate, the number of leaf nodes below divided by the total number of leaf nodes). This is easily
computed recursively for each node i, since wi = wil + wir and

µi =
wil

wi
µil +

wir

wi
µir σ2

i =
wil

wi
(σ2

il
+ µ2

il
) +

wir

wi
(σ2

ir + µ2
iR

)− µ2
i (9)

7

where il, ir are the left- and right-hand children of node i and the sum is computed element-wise;
recall that the σ2 are assumed diagonal.

There are many methods of constructing KD-trees [25, 26]; it is not our purpose to investigate
the relative merits of these methods, nor do we require that any particular method be used. In gen-
eral, the simplest construction algorithms work by a top-down set-splitting procedure, for example
dividing the data into (nearly5) equal sets along some cardinal axis chosen either deterministically
or according to the covariance of the data contained in its subtree.

A simple one-dimensional example of a KD-tree which caches means and covariances is shown
in Fig. 3. In this figure, the nodes have been numbered 1 . . . 15, where node 1 is the root and
8 . . . 15 are the leaves. The descendants of a node i are the nodes located below it in the tree (e.g.,
the descendants of node 2 are {4, 5, 8, 9, 10, 11}), while its ancestors are the nodes located above
it (so that the ancestors of node 4 are {1, 2}).

KD-trees summarize large sets of data via cached statistics enabling many computations without
accessing the raw data. For example, KD-trees have been applied to improve the speed of EM for
learning mixture models [27]. In contrast to their typical application, we use the tree structure to
find a simpler description which has overall bounded approximation error. The KD-tree defines a
class of Gaussian mixture models, parameterized as follows: define an admissible density set S to
be any set of nodes in the KD-tree such that, for every node i ∈ S, S contains neither descendants
nor ancestors of i, and for every leaf node j, either j or some ancestor of j is contained in S. The
Gaussian sum defined by any such S yields an approximation to the original (finest-scale) Gaussian
sum,

m̂S(x) =
∑

i∈S

wi N (x ; µi, σ
2
i) ≈ m(x) =

∑

leaves i

wi N (x ; µi, σ
2
i) (10)

of varying degrees of coarseness depending on the selection of nodes in S. For example, the Gaussian
sum given by S = {4, 10, 11, 6, 7} is shown in Fig. 4. The admissibility conditions essentially require
that each leaf node be represented by one and only one Gaussian mixture element. Due to the
tree-structure, it is possible to efficiently optimize both communications cost and approximation
error over the class of admissible density sets; computing these two cost functions on the KD-tree
form the subjects of the next two sections.

5.2 KD-tree Communications Cost

We now consider the design of an encoder for the kernel density estimate defined by a parameter
set {µi, σ

2
i } which respects the clustering induced by the KD-tree, and allows us to calculate the

communications benefit of sending only certain coarse-scale approximations (as opposed to the
entire representation). We note that, since the KD-tree representation of the {µi} is constructed
deterministically from the data, there is no more randomness in the KD-tree than in the data set
as a whole. In other words, to communicate the KD-tree description, we may simply communicate
all µi and rebuild (bottom-up); thus, an optimal representation of the entire KD-tree should cost
no more than sending the samples themselves.

We prefer, however, to send the approximations in a coarse-to-fine manner; sending the upper
levels of the KD-tree first enables us to simply cease transmitting refinements for a given branch
whenever it is deemed “good enough”, thus reducing the communications required. To this end, we
design an encoder (based on the methods discussed in Section 3.2) which first transmits the mean
and covariance of the root node, then encodes each node’s refinement information in a manner
consistent with the current, coarse-scale density estimate of that subtree.

5Sets with an odd number of points are typically split according to some convention, for example placing the
additional point in the left-hand branch.

8

(b)

(a)

(c)

p
P

p
L

p
R

ρ(µ)
R

^

Figure 5: Transmitting a KD-tree in top-down fashion. (a) Given the mean µp and covariance σ2
p

of a coarse-scale estimate, (b) we encode the right-hand mixture component according to (12)-(13);
the encoding distribution ρ̂(µr) is shown as solid, while the transmitted value of µr is indicated by
the arrow. (c) Having decoded the right-hand component, the receiver may simply solve for the
left-hand component using (9).

