
Adaptive Bayesian Inference

Umut A. Acar ∗

Toyota Tech. Inst.
Chicago, IL

umut@tti-c.org

Alexander T. Ihler
U.C. Irvine
Irvine, CA

ihler@ics.uci.edu

Ramgopal R. Mettu†

Univ. of Massachusetts
Amherst, MA

mettu@ecs.umass.edu

Özgür Sümer
Uni. of Chicago

Chicago, IL
osumer@cs.uchicago.edu

Abstract

Motivated by stochastic systems in which observed evidenceand conditional de-
pendencies between states of the network change over time, and certain quantities
of interest (marginal distributions, likelihood estimates etc.) must be updated, we
study the problem ofadaptive inferencein tree-structured Bayesian networks. We
describe an algorithm for adaptive inference that handles abroad range of changes
to the network and is able to maintain marginal distributions, MAP estimates, and
data likelihoods in all expected logarithmic time. We give an implementation of
our algorithm and provide experiments that show that the algorithm can yield up
to two orders of magnitude speedups on answering queries andresponding to dy-
namic changes over the sum-product algorithm.

1 Introduction

Graphical models [14, 8] are a powerful tool for probabilistic reasoning over sets of random vari-
ables. Problems of inference, including marginalization and MAP estimation, form the basis of
statistical approaches to machine learning. In many applications, we need to perform inference un-
der dynamically changing conditions, such as the acquisition of new evidence or an alteration of
the conditional relationships which make up the model. Suchchanges arise naturally in the experi-
mental setting, where the model quantities are empiricallyestimated and may change as more data
are collected, or in which the goal is to assess the effects ofa large number of possible interven-
tions. Motivated by such applications, Delcheret al. [6] identify dynamic Bayesian inferenceas the
problem of performing Bayesian inference on a dynamically changing graphical model. Dynamic
changes to the graphical model may include changes to the observed evidence, to the structure of the
graph itself (such as edge or node insertions/deletions), and changes to the conditional relationships
among variables.

To see why adapting to dynamic changes is difficult, considerthe simple problem of Bayesian infer-
ence in a Markov chain withn variables. Suppose that all marginal distributions have been computed
in O(n) time using the sum-product algorithm, and that some conditional distribution at a nodeu
is subsequently updated. One way to update the marginals would be to recompute the messages
computed by sum-product fromu to other nodes in the network. This can takeΩ(n) time because
regardless of whereu is in the network, there always is another nodev at distanceΩ(n) from u.
A similar argument holds for general tree-structured networks. Thus, simply updating sum-product
messages can be costly in applications where marginals mustbe adaptively updated after changes to
the model (see Sec. 5 for further discussion).

In this paper, we present a technique for efficient adaptive inference on graphical models. For a tree-
structured graphical model withn nodes, our approach supports the computation of any marginal,
updates to conditional probability distributions (including observed evidence) and edge insertions

∗U. A. Acar is supported by a gift from Intel.
†R. R. Mettu is supported by a National Science Foundation CAREER Award (IIS-0643768).

1

and deletions in expectedO(log n) time. As an example of where adaptive inference can be effec-
tive, consider a computational biology application that requires computing the state of the active site
in a protein as the user modifies the protein (e.g., mutagenesis). In this application, we can represent
the protein with a graphical model and use marginal computations to determine the state of the ac-
tive site. We reflect the modifications to the protein by updating the graphical model representation
and performing marginal queries to obtain the state of the active site. We show in Sec. 5 that our
approach can achieve a speedup of one to two orders of magnitude over the sum-product algorithm
in such applications.

Our approach achieves logarithmic update and query times bymapping an arbitrary tree-structued
graphical model into a balanced representation that we calla cluster tree(Sec. 3–4). We perform
anO(n)-time preprocessing step to compute thecluster treeusing a technique known astree con-
traction [13]. We ensure that for an input network withn nodes, the cluster tree has an expected
depth ofO(log n) and expected sizeO(n). We show that the nodes in the cluster tree can be tagged
with partial computations (corresponding to marginalizations of subtrees of the input network) in
way that allows marginal computations and changes to the network to be performed inO(log n) ex-
pected time. We give simulation results (Sec. 5) that show that our algorithm can achieve a speedup
of one to two orders of magnitude over the sum-product algorithm. Although we focus primarily
on the problem of answering marginal queries, it is straightforward to generalize our algorithms to
other, similar inference goals, such as MAP estimation and evaluating the likelihood of evidence.

