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ABSTRACT

Particle filtering is often applied to the problem of object track-

ing under non-Gaussian uncertainty; however, sensor networks

frequently require that the implementation be local to the region

of interest, eventually forcing the large, sample-based representa-

tion to be moved among power-constrained sensors. We consider

the problem of successive approximation (i.e., lossy compression)

of each sample-based density estimate, in particular exploring the

consequences (both theoretical and empirical) of several possible

choices of loss function and their interpretation in terms of future

errors in inference, justifying their use for measuring approxima-

tions in distributed particle filtering.

1. INTRODUCTION

The problem of tracking moving objects in intelligent distributed

sensor networks has been widely studied. Typically, such net-

works are comprised of nodes which have some local computa-

tional power, the ability to sense their local surroundings, and the

ability to communicate with nearby sensors. These sensors operate

using a limited, on-board power supply, which must be conserved

to prolong sensor lifetime. Usually, the energy costs related to

computation are significantly lower than energy costs associated

with communication. The disparity in energy costs has led to sev-

eral approaches which utilize local computational power in order

to save communications costs. In these a approaches, a single node

is responsible for receiving measurements and combining them to

update the state distribution. This is coupled with a strategy of dy-

namically changing which node is responsible for the state update,

usually a sensor which is “close” to the target [1, 2].

Another aspect of tracking problems in these networks is that

the measurement models are often nonlinear functions of the state,

resulting in non-Gaussian posterior distributions. This has made

particle filters and other nonparametric methods attractive alterna-

tives to traditional Kalman filtering approaches for state estima-

tion. In these methods, the state distribution is characterized by a

large collection of samples rather than a parametric family.

In combination, these factors necessitate transmission of large,

sample-based representations of the state distribution between sen-

sors over time, which can be quite costly. Quantization and com-

pression of the model can mitigate this cost and prolong the opera-

tional lifetime of the sensor network. However, for lossy compres-

sion, the savings comes at the expense of inference quality due to

the transmission of an approximate model.
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As noted in [1], parametric (e.g., Gaussian) approximations

can be communicated efficiently but have limited representational

power, while non-parametric (particle-based) approximations can

capture arbitrarily complex uncertainty, but at high cost in com-

munications. Ideally, one would like to be able to smoothly trade

off the representational power of the model with the cost of trans-

mission, in a way that minimizes the degradation of inference.

One such flexible solution can be found by interpreting the

problem as one of lossy encoding of a non-parametric density es-

timate. In this case, an appropriate measure of “loss” must capture

not only the immediate error between the true and approximated

distributions, but also the future effects of this error. Specifically,

the approximation of any particular density has the potential to

adversely affect each subsequent estimate of target state. This as-

pect makes the notion of measuring “loss” for densities a key, non-

trivial question.

2. PARTICLE FILTERING

Let us begin by considering a nearly canonical problem in sensor

networks: that of tracking a moving object as it passes through a

field of myopic sensors. We assume a simple Markov process for

the underlying dynamics of the object of interest, specified by the

transition probability p(xt|xt−1), and at each time step t ≥ 1 ob-

tain an observation yt about the state xt, conditionally independent

of the other variables given xt. Defining the observation history at

time t by the vector Yt = [y1, . . . , yt], the (centralized) filtering

problem is to estimate the posterior distribution p(xt|Yt) for each

t; this can be performed via the recursive relationships

p(xt|Yt−1) =

Z

p(xt|xt−1)p(xt−1|Yt−1) dxt−1 (1)

p(xt|Yt) ∝ p(yt|xt)p(xt|Yt−1) (2)

For arbitrary forward dynamics p(xt|xt−1) and likelihood func-

tions p(yt|xt), the operations (1)-(2) do not possess closed-form

solutions. However, particle filtering [3] can be applied as a Monte

Carlo approximation to each step. In particle filtering, each distri-

bution is represented by a set of N weighted samples {wi, µi},

p̂(xt|Yt) =
X

i

wi δ(xt − µi) (3)

and the two operations of Eq. (1)-(2) are performed by sequen-

tial resampling and weighting; in the simplest version of parti-

cle filtering, p̂(xt|Yt−1) is constructed by drawing samples from

p̂(xt−1|Yt−1) and then (stochastically) propagating each sample

through the forward dynamics p(xt|xt−1); p̂(xt|Yt) is then con-

structed by weighting each sample by p(yt|xt) and normalizing
P

wi = 1.
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In order to make the notion of approximating the posterior dis-

tribution p̂(xt|Yt) well-defined, we will additionally assume that

it is smooth; in particular, we use a “regularized” particle filter,

in which each distribution is represented by a kernel density esti-

mate [4]:

p̂(xt|Yt) =
X

i

wi KΣi
(xt − µi) (4)

where the kernel function K is a Gaussian distribution with covari-

ance matrix specified by Σi, making p̂(xt|Yt) a Gaussian sum.