Suppose that we have transmitted a coarse (single Gaussian) approximation qp(x) = N (x; µp, σ
2
p)

of some subtree rooted at node p. The receiver must be able to recover the means µl and µr and
covariances σ2

l , σ
2
r of node p’s left and right children (denoted l and r respectively) to refine the

subtree by one level. Equation (9) yields two equations with four unknowns; thus it is sufficient6

to transmit only µr, σ
2
r . Furthermore, if the leaf nodes all have equal, known bandwidths, the cost

of refinement at the finest scales is smaller still; for example, if both children are leaves, refinement
is essentially free (two equations with two unknowns). Eventually, we consider transmitting only a
subset of the possible branchings; for our analysis we neglect the small overhead required to indicate
the choice of which refinements are sent (which requires at most one bit per node retained).

The manner of encoding the right- (or left-) hand mean and covariance is a design choice; clearly,
the summarization statistics µp, σ

2
p can be used to construct an encoding distribution known at both

sender and receiver. For example, a simple choice reminiscent of Section 3.2’s random-walk encoder
is given by

ρ̂(µr|µp, σ
2
p) =

{
2N (µr; µp, σ

2
p) µr ≥ µp

0 otherwise
(11)

ρ̂(σ2
r |σ2

p, µp, µr) = N (σ2
r ; σ̂

2
r , σ̂

2
r/2) σ̂2

r = σ2
p + µ2

p −
wr

wp
µ2

r −
wl

wp
µ2

l (12)

For non-diagonal covariances, this involves a more complex encoding distribution. If all leaf nodes
have the same bandwidth σ, a slight improvement to the mean value’s encoder can be obtained by
using the variance of the samples rather than the variance of their represented distribution, i.e.,
define σ̄2

p = σ2
p − σ2 and use

ρ̂(µr|µp, σ
2
p)

{
2N (µr; µp, σ̄

2
p) µr ≥ µp

0 otherwise
(13)

Using any such predictive encoder, we may pre-compute the communications cost of all N − 1
potential refinement actions while constructing the KD-tree, allowing one to easily check (for ex-
ample) whether a particular set S is within a communications budget. Finally, note that this
procedure generalizes easily to densities in arbitrary dimension; the KD-tree provides a natural

6With a slight caveat: due to the averaging process, given µp, µr to precision β, µl is computed to precision β− 1;
thus we may require an additional bit of information for µl.

9

x xx x x x xx

x xx x xx x x

... ...

p(x):

p (x)

{ {

p (x)
l r

q(x):

q (x): q (x):
l r

Figure 6: Subdividing the KD-tree Gaussian mixture. An error measure between the densities
p(x) = pl(x) + pr(x) and q(x) = ql(x) + qr(x) can be bounded by error measures on the individual
pairs pl(x), ql(x) and pr(x), qr(x).

ordering (top-down; approximately equal size, binary splits), just as the sorted order did in 1-D.
Positivity requirements such as appear in (11) and (13), if present, are only included for the di-
mension along which the data has been split at each level, since this is the only dimension in which
the KD-tree provides ordering information.

5.3 KD-tree Approximation Error

Many algorithms attempt to choose “important” samples or otherwise reduce the number of kernel
centers in the density estimate. Some attempt to minimize KL-divergence [28] or L2 (integrated
squared) error [8]. We add the maximum log-error described in Section 4 to this list, describing a
simple and computationally efficient bounded-error approximation scheme, based on the multiscale
approximations stored in a KD-tree data structure.7

The key to performing the optimization efficiently (without enumerating all possible density
estimates) is to decompose the error of any particular admissible density set S, with KD-tree
Gaussian mixture qS , into an error measure on only individual elements s ∈ S. This allows us
to determine if a sub-tree of the hierarchy has already been approximated “sufficiently well”, or
whether we may need to refine it (eventually improving the quality of our approximate density
estimate in that sub-region). In particular, we split the true distribution into two parts, p(x) =
wlpl(x)+wrpr(x), and similarly for any approximation of those parts q(x) = wlql(x)+wrqr(x). An
illustration of this decomposition is shown in Fig. 6.