We note that although tree-structured graphs provide a relatively restrictive class of models, junction
trees [14] can be used to extend some of our results to more general graphs. In particular, we can
still support changes to the parameters of the distribution(evidence and conditional relationships),
although changes to the underlying graph structure become more difficult. Additionally, a number
of more sophisticated graphical models require efficient inference over trees at their core, includ-
ing learning mixtures of trees [12] and tree-reparameterized max-product [15]. Both these methods
involve repeatedly performing a message passing algorithmover a set of trees with changing param-
eters or evidence, making efficient updates and recomputations a significant issue.

Related Work. It is important to contrast our notion of adapting to dynamicupdates to the graph-
ical model (due to changes in the evidence, or alterations ofthe structure and distribution) with
the potentially more general definition of dynamic Bayes’ nets (DBNs) [14]. Specifically, a DBN
typically refers to a Bayes’ net in which the variables have an explicit notion of time, and past
observations have some influence on estimates about the present and future. Marginalizing over un-
observed variables at timet−1 typically produces increased complexity in the the model ofvariables
at timet. However, in both [6] and this work, the emphasis is on performing inference withcurrent
information only, and efficiency is obtained by leveraging the similarity between the previous and
newly updated models.

Our work builds on previous work by Delcher, Grove, Kasif andPearl [6]; they give an algorithm to
update Bayesian networks dynamically as the observed variables in the network change and com-
pute belief queries of hidden variables in logarithmic time. The key difference between their work
and ours is that their algorithm only supports updates to observed evidence, and does not support dy-
namic changes to the graph structure (i.e., insertion/deletion of edges) or to conditional probabilities.
In many applications it is important to consider the effect of changes to conditional relationships be-
tween variables; for example, to study protein structure (see Sec. 5 for further discussion). In fact,
Delcheret al. cite structural updates to the given network as an open problem. Another difference
includes the use of tree contraction: they use tree contractions to answer queries and perform up-
dates. We use tree contractions to construct a cluster tree,which we then use to perform queries and
all other updates (except for insertions/deletions). We provide an implementation and show that this
approach yields significant speedups.

Our approach to clustering factor graphs using tree contractions is based on previous results that
show that tree contractions can be updated in expected logarithmic time under certain dynamic
changes by using a general-purpose change-propagation algorithm [2]. The approach has also been
applied to a number of basic problems on trees [3] but has not been considered in the context of
statistical inference. The change-propagation approach used in this work has also been extended
to provide a general-purpose technique for updating computations under changes to their data and
applied to a number of applications (e.g. [1]).

2

2 Background

Graphical models provide a convenient formalism for describing the structure of a functiong de-
fined over a set of variablesx1, . . . , xn (most commonly a joint probability distribution over the
xi). Graphical models use this structure to organize computations and create efficient algorithms
for many inference tasks overg, such as finding a maximum a-posteriori (MAP) configuration,
marginalization, or computing data likelihood. For the purposes of this paper, we assume that
each variablexi takes on values from some finite set, denotedAi. We write the operation of
marginalizing overxi as

∑

xi
, and letXj represent an index-ordered subset of variables andf(Xj)

a function defined over those variables, so that for example if Xj = {x2, x3, x5}, then the function
f(Xj) = f(x2, x3, x5). We useX to indicate the index-ordered set of all{x1, . . . , xn}.

Factor Graphs. A factor graph [10] is one type of graphical model, similar toa Bayes’ net [14]
or Markov random field [5] used to represent the factorization structure of a functiong(x1, . . . , xn).
In particular, suppose thatg decomposes into a product of simpler functions,g(X) =

∏

j fj(Xj),
for some collection of real-valued functionsfj , calledfactors, whose arguments are (index-ordered)
setsXj ⊆ X. A factor graph consists of a graph-theoretic abstraction of g’s factorization, with
vertices of the graph representing variablesxi and factorsfj . Because of the close correspondence
between these quantities, we abuse notation slightly and use xi to indicate both the variable and its
associated vertex, andfj to indicate both the factor and its vertex.