3. TRACKING UNDER COMMUNICATIONS

CONSTRAINTS

When sensors are myopic (i.e., only observe objects which are

nearby to their own location) and constrained by a limited power

budget, it is typical to perform the operations of particle filtering

at some sensor which is nearby to the object itself, reducing the

distance over which sensor observations must be communicated.

The sensor in charge of data fusion has been called the “leader”

node [5]. At each time t, the leader node, along with a few other

sensors (perhaps zero), each collect observations (for example,

range measurements) and transmit them to the leader, who uses

them to update the posterior distribution according to (2).

Because the object is moving, however, the most appropriate

leader node is also a function of time. Therefore, at each time t,

the leader also uses its estimate of the posterior distribution to se-

lect a new leader node at time t+1. The old leader may, of course,

select itself as the new leader; but if not, it must also communicate

the current model of the posterior distribution to the new leader

[as depicted in Fig. 1(a)]. If the distribution is estimated using a

nonparametric representation, the naive cost of this communica-

tion can be hundreds or even thousands of times larger than any

single measurement communication.

There are any number of possible protocols for selecting when,

and to which sensor, one should transfer control; for one example,

see [1]. Another, related issue is the decision of which sensors

should collect measurements at each time step. However, we shall

treat both of these questions as fixed aspects of the leadership pro-

tocol, and concentrate on minimizing the communications cost in-

herent in any given strategy. The fact that the leadership sequence

is fixed also means we may ignore the distance-dependent aspect

of communications cost, and focus simply on the representation

size, for example measured in bits.

4. SEQUENTIAL DENSITY APPROXIMATIONS

The problem of sequentially approximating and updating density

estimates is in several ways fundamentally different from typical

lossy data compression tasks. In essence, these differences are due

to the fact that the approximated data is being used at the next time

step to construct a new density estimate, and that we are interested

in minimizing not only the error in the transmitted density, but also

its effect on subsequent estimates. In other words, we are inter-

ested not only in the error introduced in the distribution to reduce

communications cost (which is directly calculable by the sender),

but also (and perhaps more importantly) the error that this differ-

ence induces in the updated posterior estimates at each subsequent

time step. In many ways, this task is similar to the objective–

optimized quantization approach of [6]. To control the resulting

inference error, we must understand a particular error’s effect in

the future.
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Fig. 1. (a) Repeated transfer of “leadership”, along with the model

of state uncertainty, while tracking in an ad-hoc sensor network.

(b) Markov chain representation of the sequential state estimation

problem; without loss of generality we may assume that the model

is transmitted at each time step.

p0(x0) → p0(x1|Y1) → p0(x2|Y2) → . . .

≈

p1(x1|Y1) → p1(x2|Y2) → . . .

≈

p2(x2|Y2) → . . .

Fig. 2. Repeated, sequential approximation in a Markov chain.

The true distribution p0 is approximated at time 1; this approxima-

tion is then updated and re-approximated at time 2, and so forth.

Of course, the quality of our ideal, particle-based representa-

tion is a function of N , the number of samples used in (3); how-

ever, as we are further approximating the estimated distribution

for each transmission, the communications cost is decoupled from

N , and N is constrained only by computational resources. The

(finite) value of N is another source of error at each resampling

step of particle filtering. However, for the purposes of this paper,

we will assume that N is sufficiently large that the particle-based

(internal) representations accurately represent each of the required

distributions. In practice, one may wish to estimate the level of

error in each resampling step (by, for example, performing the op-

eration twice and comparing the results) to establish a baseline be-

low which the error caused by approximations for communication

purposes will go unnoticed.