The relationship of error between p and q to the error between pl, ql and pr, qr depends on
the form of error measure between p and q. For the maximum log-error ∆(p, q) we may use the
inequality

∆(wlpl + wrpr , wlql + wrqr) ≤ max [∆(pl , ql) , ∆(pr , qr)] . (14)

In consequence, we may separately consider the approximation of each sub-tree s ∈ S by the single
Gaussian approximation stored at s. Evaluating the error between the top and leaf nodes of each
subtree gives a bound on the error in the full density estimate (i.e., that the total error is bounded
by the largest error over s ∈ S).

This decomposition leads to a fast, bounded-error approximation algorithm—to approximate
p with at most some error ε using only a few kernels, we construct a KD-tree representation of
p, retaining Gaussian approximations of the sub-trees at each level. Then, beginning with the
topmost level, we evaluate the error associated with this approximation. If it does not meet the
required quality ε, we select and refine the subtree s with largest error bound contribution ∆(ps, qs)
to improve the approximation. As the bound on ∆ is dominated by the maximum error in any
subtree, this procedure exactly optimizes the bound. It is also very fast—even for ε = 0 (the worst

7Interestingly, this algorithm can also be applied as a greedy optimization of many other types of error measures,
for example the Kullback-Leibler divergence, L1, and L2 measures, though we omit details due to space constraints.

10

case) it requires at most O(N log2 N) time, since comparing a node p to its Np children may be
performed in O(Np) evaluations, giving O(N + 2 · N

2 + 4 · N
4 + . . .) = O(N log2 N) total operations.

In practice, for fixed ε > 0 the algorithm requires about O(N) time, consistent with the intuition of
stopping at an approximately constant depth determined by the complexity of the true distribution.

Alternatively, instead of minimizing communications subject to some error tolerance ε, we may
use the same method to select a tradeoff between the two quantities by iteratively refining the
subtree with largest error bound and keeping track of the set S with the best relative communica-
tions and error values (note that splitting does not always immediately improve the error!). It is
also easy to modify this procedure to optimize the error bound subject to some communications
constraint, whether specified in bits or by the number of retained Gaussian components.

Finally, as mentioned in Section 4, finite error ∆ requires exact agreement in the distribution’s
tails. Thus, whatever method is applied to make (8) finite for a given Gaussian mixture (addition
of a single broad component, flat threshold, or preservation of tail-dominant components) should
also be applied to each subtree’s approximation. This is easily done by adding the same common
modes to each subset approximation, i.e., if pp = wlpl + wrpr and we add an outlier component p0,
we assign p0 to each side in proportion to their weight: pp + p0 = wl(pl + p0) + wr(pr + p0). This
ensures that all subtrees match their finest scale subsets well enough to have non-trivial (finite)
error bounds.

6 Additional Considerations

We have restricted the discussion as a means of illustrating the primary issues. Some additional
considerations are worth noting, although a full analysis is beyond the scope of this discussion.
Some of these are straightforward to incorporate into the analysis, while others pose significant
challenges.

The first such aspect is the determination of the quantization level β. For lossless coding, β is
determined by the resolution at which each sensor manipulates and stores data. For lossy coding,
however, it is a parameter choice. Since large bandwidth components generally require less fidelity
than smaller bandwidth components, methods which allow variable resolution and/or range (e.g.,
at different scales in the representation) may yield further savings. However, for such methods one
must also consider any additional overhead in communicating β.

Secondly, some applications (particularly those described by loopy graphical models) may in-
volve iterative message passing between sensors: sensors transmit local information then subse-
quently retransmit new information (received from other sensors) to refine the message. While we
have focused on exploiting redundancy in the set of samples underlying a sample-based representa-
tion, exploiting redundancy in the sequence of messages for iterative (multi-transmission) problems
may also be used to reduce communications. Censoring (opting not to send) messages which are
“sufficiently close” to the previous version is a simple example of one such scheme; however, general
methods for exploiting this structure remain a challenging research direction.

7 Experiments

This section describes a few example applications of KD-tree based density approximation and the
tradeoff between error and communications. First, we show the process of approximation on a
single message, then examine the performance in two example multi-sensor systems: a distributed
particle filtering application, and estimation of a spatially dependent non-Gaussian random process.

