Adaptive Bayesian Inference

Umut A. Acar* Alexander T. Ihler Ramgopal R. Mettuf Ozgur Siimer
Toyota Tech. Inst. U.C. Irvine Univ. of Massachusetts Uni. of Chicago
Chicago, IL Irvine, CA Ambherst, MA Chicago, IL

umut@tti-c.org ihler@ics.uci.edu mettu@ecs.umass.eduosumer@cs.uchicago.edu

Abstract

Motivated by stochastic systems in which observed evidanckconditional de-
pendencies between states of the network change over tidegatain quantities
of interest (marginal distributions, likelihood estimatetc.) must be updated, we
study the problem addaptive inferencen tree-structured Bayesian networks. We
describe an algorithm for adaptive inference that handl¥sad range of changes
to the network and is able to maintain marginal distribusidlAP estimates, and
data likelihoods in all expected logarithmic time. We giveimplementation of
our algorithm and provide experiments that show that therdtgn can yield up
to two orders of magnitude speedups on answering querieseapdnding to dy-
namic changes over the sum-product algorithm.

1 Introduction

Graphical models [14, 8] are a powerful tool for probahitiseasoning over sets of random vari-
ables. Problems of inference, including marginalizatiod MAP estimation, form the basis of
statistical approaches to machine learning. In many agipdies, we need to perform inference un-
der dynamically changing conditions, such as the acqoisitif new evidence or an alteration of
the conditional relationships which make up the model. Si@nges arise naturally in the experi-
mental setting, where the model quantities are empiriegiymated and may change as more data
are collected, or in which the goal is to assess the effectslafge number of possible interven-
tions. Motivated by such applications, Delcletral. [6] identify dynamic Bayesian inferenee the
problem of performing Bayesian inference on a dynamicdilgnging graphical model. Dynamic
changes to the graphical model may include changes to tleev@ubevidence, to the structure of the
graph itself (such as edge or node insertions/deletiong)changes to the conditional relationships
among variables.

To see why adapting to dynamic changes is difficult, conghikesimple problem of Bayesian infer-
ence in a Markov chain with variables. Suppose that all marginal distributions haemlm®mputed

in O(n) time using the sum-product algorithm, and that some cawitidistribution at a node

is subsequently updated. One way to update the marginalkivbeuto recompute the messages
computed by sum-product fromto other nodes in the network. This can tdké:) time because
regardless of where is in the network, there always is another nadat distance(n) from w.

A similar argument holds for general tree-structured nelta/oThus, simply updating sum-product
messages can be costly in applications where marginalshaustaptively updated after changes to
the model (see Sec. 5 for further discussion).

In this paper, we present a technique for efficient adaptiferénce on graphical models. For a tree-
structured graphical model with nodes, our approach supports the computation of any margina
updates to conditional probability distributions (indlingl observed evidence) and edge insertions

*U. A. Acar is supported by a gift from Intel.
fR. R. Mettu is supported by a National Science Foundation CAREER Ali&d)643768).

and deletions in expected(log n) time. As an example of where adaptive inference can be effec-
tive, consider a computational biology application thajuiees computing the state of the active site
in a protein as the user modifies the protein (e.g., mutag@nésthis application, we can represent
the protein with a graphical model and use marginal commutstto determine the state of the ac-
tive site. We reflect the modifications to the protein by uptpthe graphical model representation
and performing marginal queries to obtain the state of thigeasite. We show in Sec. 5 that our
approach can achieve a speedup of one to two orders of mdgratier the sum-product algorithm

in such applications.

Our approach achieves logarithmic update and query timeadpping an arbitrary tree-structued
graphical model into a balanced representation that weaddlister tree(Sec. 3—4). We perform
anO(n)-time preprocessing step to compute thester treeusing a technique known age con-
traction [13]. We ensure that for an input network withnodes, the cluster tree has an expected
depth ofO(log n) and expected siz@(n). We show that the nodes in the cluster tree can be tagged
with partial computations (corresponding to marginalmad of subtrees of the input network) in
way that allows marginal computations and changes to theamnkto be performed i®(log n) ex-
pected time. We give simulation results (Sec. 5) that shawdhbr algorithm can achieve a speedup
of one to two orders of magnitude over the sum-product atlgaori Although we focus primarily
on the problem of answering marginal queries, it is strddgiitard to generalize our algorithms to
other, similar inference goals, such as MAP estimation aatlating the likelihood of evidence.