Let pi(xt|Yt) denote the density of the state xt at time t, given

observations Yt = [y1, . . . , yt] up to time t, and subject to ap-

proximations at times 1 . . . i. So, for example, p0(x0) is the orig-

inal (exact) prior distribution, p0(x1|Y1) is the true posterior at

time t = 1, p0(x1|Y1) ∝ p(y1|x)
R

p(x1|x0)p
0(x0) dx0, and

p1(x1|Y1) ≈ p0(x1|Y1) is the density transmitted at time t = 1 to

the leader at time t = 2. These relationships are also displayed in

Fig. 2. As a convenient shorthand, let us define pi

t ≡ pi(xt|Yt).

Our goal is to show that for certain error measures, we may use

the quality of the approximations between pt−1

t
and pt

t to obtain

some information about the quality between the true distribution

p0

t and pt

t. The next few sections are concerned with analyzing the

(cumulative) effects of a sequence of approximations, as measured

by three prospective methods.

This problem is difficult simply because each approximation

affects the true error (distance from p0) inherent in a later approx-

imation at time t, which of course has access only to pt−1. Con-

sider, for example, a simple example of a one-dimensional Gaus-

sian distribution with mean zero and standard deviation σ. Now

suppose that one approximates the variance at each time i by σi,
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such that σi/σi−1 ≈ .96. If we measure error in terms of the

Kullback-Leibler (KL) divergence, we find that the error between

pi−1 and pi is always less than 10−3. However, the error at time

t = 10 is not 10−2, but more than 10−1, and this gap increases

with t.

4.1. Error measures

In this work, we explore the relative merits of three possible mea-

sures of approximation error; in particular, the maximum log-error

(originally applied to this problem in [7]),

ML[p, q] = max
x

|log p(x) − log q(x)| , (5)

the Kullback-Leibler (KL) divergence,

KL[p, q] =

Z

p(x) log
p(x)

q(x)
dx, (6)

and the integrated absolute, or L1, error

L1[p, q] =

Z

|p(x) − q(x)| dx. (7)

These three measures are listed in order of decreasing strictness,
in the sense that each bounds the next—for any distributions p, q,

we have

(L1[p, q])2 ≤ 2 KL[p, q] ≤ 2ML[p, q], (8)

but no converse inequalities hold for arbitrary p, q. As one conse-

quence, we shall see that ML has the best theoretical properties,

but may be an overly strict assessment of error; using a more re-

laxed criteria such as KL or L1 can improve performance, but has

weaker theoretical guarantees.

4.2. Maximum Log-Error

It turns out to be straightforward to analyze the resulting error of

a sequence of approximations under the maximum log-error (ML)

measure applied in [7]. In particular, it is closely related to a loga-

rithmic “dynamic range”

DR[p, q] = max
x

min
α

| log p(x) − log q(x) + α|

in that for any distributions p, q

DR[p, q] ≤ ML[p, q] ≤ 2 DR[p, q]. (9)

The measure DR, in turn, has two properties which make analysis

straightforward—it satisfies the triangle inequality

DR[p0

t , p
2

t ] ≤ DR[p0

t , p
1

t ] + DR[p1

t , p
2

t ] (10)

and also bounds the error after incorporating (arbitrary) new infor-

mation between time i + 1 and some later time t:

DR[pi

t, p
i+1

t ] ≤ DR[pi

i+1, p
i+1

i+1
] (11)

for any t > i. Applying these three identities recursively to the

total error, we see that

ML[p0

t , p
t

t] ≤ 2

t−1
X

i=0

ML[pi

i+1, p
i+1

i+1
] (12)

each term of which is computable at time i + 1 when the approx-
imation is made.

0 0.2 0.4 0.6 0.8 1

p0(x|y1)
p1(x|y1)

Fig. 3. Given two distributions p0(x1|y1) and p1(x1|y1) with

relatively small L1 error, a new observation y2 can either in-

crease (if y2 = 1) or decrease (if y2 = 0) the L1 error between

p0(x1|y1, y2) and p1(x1|y1, y2), though one can bound the error

in expectation over y2; see text for details.

The bound (12) is a strong theoretical statement about the to-

tal error which could arise from any given approximation. In this

sense, the maximum log-error is a reasonable quantity to trade

off with communications costs. However, it also has a number of

drawbacks. First, it is an extremely strict criterion—for example,

it heavily penalizes errors in regions with low probability. Since,

by definition, the true state is unlikely to lie in such a region, in-

tuitively one would prefer an approximation which better in high-

probability regions, at some cost to low-probability ones.