11

 0.5 0 0.5 1 1.5
0

1

2

3

4

 0.5 0 0.5 1 1.5
0

1

2

3

4

32.0 bits; Err 3.2258 (3.2258) 135.5 bits; Err 0.2092 (1.6996)

 0.5 0 0.5 1 1.5
0

1

2

3

4

 0.5 0 0.5 1 1.5
0

1

2

3

4

58.7 bits; Err 2.3839 (2.9798) 160.8 bits; Err 0.0495 (0.1086)

 0.5 0 0.5 1 1.5
0

1

2

3

4

 0.5 0 0.5 1 1.5
0

1

2

3

4

84.7 bits; Err 0.8921 (2.6529) 183.8 bits; Err 0.0494 (0.0901)

 0.5 0 0.5 1 1.5
0

1

2

3

4

 0.5 0 0.5 1 1.5
0

1

2

3

4

110.5 bits; Err 0.4563 (2.3482) 206.1 bits; Err 0.0227 (0.0539)

Figure 7: Sequence of KD-tree based approximations (dashed) to a 100-kernel density estimate
(solid) of decreasing error and increasing communications cost (with β = 16 bits). Listed are the
transmit cost in bits, and the actual error and tree-decomposed bound on ∆.

0 200 400 600 800 1000 1200
0

1

2

3

Error vs. Communications Cost

Bits required

E
rr

o
r
(
M

a
x
 L

o
g

)

Error Bound

Actual Error

Figure 8: Comparing transmitted density error (both the tree-structured bound and actual error)
versus total communications cost (in bits)—very few bits are required to transmit most of the
density’s information.

7.1 Single Message Approximation

We begin with a fixed kernel density estimate, showing the sequence of approximations as communi-
cation constraints are relaxed. The original kernel density estimate is made up of 100 samples. We
transmit all parameters up to β = 16 bits of resolution (i.e., naive, lossless encoding requires 1600
bits). Fig. 7 compares the first eight Gaussian sums of the approximation sequence to the original
density using our KD-tree splitting algorithm. Communications cost and max-log error are listed
for each approximation. We also show the sequence of improvements in the error bound (and the
actual resulting error) as a function of the number of bits required for transmission. Fig. 8 shows
the rate at which the resulting error (solid) and bound (dashed) decline as communications increase.
Beyond a certain communications level, we gain little for additional expenditures of energy.

Finally, we might also ask if changing β can improve performance. There are a few pitfalls
in naively changing β; for example, if β is chosen too small we require special precautions when
representing the bandwidth so as not to round any bandwidth to zero. Also, the choice of β affects
the optimization over mixture components. For example, if β is decreased to only 8 bits, we improve

12

2 4 6 8 10

0

0.1

0.2

Time (# transmissions)

K
L
d
iv

e
rg

e
n
ce

KDtree, 200 bits/msg
EM, 200 bits/msg
Subsample, 200 bits/msg
KDtree, 1000 bits/msg
EM, 1000 bits/msg
Subsample, 1000 bits/msg

(a) (b)

Figure 9: Particle filtering example. (a) One sample path {xt}, along with the samples used to
estimate the posterior distribution at times t = 2, 5, 8. (b) Average increased KL-divergence at each
time step for approximate message-passing (over ideal baseline). Careful approximations (EM and
KD-tree) perform much better than subsampling; the KD-tree approximations (solid) outperforms
EM at moderate bit-rates.

performance at moderate error levels—sending 6 Gaussians costs about 62 bits, with error bound of
2.23 and actual error of .330, compared to 2 Gaussians costing 59 bits, with error bounds 2.98 and
actual error 2.38 at β = 16 bits. However, at some point the quantization error dominates—e.g.,
in this example with β = 8, sending more than 6 Gaussians never improved the inference error.

7.2 Distributed Particle Filtering

Particle filtering is often used for single- or multi-target tracking involving highly non-Gaussian
observation likelihoods and potentially non-linear dynamics. In the context of wireless sensor
networks, it is often appealing to perform the computations involved locally at one of the sensors
(called the leader node, and typically chosen to be nearby to the target itself), removing the
need to export data from the network at each time frame and reducing the distance over which
observations and information must be communicated [4]. However, this creates a need to transmit
the state descriptions (particle sets) from one sensor to the next as the target migrates from one
region to another. Message approximation techniques can thus be applied to conserve bandwidth,
saving power and extending sensor lifetime.