Definition 2.1. A factor graph is a bipartite graphG = (X + F,E) whereX = {x1, x2, . . . , xn}
is a set of variables,F = {f1, f2, . . . , fm} is a set of factors andE ⊆ X × F . A factor tree is a
factor graphG whereG is a tree. Theneighbor setN (v) of a vertexv is the (index-ordered) set of
vertices adjacent to vertexv. The graphG representsthe functiong(X) =

∏

j fj(Xj) if, for each
factorfj , the arguments offj are its neighbors inG, i.e.,N (fj) = Xj .

Other types of graphical models, such as Bayes’ nets [14], can be easily converted into a factor
graph representation. When the Bayes’ net is a polytree (singly connected directed acyclic graph),
the resulting factor graph is a factor tree.

The Sum-Product Algorithm. The factorization ofg(X) and its structure as represented by the
graphG can be used to organize various computations aboutg(X) efficiently. For example, the
marginals ofg(X), defined for eachi by gi(xi) =

∑

X\{xi}
g(X) can be computed using the

sum–product algorithm.

Sum-product is best described in terms of messages sent between each pair of adjacent vertices in
the factor graph. For every pair of neighboring vertices(xi, fj) ∈ E, the vertexxi sends a message
µxi→fj

as soon as it receives the messages from all of its neighbors except forfj , and similarly
for the message fromfj to xi. The messages between these vertices take the form of a real-valued
function of the variablexi; for discrete-valuedxi this can be represented as a vector of length|Ai|.

The messageµxi→fj
sent from a variable vertexxi to a neighboring factor vertexfj , and the mes-

sageµfj→xi
from factorfj to variablexi are given by

µxi→fj
(xi) =

∏

f∈N (xi)\fj

µf→xi
(xi) µfj→xi

(xi) =
∑

Xj\xi

fj(Xj)
∏

x∈Xj\xi

µx→fj
(x)

Once all the messages (2 |E| in total) are sent, we can calculate the marginalgi(xi) by simply
multiplying all the incoming messages, i.e.,gi(xi) =

∏

f∈N (xi)
µf→xi

(xi). Sum–product can be
thought of as selecting an efficient elimination ordering ofvariables (leaf to root) and marginalizing
in that order.

Other Inferences. Although in this paper we focus on marginal computations using sum–product,
similar message passing operations can be generalized to other tasks. For example, the operations
of sum–product can be used to compute the data likelihood of any observed evidence; such com-
putations are an inherent part of learning and model comparisons (e.g., [12]). More generally, sim-
ilar algorithms can be defined to compute functions over any semi–ring possessing the distributive
property [11]. Most commonly, themax operation produces a dynamic programming algorithm
(“max–product”) to compute joint MAP configurations [15].

3

(Round 1)

����

�
�
�

�
�
�

����

��
��
��
��

����
��
��
��
��

�
�
�
�

������

f̄2

x3

f4

f3

x4

x1

x2

f5

f2

f1

f̄1

f̄4

f̄5

(Round 2)

��������

����

f̄4

x3 x4

f3

x1

x2

x̄4

x̄1
f̄1

f̄2

x̄2
f̄5

(Round 3)

��
x̄2

f3

x3

x̄1
f̄3

x̄4

(Round 4)

x3

f̄3
x̄4

Figure 1: Clustering a factor graph with rake, compress, finalize operations.

3 Constructing the Cluster Tree

In this section, we describe an algorithm for constructing abalanced representation of the input
graphical model, that we call acluster tree. Given the input graphical model, we first apply a clus-
tering algorithm that hierarchically clusters the graphical model, and then apply a labeling algorithm
that labels the clusters withcluster functionsthat can be used to compute marginal queries.

Clustering Algorithm. Given a factor graph as input, we first tag each nodev with aunarycluster
that consists ofv and each edge(u, v) with abinarycluster that consists of the edge(u, v). We then
cluster the tree hierarchically by applying therake, compress, andfinalizeoperations. When applied
to a leaf nodev with neighboru, the rake operation deletes thev and the edge(u, v), and forms
unary cluster by combining the clusters which tag eitherv or (u, v); u is tagged with the resulting
cluster. When applied to a degree-two nodev with neighborsu andw, acompressoperation deletes
v and the edges(u, v) and(v, w), inserts the edge(u,w), and forms a binary cluster by combining
the clusters which tag the deleted node and edges;(u,w) is then tagged with the resulting cluster.
A finalizeoperation is applied when the tree consists of a single node (when no edges remain); it
constructs a final cluster that consists of all the clusters with which the final node is tagged.

f̄5x̄1

f2 x2f2

x3

f3 x̄2 x3f3 x4

x4f4f4x3f4x2f3x2f̄2

x4f5f5

x1f3x1f̄1

x1f1f1

f̄3

x̄3

x̄4

f̄4 = x3x4

Figure 2: A cluster tree.