This non-intuitive emphasis is, in some sense, a result of the

“max” operation applied to a choice of point-wise error (log p/q);

as we shall see, this is necessary to bound the effect of errors given

an arbitrary set of measurements Yt. However, more common

measures of difference between two distributions measure the total

(L1) or weighted average (KL); we examine these measures next.

4.3. L1 Error

One common measure of the difference between two densities is

the integrated absolute (or L1) error [8], given by (7). It is easy to

show that the triangle inequality still holds:

L1[p
0

t , p
2

t ] ≤ L1[p
0

t , p
1

t ] + L1[p
1

t , p
2

t ].

The incorporation of new information, however, has a more com-

plex effect. It turns out that it is impossible to say anything in

general about the L1 error with respect to a particular sequence of

measurements [y1, . . . , yt]. To see this, consider the distributions

p0(x1|Y1) and p1(x1|Y1) depicted in Fig. 3 (which have an L1

difference of .2) and suppose

x2 = x1 and y2 =

(

1 x2 > .5

0 x2 ≤ .5

Now, if we observe y2 = 0 the resulting posterior distributions

p0(x2|Y2) and p1(x2|Y2) have essentially zero L1 error; but, if

we observe y2 = 1 the two distributions are radically different

and have an L1 difference of nearly 2 (the maximum possible).

Thus the initial L1 error tells us little about the resulting error for

an arbitrary observation y2. However, given that p0 is the true

posterior, our probability of observing the catastrophic y2 = 1 is

quite low. We make this notion precise by considering the L1 error

in expectation over the observations Yt. This allows the possibil-

ity of low-probability, catastrophic errors (such as described) and

concentrates on estimating the “average” resulting level of error.

One may relate the expected error which the approximation

made at time i + 1 incurs at a later time t to the error at time i + 1
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by the bound

E[L1[p
i

t, p
i+1

t ]] ≤ 2E[K(i, t) L1[p
i

i+1, p
i+1

i+1
]]

where the expectation E[·] is over the observations Yt, and

K(i, t) = max
Yt|Yi+1

p
0(Yt|Yi+1)/p

i(Yt|Yi+1).

Although the quantity K(i, t) is difficult to calculate, it can be

bounded using the ML error measure:

E[L1[p
i

t, p
i+1

t ]] ≤ 2E[exp(ML[p0

i , p
i

i]) L1[p
i

i+1, p
i+1

i+1
]]

This bound has some interesting interpretations. First, it suggests

that there is in some sense a “dual” cost for each approximation—

the current effect of an error, as measured by L1, and its possible

future effects, measured by ML. We know that the ML-based error

bound is conservative; thus we might consider optimizing for some

finite window of time, after which we hope that dynamics and re-

dundant information have negated any further influence of errors.

The limits of such a method are intuitive—for a window of length

1, ML = 0 and the error is at most twice the L1 cost between p0

and p1; for large window lengths, the exponential dependence im-

plies that we should be primarily concerned with minimizing the

ML error.

In practice, we find that often the simple assumption of taking

K(i, t) = 1, equivalent to optimizing over a length-one window,

works quite well. As an approximation, it is perhaps justified given

the derived bounds and the relatively complex ways the various

errors must compound in order to become super-additive.

4.4. Kullback-Leibler Divergence

Kullback-Leibler (KL) divergence is another common measure of

the difference between two distributions. However, it lacks a ver-

sion of the triangle inequality similar to (10). One may, however,

claim the following:

KL[p0

t , p
2

t ] ≤ KL[p0

t , p
1

t ] + C(1, t) KL[p1

t , p
2

t ]

where the amplification constant

C(i, t) = max
xt

p
0(xt|Yt)/p

i(xt|Yt)

captures the fact that subsequent errors may compound upon each

other in a super-additive way, as was the case for the Gaussian

example given in Sec. 4.