We note that although tree-structured graphs provide &weljarestrictive class of models, junction
trees [14] can be used to extend some of our results to moeraegraphs. In particular, we can
still support changes to the parameters of the distribueidence and conditional relationships),
although changes to the underlying graph structure becoane difficult. Additionally, a number
of more sophisticated graphical models require efficiefarance over trees at their core, includ-
ing learning mixtures of trees [12] and tree-reparamegerinax-product [15]. Both these methods
involve repeatedly performing a message passing algodtiena set of trees with changing param-
eters or evidence, making efficient updates and recompuataé significant issue.

Related Work. Itis important to contrast our notion of adapting to dynaoclates to the graph-
ical model (due to changes in the evidence, or alteratiorthefstructure and distribution) with
the potentially more general definition of dynamic Bayedsn@®BNSs) [14]. Specifically, a DBN
typically refers to a Bayes’ net in which the variables hameeaplicit notion of time, and past
observations have some influence on estimates about thenpeesd future. Marginalizing over un-
observed variables at tinie- 1 typically produces increased complexity in the the modetofables
at timet. However, in both [6] and this work, the emphasis is on penfag inference wittcurrent
information only, and efficiency is obtained by leveragihg similarity between the previous and
newly updated models.

Our work builds on previous work by Delcher, Grove, Kasif &wehrl [6]; they give an algorithm to
update Bayesian networks dynamically as the observedblasién the network change and com-
pute belief queries of hidden variables in logarithmic tifike key difference between their work
and ours is that their algorithm only supports updates temesl evidence, and does not support dy-
namic changes to the graph structure (i.e., insertiontidelef edges) or to conditional probabilities.
In many applications it is important to consider the effdatitanges to conditional relationships be-
tween variables; for example, to study protein structuee Sec. 5 for further discussion). In fact,
Delcheret al. cite structural updates to the given network as an open @mobAnother difference
includes the use of tree contraction: they use tree cordrecto answer queries and perform up-
dates. We use tree contractions to construct a clustentieéeh we then use to perform queries and
all other updates (except for insertions/deletions). VWigle an implementation and show that this
approach yields significant speedups.

Our approach to clustering factor graphs using tree catidracis based on previous results that
show that tree contractions can be updated in expectedittogie time under certain dynamic
changes by using a general-purpose change-propagatioritiahy [2]. The approach has also been
applied to a number of basic problems on trees [3] but has @@ lconsidered in the context of
statistical inference. The change-propagation approael in this work has also been extended
to provide a general-purpose technique for updating coatious under changes to their data and
applied to a number of applications (e.g. [1]).

2 Background

Graphical models provide a convenient formalism for désieg the structure of a function de-
fined over a set of variables, . .., x, (most commonly a joint probability distribution over the
x;). Graphical models use this structure to organize comijpmisiand create efficient algorithms
for many inference tasks over, such as finding a maximum a-posteriori (MAP) configuration,
marginalization, or computing data likelihood. For the gnses of this paper, we assume that
each variabler; takes on values from some finite set, denoted We write the operation of
marginalizing over; as} , , and letX; represent an index-ordered subset of variablesfand)

a function defined over those variables, so that for exanipg i= {x2, z3, 25}, then the function
f(X;) = f(x2, 3, 25). We useX to indicate the index-ordered set of @i, ..., z, }.

Factor Graphs. A factor graph [10] is one type of graphical model, similaatBayes’ net [14]

or Markov random field [5] used to represent the factorizasivucture of a functiop(x1, . .., z,).

In particular, suppose thgtdecomposes into a product of simpler functions¥) = [, f;(X;),

for some collection of real-valued functioyfg, calledfactors whose arguments are (index-ordered)
setsX; C X. A factor graph consists of a graph-theoretic abstractiog'®factorization, with
vertices of the graph representing variablesnd factorsf;. Because of the close correspondence
between these quantities, we abuse notation slightly aad u® indicate both the variable and its
associated vertex, anf to indicate both the factor and its vertex.

Definition 2.1. Afactor graph is a bipartite graphG = (X + F, E) whereX = {z1,22,...,2z,}
is a set of variablesF' = {f1, fa,..., fm} IS @ set of factors an& C X x F. Afactor tree is a
factor graphG whereG is a tree. Theneighbor set\ (v) of a vertexv is the (index-ordered) set of
vertices adjacent to vertex The graphG representsthe functiong(X) = [, f;(X;) if, for each

factor f;, the arguments of; are its neighbors irG, i.e., N (f;) = X.