We cluster a treeT by applying rake
and compress operations in rounds. Each
round consists of the following two steps
until no more edges remain: (1) Apply the
rake operation to each leaf; (2) Apply the
compress operation to an independent set
of degree-two nodes. We choose a ran-
dom independent set: we flip a coin for
each node in each round and apply com-
press to a degree-two node only if it flips
heads and its two neighbors flips tails. This
ensures that no two adjacent nodes apply
compress simultaneously. When all edges
are deleted, we complete the clustering by
applying the finalize operation.

Fig. 1 shows a four-round clustering of a
factor graph and Fig. 2 shows the corre-
spondingcluster tree. In round 1, nodesf1, f2, f5 are raked andf4 is compressed. In round 2,
x1, x2, x4 are raked. In round 3,f3 is raked. A finalize operation is applied in round 4 to produce
the final cluster. The leaves of the cluster tree correspond to the nodes and the edges of the factor
graph. Each internal nodēv corresponds a unary or a binary cluster formed by deletingv. The
children of an internal node are the edges and the nodes deleted during the operation that forms the
cluster. For example, the cluster̄f1 is formed by the rake operation applied tof1 in round 1. The
children off̄1 are nodef1 and edge(f1, x1), which are deleted during that operation.

4

Labeling Algorithm. After building the cluster tree, we compute cluster functions along with a
notion of orientation for neighboring clusters in a second pass, which we calllabeling.1 The cluster
function at a nodēv in the tree is computed recursively using the cluster functions atv̄’s child
clusters, which we denoteSv̄ = {v̄1, . . . , v̄k}. Intuitively, each cluster function corresponds to a
partial marginalization of the factors contained in cluster v̄.

Since each cluster function is defined over a subset of the variables in the original graph, we re-
quire some additional notation to represent these sets. Specifically, for a clusterv̄, let A(v̄) be
the arguments of its cluster function, and letV(v̄) be the set of all arguments of its children,
V(v̄) =

⋃

i A(v̄i). In a slight abuse of notation, we letA(v) be the arguments of the nodev in
the original graph, so that ifv is a variable nodeA(v) = v and ifv is a factor nodeA(v) = N (v).

The cluster functionscv̄(·) and their arguments are then defined recursively, as follows. For the base
case, the leaf nodes of the cluster tree correspond to nodesv in the original graph, and we definecv

using the original variables and factors. Ifv is a factor nodefj , we takecv(A(v)) = fj(Xj), and if
v is a variable nodexi, A(v) = xi andcv = 1. For nodes of the cluster tree corresponding to edges
(u, v) of the original graph, we simply takeA(u, v) = ∅ andcu,v = 1.

The cluster function at an internal node of the cluster tree is then given by combining the cluster
functions of its children and marginalizing over as many variables as possible. Let̄v be the internal
node corresponding to the removal ofv in the original graph. If̄v is a binary cluster(u,w), that is,
atv’s removal it had two neighborsu andw, thencv̄ is given by

cv̄(A(v̄)) =
∑

V(v̄)\A(v̄)

∏

v̄i∈Sv̄

cv̄i
(A(v̄i))

where the argumentsA(v̄) = V(v̄) ∩ (A(u) ∪ A(w)). For unary cluster̄v, wherev had a single
neighboru at its removal,cv̄(·) is calculated in the same way withA(w) = ∅.

We also compute anorientationfor each cluster’s neighbors based on their proximity to thecluster
tree’s root. This is also calculated recursively using the orientations of each node’s ancestors. For
a unary cluster̄v with parentū in the cluster tree, we definein(v̄) = ū. For a binary cluster̄v with
neighborsu,w atv’s removal, definein(v̄) = w̄ andout(v̄) = ū if w̄ = in(ū); otherwisein(v̄) = ū
andout(v̄) = w̄.

We now describe the efficiency of our clustering and labelingalgorithms and show that the resulting
cluster tree is linear in the size of the input factor graph.