As with the L1 measure, one cannot bound the error at a fu-

ture time t for arbitrary observation sequences Yt. However, one

can again bound the future KL-divergence in expectation over the

observations. Specifically, it is well known [9] that

E[KL[p0

t , p
1

t ]] ≤ E[KL[p0

1, p
1

1]]

where the expectation E[·] is again taken over the Yt.
By using these two properties, one may again demonstrate a

bound similar to that shown for L1:

E[KL[pi

t, p
i+1

t ]] ≤ E[exp(ML[p0

i , p
i

i]) KL[pi

i+1, p
i+1

i+1
]]

which enables one to apply the same kind of “dual-cost” interpre-

tations, as well as simple approximations such as that given by

taking C(i, t) = 1.

5. ESTIMATING THE ERROR MEASURES

We next consider how one may apply these bounds to control a

system’s inference error. The first step is to be able to either eval-

uate or estimate the error measures themselves. It will turn out

(see Sec. 6) that we will be primarily concerned with estimating

the error between a kernel density estimate p as in (4) and a single

Gaussian component q; to do so we use simple plug-in estimates:

ML[p, q] ≈ max
µi

|log p(µi) − log q(µi)|

KL[p, q] ≈
X

wi log p(µi) − log q(µi)

L1[p, q] ≈
X

wi |1 − q(µi)/p(µi)|

In controlling average-case behavior, one subtlety which arises

is that the bounds are in terms of the expected error at each time

step, while we have access to only one realization (the actual dis-

tribution to be transmitted). If we are only interested in minimiz-

ing error subject to some per-message communications constraint,

this makes little difference—we simply minimize each distribu-

tion’s error, and attain some (unknown) level of expected error.

However, if we instead have some total energy budget, so that it

is useful to send less information for “simpler” distributions, this

opens the door to more complicated strategies in which each sen-

sor attempts only to make the average error introduced meet some

threshold. For simplicity, we will concentrate on minimizing error

for some fixed, per-transmission cost; extending to more holistic

strategies comprises an interesting open area of research.

6. OPTIMIZATION

Given a measure of error (or loss) for an approximate representa-

tion, we now consider how to minimize this loss subject to a given

communications budget. It is convenient to select a method which

can be adapted to any of the three loss measures, such as the KD-

tree based approximation described in [7].

A “k-dimensional” tree, or KD-tree, is a data structure for

rapidly performing locality-based computations on large sets of

continuous-valued points. Specifically, a KD-tree is a binary tree

structure whose leaf elements each store one point µi, or more gen-

erally (in our application) the point µi, weight wi, and associated

covariance Σi. Internal (non-leaf) nodes store sufficient statistics

for the data represented by their children, which enable fast exact

or approximate computations.

We apply KD-trees to define a hierarchy of Gaussian mixture

approximations to a sample-based density estimate p(x). The suf-

ficient statistics stored at each node s are the mean and covariance

of the Gaussian sum defined by the node’s children, and a weight

wi representing the sum of the weights of its associated leaf nodes;

all three quantities can be easily computed recursively within the

tree. Let qs(x) denote a Gaussian component with these parame-

ters. Any “cut-set” S (set containing exactly one ancestor of each

leaf node) can then be used to define a Gaussian sum approxima-

tion qS =
P

s∈S
qs to the original kernel density estimate p.

To trade off communications and error, we first define a com-

munications cost C(·) for the mixture component of each node,

such that the cost of any node is less than the sum of the costs as-

sociated with its two children. One example cost structure is given

in [7], corresponding to the total cost in bits required to describe

the mixture component using an encoder defined on the same KD-

tree. A simpler example is given by assigning unit cost to each
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mixture component, which corresponds to the size of a naive rep-

resentation of each component.

We also create an upper bound B(S) on the error associated

with any cut-set S which decomposes into a simple operation (sum

or max) on the error B(s) estimated for each node s ∈ S indi-

vidually, between the Gaussian approximation stored at that node

qs and the kernel density estimate defined by its descendant leaf

nodes (denoted ps). Such a bound is easy to obtain for all three

measures considered here:

ML[p, qS ] ≤ BML(S) = max
s∈S

ML[ps, qs]

KL[p, qS ] ≤ BKL(S) =
X

s∈S

ws KL[ps, qs]

L1[p, qS ] ≤ BL1
(S) =

X

s∈S

ws L1[ps, qs]

(13)

We then greedily optimize over the KD-tree structure to minimize

the bound B(S) subject to a threshold on C(S); see Alg. 1.

Initialize S∗ = S = {1}.