Other types of graphical models, such as Bayes’ nets [14],beaeasily converted into a factor
graph representation. When the Bayes' net is a polytreelystognected directed acyclic graph),
the resulting factor graph is a factor tree.

The Sum-Product Algorithm. The factorization ofy(X) and its structure as represented by the
graphG can be used to organize various computations abglit) efficiently. For example, the
marginals ofg(X), defined for each by ¢'(x;) = > x\{x;} 9(X) can be computed using the
sum—product algorithm.

Sum-product is best described in terms of messages sentdreiach pair of adjacent vertices in
the factor graph. For every pair of neighboring verti¢es f;) € E, the vertexz; sends a message
Uz, —yp; @S SOON as it receives the messages from all of its neightioepefor f;, and similarly
for the message froryi; to =;. The messages between these vertices take the form of ealeat
function of the variable;; for discrete-valued; this can be represented as a vector of lergth.

The messagg., s, sent from a variable vertex; to a neighboring factor vertek;, and the mes-
sageyuy; .., from factor f; to variablex; are given by

/‘L$'i_’fj(mi) = H /Lf—mﬂq'(xi) :ufj—’iti(xi) = Z fj(Xj) H /LI_’fj(x)

fe./\/(iltl)\f] Xi\z; zeX;\z;

Once all the messageg || in total) are sent, we can calculate the margigidlr;) by simply
multiplying all the incoming messages, i.¢!(z;) = erN(xi) tf—a, (2;). Sum—product can be
thought of as selecting an efficient elimination orderinganfiables (leaf to root) and marginalizing
in that order.

Other Inferences. Although in this paper we focus on marginal computationagisum—product,
similar message passing operations can be generalizetidotasks. For example, the operations
of sum—product can be used to compute the data likelihoodhypbhserved evidence; such com-
putations are an inherent part of learning and model corspasi(e.g., [12]). More generally, sim-
ilar algorithms can be defined to compute functions over amyisring possessing the distributive
property [11]. Most commonly, thenax operation produces a dynamic programming algorithm
(“max—product”) to compute joint MAP configurations [15].

(Round 1) (Round 3)
(Round 2) f R

e f@ DN @ ,) \(Eéund)
LR d
T » @f) j 4

Figure 1: Clustering a factor graph with rake, compresslifie@perations.

3 Constructing the Cluster Tree

In this section, we describe an algorithm for constructingatanced representation of the input
graphical model, that we call@duster tree Given the input graphical model, we first apply a clus-
tering algorithm that hierarchically clusters the graphinodel, and then apply a labeling algorithm
that labels the clusters wittluster functionghat can be used to compute marginal queries.

Clustering Algorithm. Given a factor graph as input, we first tag each nodéth a unarycluster
that consists of and each edgg:, v) with abinary cluster that consists of the ed@e v). We then
cluster the tree hierarchically by applying ttadke, compressandfinalizeoperations. When applied
to a leaf nodey with neighboru, the rake operation deletes the and the edgéu, v), and forms
unary cluster by combining the clusters which tag either (u,v); u is tagged with the resulting
cluster. When applied to a degree-two nedsith neighbors: andw, acompres®peration deletes
v and the edgeéu, v) and (v, w), inserts the edgéu, w), and forms a binary cluster by combining
the clusters which tag the deleted node and edgesy) is then tagged with the resulting cluster.
A finalize operation is applied when the tree consists of a single natier{ no edges remain); it
constructs a final cluster that consists of all the clustetis which the final node is tagged.

We cluster a treel’ by applying rake
and compress operations in rounds. Each

round consists of the following two steps

until no more edges remain: (1) Apply the / \\

rake operation to each leaf; (2) Apply the T4

compress operation to an independent set /‘\\ //\

of degree-two nodes. We choose a ran- 7

dom independent set: we flip a coin for ' f3 Ty 13 f3 f5 x4 f1= 1374
each node in each round and apply com-

press to a degree-two node only if it flips

heads and its two neighbors flips tails. Th|7 T w1 fs fo a2 1ofs v3fe i wafs
ensures that no two adjacent nodes app £ il ' ’
compress simultaneously. When all edge / oo e

are deleted, we complete the clustering by, =, f, ./
applying the finalize operation.