Theorem 1(Hierarchical Clustering). A factor tree ofn nodes with maximum degree ofk can be
clustered and labeled in expectedO(dk+2n) time whered is the domain size of each variable in the
factor tree. The resulting cluster tree has exactly2n − 1 leaves andn internal clusters (nodes) and
expectedO(log n) depth where the expectation is taken over internal randomization (over the coin
flips). Furthermore, the cluster tree has the following properties: (1) each cluster has at mostk + 1
children, and (2) if̄v = (u,w) is a binary cluster, then̄u andw̄ are ancestors of̄v, and one of them
is the parent of̄v.

Proof. Consider first the construction of the cluster tree. The timeand the depth bound follow from
previous work [2]. The bound on the number of nodes holds because the leaves of the cluster tree
correspond to then − 1 edges andn nodes of the factor graph. To see that each cluster has at
mostk + 1 children, note that the a rake or compress operation deletesone node and the at mostk
edges incident on that node. Every edge appearing in any level of the tree contraction algorithm is
represented as a binary clusterv̄ = (u,w) in the cluster tree. Whenever an edge is removed, one of
the nodes incident to that edge, sayu is also removed, makinḡu the parent of̄v. The fact thatw̄ is
also an ancestor of̄v follows from an induction argument on the levels.

Consider the labeling step. By inspection of the labeling algorithm, the computation of the ar-
gumentsA(·) andV(·) requiresO(k) time. To bound the time for computing a cluster function,
observe thatA(v̄) is always a singleton set if̄v is a unary cluster, andA(v̄) has at most two variables
if v̄ is a binary cluster. Therefore,|V(v̄)| ≤ k + 2. The number of operations required to compute

1Although presented here as a separate labeling operation, the cluster functions can alternatively be com-
puted at the time of the rake or compress operation, as they depend only on the children of̄v, and the orientations
can be computed during the query operation, since they depend only on the ancestors of̄v.

5

the cluster function at̄v is bounded byO(|Sv̄| d
|V(v̄)|), whereSv̄ are the children of̄v. Since each

cluster can appear only once as a child,
∑

|Sv̄| is O(n) and thus the labeling step takesO(dk+2n)
time. Although the running time may appear large, note that the representation of the factor graph
takesO(dkn) space if functions associated with factors are given explicitly.

4 Queries and Dynamic Changes

We give algorithms for computing marginal queries on the cluster trees and restructuring the cluster
tree with respect to changes in the underlying graphical model. For all of these operations, our
algorithms require expected logarithmic time in the size ofthe graphical model.

Queries. We answer marginal queries at a vertexv of the graphical node by using the cluster tree.
At a high level, the idea is to find the leaf of the cluster tree corresponding tov and compute the
messages along the path from the root of the cluster tree tov. Using the orientations computed
during the tagging pass, for each clusterv̄ we define the following messages:

mū→v̄ =







∑

V(ū)\A(v̄)

(

min(ū)→ū

∏

ūi∈Sū\{v̄} cūi
(A(ūi))

)

, if ū = in(v̄)

∑

V(ū)\A(v̄)

(

mout(ū)→ū

∏

ūi∈Sū\{v̄} cūi
(A(ūi))

)

, if ū = out(v̄),

whereSū is the set of the children of̄u. Note that for unary clusters,out(·) is undefined; we define
the message in this case to be1.
Theorem 2 (Query). Given a factor tree withn nodes, maximum degreek, domain sized, and its
cluster tree, the marginal at anyxi can be computed with the following formula

gi(xi) =
∑

V(x̄i)\{xi}

mout(xi)→xi
min(xi)→xi

∏

v̄i∈Sx̄i

cv̄i
(A(v̄i)),

whereSx̄i
is the set of children of̄xi, in O(kdk+2 log n) time.

Messages are computed only at the ancestors of the query nodexi and downward along the path to
xi; there are at mostO(log n) nodes in this path by Theorem 1. Computing each message requires
at mostO(kdk+2) time, and any marginal query takesO(kdk+2 log n) time.

Dynamic Updates. Given a factor graph and its cluster tree, we can change the function of a factor
and update the cluster tree by starting at the leaf of the cluster tree that corresponds to the factor and
relabeling all the clusters on the path to the root. Updatingthese labels suffices, because the label of
a cluster is a function of its children only. Since relabeling a cluster takesO(kdk+2) time and the
cluster tree has expectedO(log n) depth, any update requiresO(kdk+2 log n) time.