We examine the tradeoff between communications and error in this situation by considering
a simple two-dimensional particle filtering application. We simulate an object moving in two
dimensions, with dynamics

xt = xt−1 + v0[cos θt; sin θt] + wt

where wt is Gaussian and θt uniform:

wt ∼ N(0, σ2
wI) θt ∼ U

[
−π

4
,
π

4

]

At each time step t a single sensor (the leader) updates the estimated distribution using a range
measurement from its location st:

yt = ‖xt − st‖+ dt dt ∼ N(0, σ2
d)

The leader node is changed after each update (i.e., at each time step), and the updated distribution
estimate communicated to a new sensor. The distribution at each time step is typically unimodal
but non-Gaussian; see Fig. 9(a).

13

Since at each time step t, the leader node must communicate its (particle-based) distribution
estimate p̂(xt) to another sensor, we may compare methods of compressing this message. First, note
that it is typically cheaper to send p̂(xt|yt, . . .) than p̂(xt+1|yt, . . .) since there is less uncertainty
(entropy) in the former. We compare three simple message-compression schemes, each parameter-
ized by the total number of bits B required per message: subsampling, Expectation-Maximization
(EM), and the KD-tree optimization described in Section 5.

For subsampling, we simply re-draw sufficiently few samples that the expected cost of sending
the sample set (as defined in Section 3) is less than B bits. EM is commonly used to fit Gaussian
mixture models; however, since efficient encoding of such a mixture model is an open question, we
simply choose the number of components to require fewer than B bits in a naive (direct fixed-point)
representation. Finally, the KD-tree method applies the simple hierarchical encoding described
previously, refining while the transmission cost is less than B bits. All values are maintained at
resolution β = 16 bits, and we compare the resulting distributions (at each time step) to those
obtained by exact transmission of all samples.

We compute the average increase in KL-divergence due to message approximation by finding the
divergence between the estimated posteriors and those obtained using exact messages, minus the
KL-divergence found by using exact transmission but an alternate initial particle set. The results,
for each approximation method over 500 Monte Carlo trials and B ∈ {200, 1000} bits, is shown
in Fig. 9(b). For a given bit budget, smart approximation of the distribution (using either EM
or KD-tree based methods) performs considerably better than simple subsampling. At extremely
low bit rates (200 bits ≈ 2-3 components), EM may perform better, but by moderate bit rates
the KD-tree method is nearly as good as exact transmission, and requires less computation (about
one-tenth the computation time for 1000 bits).

The differences between EM and the KD-tree method are likely due to a few factors. First,
the two methods are optimizing different measures of error (KL-divergence vs. maximum log-
error). This appears to be an advantage for average-case performance; in fact, on this problem
(in experiments omitted for space) a greedy KD-tree optimization to minimize KL-divergence also
outperformed EM at B = 200 bits. EM also entails a less constrained optimization, which is
beneficial for few mixture components but may suffer from local maxima with many components.
Finally, the KD-tree’s extra constraints are used to define an efficient encoding, so that for a
given bit budget it typically has more mixture components than a naive encoding of a mixture
model found via EM. Perhaps given a more efficient encoder of arbitrary Gaussian mixtures, EM’s
performance would be similarly improved; this is one important direction for further research.

7.3 Non-Gaussian Field Estimation

We next consider another use of sensor networks—to fuse a collection of spatially separated ob-
servations. Suppose that we have a collection of sensors, arranged in an 8× 8 regular grid. Each
sensor i obtains an observation about a random variable, denoted xi, which is known to vary slowly
in space but posesses a few sharp transitions.

We employ a multi-resolution quad-tree model to capture the interactions between the xi. Sim-
ilar models have been used with considerable success for efficient estimation of Gaussian fields [29].
To be precise, we associate each of the xi to the finest-scale (leaf) node of a quadtree which corre-
sponds, in spatial arrangement, to sensor i. Each non-leaf node of the tree is also associated with a
random variable; we will use γ1xi to indicate the random variable associated with the parent node
i, γ2xi to be the parent of that node, and so forth. For notational simplicity we define γ0xi = xi.