Fig. 1 shows a four-round clustering of a Figure 2: A cluster tree.

factor graph and Fig. 2 shows the corre-

spondingcluster tree In round 1, nodedi, fo, f5 are raked and, is compressed. In round 2,
x1, T2, x4 are raked. In round 3f3 is raked. A finalize operation is applied in round 4 to produce
the final cluster. The leaves of the cluster tree corresporde nodes and the edges of the factor
graph. Each internal node corresponds a unary or a binary cluster formed by deletind he
children of an internal node are the edges and the node®delating the operation that forms the
cluster. For example, the clustér is formed by the rake operation appliedfpin round 1. The
children of f; are nodef; and edg€ f, x1), which are deleted during that operation.

Labeling Algorithm. After building the cluster tree, we compute cluster funtsi@long with a
notion of orientation for neighboring clusters in a secoads) which we callabeling! The cluster
function at a node in the tree is computed recursively using the cluster flamgtiatz’s child
clusters, which we denot&; = {71,...,7x}. Intuitively, each cluster function corresponds to a
partial marginalization of the factors contained in cluste

Since each cluster function is defined over a subset of tHablas in the original graph, we re-
quire some additional notation to represent these setscifigpdly, for a clusterv, let A(v) be
the arguments of its cluster function, and 1&tv) be the set of all arguments of its children,
V(©) = [, A(7;). In a slight abuse of notation, we lef(v) be the arguments of the nodein
the original graph, so that if is a variable nodel(v) = v and ifv is a factor noded(v) = N (v).

The cluster functions;(-) and their arguments are then defined recursively, as follGarsthe base
case, the leaf nodes of the cluster tree correspond to nodese original graph, and we defirg
using the original variables and factorsulis a factor nodef;, we takec, (A(v)) = f;(X;), and if

v is a variable node;, A(v) = x; ande, = 1. For nodes of the cluster tree corresponding to edges
(u,v) of the original graph, we simply také(u,v) =) ande,, = 1.

The cluster function at an internal node of the cluster tsetaén given by combining the cluster
functions of its children and marginalizing over as manyalales as possible. Letbe the internal
node corresponding to the removakoin the original graph. 1 is a binary clustefu, w), that is,
atv’s removal it had two neighbors andw, thenc; is given by

w(A@) = >] enl(A@)

V(v)\A(v) U:€S5

where the argumentd(v) = V(v) N (A(u) U A(w)). For unary clusted, wherev had a single
neighboru at its removalg; (+) is calculated in the same way with(w) = 0.

We also compute aarientationfor each cluster’s neighbors based on their proximity todlieter
tree’s root. This is also calculated recursively using thiergations of each node’s ancestors. For
a unary clustep with parenta in the cluster tree, we defirie(v) = @. For a binary clusted with
neighborsu, w atv's removal, definén(v) = @ andout(v) = @ if w = in(a); otherwisein(v) = @
andout(v) = w.

We now describe the efficiency of our clustering and labedilggrithms and show that the resulting
cluster tree is linear in the size of the input factor graph.

Theorem 1 (Hierarchical Clustering). A factor tree ofn nodes with maximum degreefotan be
clustered and labeled in expectédd”+2n) time whered is the domain size of each variable in the
factor tree. The resulting cluster tree has exa@ty— 1 leaves anch internal clusters (nodes) and
expected)(log n) depth where the expectation is taken over internal randatioiz (over the coin
flips). Furthermore, the cluster tree has the following mdjes: (1) each cluster has at mdst+ 1
children, and (2) ifi = (u, w) is a binary cluster, them andw are ancestors of, and one of them
is the parent of.

Proof. Consider first the construction of the cluster tree. The time the depth bound follow from
previous work [2]. The bound on the number of nodes holds ume#he leaves of the cluster tree
correspond to thee — 1 edges anch nodes of the factor graph. To see that each cluster has at
mostk + 1 children, note that the a rake or compress operation dedetesode and the at maist
edges incident on that node. Every edge appearing in anlydétiee tree contraction algorithm is
represented as a binary cluster (u, w) in the cluster tree. Whenever an edge is removed, one of
the nodes incident to that edge, sais also removed, making the parent ofi. The fact thatw is

also an ancestor affollows from an induction argument on the levels.