To allow changes to the factor graph itself by insertion/deletion of edges, we maintain a forest of
factor trees and the corresponding cluster trees (obtainedby clustering the trees one by one). We
also maintain the sequence of operations used to construct each cluster tree, i.e., a data structure
which represents the state of the clustering at each round. Note that this structure is also sizeO(n),
since at each round a constant fraction of nodes are removed (raked or compressed) in expectation.

Suppose now that the user inserts an edge that connects two trees, or deletes an edge connecting two
subtrees. It turns out that both operations have only a limited effect on the sequence of clustering
operations performed during construction, affecting onlya constant number of nodes at each round
of the process. Using a general-purposechange propagationtechnique (detailed in previous work [2,
1]) the necessary alterations can be made to the cluster treein expectedO(log n) time. Change
propagation gives us a new cluster tree that corresponds to the cluster tree that we would have
obtained by re-clustering from scratch, conditioned on thesame internal randomization process.

In addition to changing the structure of the cluster tree viachange propagation, we must also change
the labeling information (cluster functions and orientation) of the affected nodes, which can be done
using the same process described in Sec. 3. It is a property ofthe tree contraction process that all such
affected clusters form a subtree of the cluster tree that includes the root. Since change propagation
affects an expectedO(log n) clusters, and since each cluster can be labeled inO(kdk+2) time, the
new labels can be computed inO(kdk+2 log n) time.

For dynamic updates, we thus have the following theorem.

6

Theorem 3 (Dynamic Updates). For a factor forestF of n vertices with maximum degreek, and
domain sized, the forest of cluster trees can be updated in expectedO(kdk+2 log n) time under edge
insertions/deletions, and changes to factors.

5 Implementation and Experimental Results

We have implemented our algorithm in Matlab2 and compared its performance against the standard
two-pass sum-product algorithm (used to recompute marginals after dynamic changes). Fig. 3 shows
the results of a simulation experiment in which we considered randomly generated factor trees be-
tween 100 and 1000 nodes, with each variable having51, 52, or 53 states, so that each factor has
size between52 and56. These factor tree correspond roughly to the junction treesof models with
between 200 and 6000 nodes, where each node has up to 5 states.Our results show that the time
required to build the cluster tree is comparable to one run ofsum-product. Furthermore, the query
and update operations in the cluster tree incur relatively small constant factors in their asymptotic
running time, and are between one to two orders of magnitude faster than recomputing from scratch.

A particularly compelling application area, and one of the original motivations for developing our al-
gorithm, is in the analysis of protein structure. Graphicalmodels constructed from protein structures
have recently been used to successfully predict structuralproperties [17] as well as free energy [9].
These models are typically constructed by taking each node as an amino acid whose states represent
their most common conformations, known asrotamers[7], and basing conditional probabilities on
proximity, and a physical energy function (e.g., [16]) and/or empirical data [4].

Our algorithm is a natural choice for problems where variousaspects of protein structure are allowed
to change. One such application iscomputational mutagenesis, in which functional amino acids in
a protein structure are identified by examining systematic amino acid mutations in the protein struc-
ture (i.e., to characterize when a protein “loses” function). In this setting, performing updates to
the model (i.e., mutations) and queries (i.e., the free energy or maximum likelihood set of rotameric
states) to determine the effect of updates would be likely befar more efficient than standard methods.
Thus, our algorithm has the potential to substantially speed up computational studies that examine
each of a large number local changes to protein structure, such as in the study of protein flexibility
and dynamics. Interestingly, [6] actually give a sample application in computational biology, al-
though their model is a simple sequence-based HMM in which they consider the effect of changing
observed sequence on secondary structure only.

The simulation results given in Fig. 3 validate the use of ouralgorithm for these applications, since
protein-structure based graphical models have similar complexity to the inputs we consider: proteins
range in size from hundreds to thousands of amino acids, and each amino acid typically has relatively
few rotameric states and local interactions. As in prior work [17], our simulation considers a small
number of rotamers per amino acid, but the one to two order-of-magnitude speedups obtained by
our algorithm indicate that it maybe be possible also to handle higher-resolution models (e.g., with
more rotamer states, or degrees of freedom in the protein backbone).