To capture local smoothness with the possibility of sharp transitions, we model the interactions

14

100 200 300 400 500 600 700 800
0

0.4

0.8

1.2

K
Ld

iv
er
ge

nc
e

Bits per message

(a) (b) (c)

Figure 10: Non-Gaussian field example. (a) An example (4×4) quad-tree structure. (b) Allocating
the nodes in the quad-tree to sensors; responsibility for each parent node is assumed by one of the
children. Arrows indicate the upward message sweep, from leaf nodes to root. (c) Error, in terms
of KL-divergence, of the solution as a function of the allowed number of bits per message.

between variables by a simple mixture of Gaussians:

p(γsxi|γs−1xi) = p(γs−1xi|γsxi)

= .9N(γsxi − γs−1xi; 0, σ2
sI) + .1N(γsxi − γs−1xi; 0, I);

where the σ2
s controls the smoothness, and depends on the scale s; we select σ1 = .05, σ2 = .1, and

σ3 = .2. The smaller, high-variance mode allows for some sharp disagreements between neighboring
xi.

Once again, we choose to represent the two-dimensional likelihood messages p(yi|xi) as sample-
based density estimates with N = 1000 samples, performing fusion of the messages by sampling
from their products [16, 30]. In the quad-tree structure, optimal inference can be performed via a
simple two-pass sequence: first, messages are passed upward from the leaf nodes to the root and
fused at each level, then the fused results are sent back downwards to the leaves.

We impose the statistical quad-tree structure shown in Fig. 10(a) onto the physical sensor and
communications structure by associating each of the “virtual” parent nodes to the same sensor as
one of its four children. Thus, at each level in the upward sweep, three nodes transmit (and thus
may wish to approximate) their messages to the “parent”; in the downward sweep, the parent node
transmits (simultaneously, by broadcast) to the other children. The upward sweep is depicted in
Fig. 10(b). After this process concludes, most sensors have sent only one message, while a few
(about 1

4) have sent two.
We compare the quality of the fusion results as a function of the number of bits allocated to each

message, applying the KD-tree based approximation of Section 5. Fig. 10(c) shows the resulting
KL-divergence between estimated and true posterior distributions as a function of the number of
bits, averaged over 500 Monte Carlo trials. As with the particle filtering example, reasonably good
results are obtained even for relatively little communications (less than 1000 bits per message).

8 Conclusions

Power-limited wireless sensor networks must be able to perform inference in a communications-
constrained environment. We consider an important subset of this general task, that of inference on
continuous-valued random variables using sample-based representations, the most common example
of which is particle filtering. We discuss the cost of transmitting such representations, both exactly
and approximately.

For exact transmissions, we showed that the representation’s invariance to reordering can be
used to reduce the required communications cost, and that to do so we must take advantage of

15

predictable non-stationarity in the distribution of the deterministically-ordered samples. We also
described a simple sub-optimal linear predictive encoder which provided some of these benefits.

To treat approximate (lossy) transmissions, we applied the KD-tree data structure to the tasks
of both encoding and density approximation, demonstrating how communications cost may be
efficiently balanced with errors in inference. We then showed several examples demonstrating lossy
encoding for distributed inference, including a distributed implementation of particle filtering and
a multi-resolution model for estimating a non-Gaussian random field.

Many important questions remain, however. For example, feedback from the receiver, side
information, and previously transmitted messages provide important sources of information which
we have not exploited. Furthermore, although we have described a few sub-optimal encoding
methods as examples, we expect that further investigation can lead to substantial improvement in
methods of communicating sample-based distributions and their approximations.

References

[1] S. Kumar, F. Zhao, and D. Shepherd. Collaborative signal and information processing in
microsensor networks. IEEE Signal Proc. Mag., 19(2):13–14, March 2002.

[2] H. Gharavi and S. Kumar. Special issue on sensor networks and applications. Proc. IEEE,
91(8):1151–1153, August 2003.