Compute node 1’s cost C(1), and error B(1) via (13).

While
P

s∈S
C(s) ≤ Cmax,

• Find s̄ = arg maxs B(s).
• Exclude s̄ and include its children: S = S \ s̄ ∪ s̄L ∪ s̄R

• For left & right child nodes s̄L, s̄R, compute errors B(s̄L),

B(s̄R) and costs C(s̄L), C(s̄R).
• If B(S) < B(S∗), set S∗ = S.

Return qS∗ , the density associated with the set S∗.

Algorithm 1: Greedy algorithm for approximating a kernel den-

sity estimate subject to maximum cost Cmax by optimizing over

Gaussian mixtures defined by a KD-tree.

7. SIMULATIONS

We next examine the implications of our analysis using simula-

tions of target tracking in a distributed sensor network. We assume

a simple two-dimensional state for the target, with dynamics

xt+1 = xt + r0 ([cos θt; sin θt] + ut)

where θt ∼ U [−π

4
, π

4
] and ut ∼ U [0, .1]. An example target

trajectory is shown in Fig. 4. Also shown are a number of sen-

sors scattered in the same region; we indicate the leader node at

each time step by drawing a dashed line from the true target po-

sition at each time t (circles) to the associated leader node at that

time (diamonds). At each time t, only the leader node obtains an

observation of the target position, given by

yt = 1/(‖st − xt‖ + .05) + vt

where st is the position of the leader node, xt that of the target, and

vt ∼ N (0, .05), giving a (saturating) measurement of the inverse

range corrupted by Gaussian noise. We use N = 500 samples

for the particle filter representation at each sensor, and force the

leader node to change at each time step and the posterior distribu-

tion to be approximated using fewer than M mixture components.

Fig. 5 shows an example of the (correct) particle-based posterior

estimates at times t = {2, 5, 8}.

Using this framework, we can assess the performance of our

bounds on estimation quality. We consider the average-case be-

havior of each measure, as assumed by the KL and L1 bounds;

Fig. 4. A field of sensors (diamonds), along with the location of

the tracked object at each time step (solid, circles), and the leader

node measuring range at each time (dashed lines).

Fig. 5. Three example particle-based posterior distributions for the

same realization as Fig. 4, at time t = 2, 5, 8.

for ML, by linearity of expectation the average ML errors at each

time step also give a bound on the average total ML error.

Optimizing over the KD-tree structure to minimize each type

of error under the constraint that the total number of components

is fewer than M = 5, each bound obtained is shown in Fig. 6(a).

Note that these bounds are with respect to their own error measure

(so that the ML curve bounds the average ML error at each time

step, while the KL curve bounds the average KL error). To inter-

pret the curves as bounds on some single, common error measure

(such as L1) one should apply the inequalities (8). While the short-

term error guarantees for KL and L1 are better than that for ML,

it rapidly becomes difficult to say anything of value, while the ML
bound continues to grow linearly.

If we increase the quality of each approximation by increas-

ing M to 10 components, we see that all three bounds improve

[Fig. 6(b)]. For the ML error measure, this takes the form of a

decreased (linear) rate of growth; however, it markedly improves

the utility of the KL and L1 bounds. While these are still essen-

tially exponential, the improvement in quality significantly slows

the rate of growth, making the bounds potentially much more use-

ful than the ML-based bound over the time period under consider-

ation. Interestingly, the KL-based optimization’s bound appears to

grow more slowly than that of the L1-based optimization. This is

perhaps because it is the (only implicitly controlled) ML error of

each approximation which dominates the exponential rate; the KL
measure is “closer” to ML, and thus minimizing KL does a better

job of implicitly lowering the ML error as well. One may be able

to improve the rate still further by explicitly trading off ML versus

KL or L1 error as a dual cost criterion over some fixed window

length, or with some discount factor for the future.

These bounds are still typically quite large compared to the

actual mean performance. Again approximating with M = 5
components, we can look at the increase in actual KL-divergence

resulting at each time step. To do so, we ran 500 Monte Carlo

trials of our system, estimating the posterior at each time step

using two high-quality (N = 2000) particle filters along with a

communications-constrained particle filter for each approximation

method. We then compared the average KL-divergence between

each posterior and the estimate of the first reference filter, less
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Fig. 6. (a) Error bounds at each time step resulting from a KD-tree based optimization for ML, KL, and L1 error subject to a maximum of 5

final mixture components. (b) Error bounds for M = 10 mixture components. Notice the change in scale from (a)—improving the quality

of each approximation increases the time scale on which the KL and L1-based bounds are useful. (c) Increase in actual error (measured

by the KL-divergence) due to density approximation for M = 5.

the KL-divergence between the two references (which can be at-

tributed to the stochastic sampling error for N = 2000 samples).