6 Conclusion

We give an algorithm for adaptive inference in dynamically changing tree-structured Bayesian net-
works. Givenn nodes in the network, our algorithm can support updates to the observed evidence,
conditional probability distributions, as well as updatesto the network structure (as long as they
keep the network tree-structured) withO(n) preprocessing time andO(log n) time for queries on
any marginal distribution. Our algorithm can easily be modified to maintain MAP estimates as well
as compute data likelihoods dynamically, with the same timebounds. We implement the algorithm
and show that it can speed up Bayesian inference by orders of magnitude after small updates to
the network. Applying our algorithm on the junction tree representation of a graph yields an in-
ference algorithm that can handle updates on conditional distributions and observed evidence in
general Bayesian networks (e.g., with cycles); an interesting open question is whether updates to the
network structure (i.e., edge insertions/deletions) can also be supported.

2Available for download athttp://www.ics.uci.edu/∼ihler/code/.

7

10
2

10
3

10
−3

10
−2

10
−1

of nodes

T
im

e
(s

ec
)

Naive sum−product
Build
Query
Update
Restructure

Figure 3: Log-log plot of run time for naive sum-product, building the cluster tree, computing
queries, updating factors, and restructuring (adding and deleting edges). Although building the clus-
ter tree is slightly more expensive than sum-product, each subsequent update and query is between
10 and100 times more efficient than recomputing from scratch.

References

[1] Umut A. Acar, Guy E. Blelloch, Matthias Blume, and Kanat Tangwongsan. An experimental analysis of
self-adjusting computation. InProceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2006.

[2] Umut A. Acar, Guy E. Blelloch, Robert Harper, Jorge L. Vittes, and Maverick Woo. Dynamizing static
algorithms with applications to dynamic trees and history independence. InACM-SIAM Symposium on
Discrete Algorithms (SODA), 2004.

[3] Umut A. Acar, Guy E. Blelloch, and Jorge L. Vittes. An experimentalanalysis of change propagation in
dynamic trees. InWorkshop on Algorithm Engineering and Experimentation (ALENEX), 2005.

[4] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E.
Bourne. The protein data bank.Nucl. Acids Res., 28:235–242, 2000.

[5] P. Clifford. Markov random fields in statistics. In G. R. Grimmett and D. J. A. Welsh, editors,Disorder
in Physical Systems, pages 19–32. Oxford University Press, Oxford, 1990.

[6] A. L. Delcher, A. J. Grove, S. Kasif, and J. Pearl. Logarithmic-time updates and queries in probabilistic
networks.Journal of Artificial Intelligence Research, 4:37–59, 1995.

[7] R. L. Dunbrack Jr. Rotamer libraries in the 21st century.Curr Opin Struct Biol, 12(4):431–440, 2002.

[8] M. I. Jordan. Graphical models.Statistical Science, 19:140–155, 2004.

[9] H. Kamisetty, E. P Xing, and C. J. Langmead. Free energy estimatesof all-atom protein structures using
generalized belief propagation. InProceedings of the 11th Annual International Conference on Research
in Computational Molecular Biology, 2007. To appear.

[10] F. Kschischang, B. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algorithm.IEEE Trans-
actions on Information Theory, 47:498–519, 2001.

[11] R. McEliece and S. M. Aji. The generalized distributive law.IEEE Transactions on Information Theory,
46(2):325–343, March 2000.

[12] Marina Meil̆a and Michael I. Jordan. Learning with mixtures of trees.Journal of Machine Learning
Research, 1(1):1–48, October 2000.

[13] Gary L. Miller and John H. Reif. Parallel tree contraction and its application. InProceedings of the 26th
Annual IEEE Symposium on Foundations of Computer Science, pages 487–489, 1985.

[14] J. Pearl.Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kauf-
mann, San Francisco, 1988.

[15] M. J. Wainwright, T. Jaakkola, and A. S. Willsky. Tree consistencyand bounds on the performance of the
max-product algorithm and its generalizations.Statistics and Computing, 14:143–166, April 2004.

[16] S. J. Weiner, P.A. Kollman, D.A. Case, U.C. Singh, G. Alagona,S. Profeta Jr., and P. Weiner. A new
force field for the molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc.,
106:765–784, 1984.

[17] C. Yanover and Y. Weiss. Approximate inference and protein folding. In Proceedings of Neural Informa-
tion Processing Systems Conference, pages 84–86, 2002.

8