[3] Neha Jain, M. Dilip Kutty, and Dharma P. Agrawal. Energy aware multipath routing for
uniform resource utilization in sensor networks. In IPSN, pages 473–487, April 2003.

[4] F. Zhao, J. Shin, and J. Reich. Information-driven dynamic sensor collaboration for tracking
applications. IEEE Signal Proc. Mag., 19(2):61–72, March 2002.

[5] A. Gersho and R. M. Gray. Vector quantization and signal compression. Kluwer, Boston, 1991.

[6] N. Tishby, F. Pereira, and W. Bialek. The information bottleneck method. In Allerton Con-
ference on Communication, Control and Computing, pages 368–377, 1999.

[7] M. Gastpar and M. Vetterli. Source-channel communication in sensor networks. In L. Guibas
and F. Zhao, editors, IPSN. Springer-Verlag, 2003.

[8] Mark Girolami and Chao He. Probability density estimation from optimally condensed data
samples. IEEE Trans. PAMI, 25(10):1253–1264, October 2003.

[9] S. L. Lauritzen. Graphical Models. Oxford University Press, Oxford, 1996.

[10] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman, San Mateo, 1988.

[11] M. A. Paskin and C. E. Guestrin. Robust probabilistic inference in distributed systems. In
UAI 20, 2004.

[12] A. T. Ihler, J. W. Fisher III, R. L. Moses, and A. S. Willsky. Nonparametric belief propagation
for self-calibration in sensor networks. Submitted to IEEE J. Sel. Areas Comm., 2004.

[13] B.W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman and Hall,
New York, 1986.

16

[14] A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte Carlo Methods in Practice.
Springer-Verlag, New York, 2001.

[15] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for
online nonlinear/non-Gaussian bayesian tracking. IEEE Trans. SP, 50(2):174–188, February
2002.

[16] E. B. Sudderth, A. T. Ihler, W. T. Freeman, and A. S. Willsky. Nonparametric belief propa-
gation. In CVPR, 2003.

[17] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. Technical
Report 124, Digital Equipment Corporation, Palo Alto, California, 1994.

[18] R. H. Randles and D. A. Wolfe. Introduction to the Theory of Nonparametric Statistics. Wiley,
New York, 1979.

[19] A. T. Ihler, J. W. Fisher III, and A. S. Willsky. Message errors in belief propagation. Technical
Report 2602, MIT, Laboratory for Information and Decision Systems, 2004.

[20] M. Isard. PAMPAS: Real–valued graphical models for computer vision. In CVPR, 2003.

[21] M. A. Carreira-Perpinan. Mode-finding for mixtures of gaussian distributions. IEEE Trans.
PAMI, 22(11):1318–1323, 2000.

[22] J. M. Shapiro. Embedded image-coding using zerotrees of wavelet coefficients. IEEE Trans.
SP, 41(12):3445–3462, 1993.

[23] John C. Kieffer. A tutorial on hierarchical lossless data compression. In Modelling Uncertainty,
volume 46 of Internat. Ser. Oper. Res. Management Sci., pages 711–733. Kluwer, Boston, MA,
2002.

[24] J. L. Bentley. Multidimensional binary search trees used for associative searching. Comm.
ACM, 18(9):509–517, September 1975.

[25] Stephen M. Omohundro. Five balltree construction algorithms. Technical Report TR-89-063,
ICSI, U.C. Berkeley, 1989.

[26] Andrew Moore. The anchors hierarchy: Using the triangle inequality to survive high-
dimensional data. In UAI 12, pages 397–405. AAAI Press, 2000.

[27] Andrew Moore. Very fast em-based mixture model clustering using multiresolution kd-trees.
In NIPS 11, pages 543–549, 1999.

[28] M. Aitkin and D. B. Rubin. Estimation and hypothesis testing in finite mixture models. J.
R. Stat. Soc. B, 47(1):67–75, 1985.

[29] A. Willsky. Multiresolution markov models for signal and image processing. Proc. IEEE,
90(8):1396–1458, August 2002.

[30] A. T. Ihler, E. B. Sudderth, W. T. Freeman, and A. S. Willsky. Efficient multiscale sampling
from products of Gaussian mixtures. In NIPS 17, 2003.

17