The average error increase, as a function of time (and thus number

of approximations) is shown in Fig. 6(c). All three error measures

perform considerably better than the bounds; the ML-optimized

method seems to perform slightly less well than the KL- or L1-

optimized distributions. This again indicates the fact that, while

optimizing for worst-case performance leads to better guarantees

in the future, optimizing for shorter term performance in expecta-

tion can often do better on average.

8. CONCLUSION

Particle filtering is a common and effective tool for tracking prob-

lems involving non-Gaussian observation likelihoods and complex

uncertainty. However, the number of particles required to be effec-

tive is often quite high, while local implementations in sensor net-

works must operate under communications constraints which limit

the number of transmitted particles.

To overcome this, one can perform lossy encoding of the dis-

tribution represented by the particles, regenerating a nearly equiv-

alent set of particles at the receiver. This leads to two primary

questions—how to measure the loss, or error, in the communi-

cated distribution, and how to effectively trade off this loss for

compactness in the representation. Focusing on the former ques-

tion, we argued that a good measure of error controls not only

the immediate difference between the distributions, but also (and

just as importantly) the errors which could arise after both incor-

porating subsequent information and performing later approxima-

tions. Examining three possible measures of error—the maximum

log-error (ML), the Kullback-Leibler divergence (KL), and the L1

error—we showed that each may be interpreted as leading to an

upper bound on worst- or average-case error arising in the future.

We compared the behavior of each measure in a simulated sensor

network under communications constraints.

Empirically, we found that the measure with the best theo-

retical behavior (ML) is often too strict, overestimating the error

likely to be observed. Less strict, average-case measures such as

KL and L1 are better short-term predictors of performance, but

come with only loose guarantees far in the future. The better em-

pirical performance of KL and L1 can perhaps be explained in

terms of some discount factor; theoretical understanding of this

phenomenon is a subject of ongoing research. Although all three

bounds appear loose empirically, they provide some justification

for sequential density approximation under each metric.

This is only a first step towards understanding the role of ap-

proximations in communication–constrained inference, highlight-

ing the importance of considering the appropriate error measure

and providing some guidance in the form of upper bounds. Im-

proving these bounds, or replacing them with accurate estimates

of later error, is an important direction for future research.

9. REFERENCES

[1] F. Zhao, J. Shin, and J. Reich, “Information-driven dynamic

sensor collaboration for tracking applications,” IEEE Signal

Proc. Mag., vol. 19, no. 2, pp. 61–72, Mar. 2002.

[2] J. J. Liu, J. Liu, M. Chu, J. E. Reich, and F. Zhao, “Distributed

state representation for tracking problems in sensor networks,”

in IPSN, 2004, pp. 234–242.

[3] A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequen-

tial Monte Carlo Methods in Practice, Springer-Verlag, New

York, 2001.

[4] B.W. Silverman, Density Estimation for Statistics and Data

Analysis, Chapman and Hall, New York, 1986.

[5] F. Zhao, J. Liu, J. Liu, L. Guibas, and J. Reich, “Collaborative

signal and information processing: An information-directed

approach,” Proc. IEEE, vol. 91, no. 8, pp. 1199–1209, Aug.

2003.

[6] L. Vasudevan, A. Ortega, and U. Mitra, “Application–

optimized quantizers for time delay estimation in sensor net-

works,” in IEEE Work. Stat. Sig. Proc., 2003.

[7] A. T. Ihler, J. W. Fisher III, and A. S. Willsky,

“Communication-constrained inference,” Tech. Rep. 2601,

MIT, Laboratory for Information and Decision Systems, 2004.

[8] Luc Devroye, A Course in Density Estimation, vol. 14 of

Progress in Probability and Statistics, Birkhauser, Boston,

1987.

[9] T. Cover and J. Thomas, Elements of Information Theory,

John Wiley & Sons, New York, 1991.