Consider the labeling step. By inspection of the labelirgpathm, the computation of the ar-
gumentsA(-) andV(-) requiresO(k) time. To bound the time for computing a cluster function,
observe thatl(v) is always a singleton setifis a unary cluster, and(v) has at most two variables
if v is a binary cluster. Thereforé/(v)| < k + 2. The number of operations required to compute

Although presented here as a separate labeling operation, the clustéorisrcan alternatively be com-
puted at the time of the rake or compress operation, as they depenchahkychildren o, and the orientations
can be computed during the query operation, since they depend onlg and¢hstors af.

the cluster function at is bounded byO(|S;| d!Y(™1), wheresS, are the children ofi. Since each
cluster can appear only once as a chjid}S;| is O(n) and thus the labeling step tak@$d**2n)
time. Although the running time may appear large, note thatrépresentation of the factor graph
takesO(d*n) space if functions associated with factors are given eitiglic

4 Queries and Dynamic Changes

We give algorithms for computing marginal queries on thetautrees and restructuring the cluster
tree with respect to changes in the underlying graphicaleho#or all of these operations, our
algorithms require expected logarithmic time in the sizéhefgraphical model.

Queries. We answer marginal queries at a verteaf the graphical node by using the cluster tree.
At a high level, the idea is to find the leaf of the cluster treeresponding ta> and compute the
messages along the path from the root of the cluster tree tdsing the orientations computed
during the tagging pass, for each clusteve define the following messages:

D V(@NA®) (min(ﬂ)ﬁﬂ [la,es.\(0} Cus (A(ﬂz‘))) , if a=in(v)

DV(@nA®) (mout(ﬁ)ﬁﬂ [z, es0\(o} Cus (A(ﬁi))) , if 4= out(v),

whereS; is the set of the children af. Note that for unary clustersyut(-) is undefined; we define
the message in this case tohe

Theorem 2(Query). Given a factor tree witlh nodes, maximum degrée domain sizel, and its
cluster tree, the marginal at any; can be computed with the following formula

gl(xl) = Z Mout(z;)—z; Min(z;)—x; H Cf)i(A(Gi))»

V(zi)\{z:} U; €S8z,
whereS;, is the set of children of;, in O(kd**2logn) time.

Messages are computed only at the ancestors of the queryrnaae downward along the path to
x;; there are at mogP(log n) nodes in this path by Theorem 1. Computing each messageeesqui
at mostO(kd**2) time, and any marginal query tak€gkd**2logn) time.

Dynamic Updates. Given a factor graph and its cluster tree, we can change ttotifun of a factor
and update the cluster tree by starting at the leaf of thearitiee that corresponds to the factor and
relabeling all the clusters on the path to the root. Updatiege labels suffices, because the label of
a cluster is a function of its children only. Since relabglancluster take®(kd**2) time and the
cluster tree has expecté{log n) depth, any update requir€X kd*+2 logn) time.

To allow changes to the factor graph itself by insertiorétleh of edges, we maintain a forest of
factor trees and the corresponding cluster trees (obtdigeriustering the trees one by one). We
also maintain the sequence of operations used to constuaht@uster tree, i.e., a data structure
which represents the state of the clustering at each rouate tNat this structure is also sizén),

since at each round a constant fraction of nodes are remoafeell or compressed) in expectation.

Suppose now that the user inserts an edge that connecte®®) tr deletes an edge connecting two
subtrees. It turns out that both operations have only aduinéffect on the sequence of clustering
operations performed during construction, affecting anyonstant number of nodes at each round
of the process. Using a general-purpoBange propagatiotechnique (detailed in previous work [2,
1]) the necessary alterations can be made to the clustemtreepectedO(logn) time. Change
propagation gives us a new cluster tree that correspondseteluster tree that we would have
obtained by re-clustering from scratch, conditioned orstime internal randomization process.

In addition to changing the structure of the cluster treechiange propagation, we must also change
the labeling information (cluster functions and oriergajiof the affected nodes, which can be done
using the same process described in Sec. 3. Itis a propdtig tee contraction process that all such
affected clusters form a subtree of the cluster tree thédies the root. Since change propagation
affects an expecte@(logn) clusters, and since each cluster can be label&d(ini*+2) time, the
new labels can be computed@{kd**2logn) time.

For dynamic updates, we thus have the following theorem.

Theorem 3 (Dynamic Updates). For a factor forestF' of n vertices with maximum degrée and
domain sizel, the forest of cluster trees can be updated in expe@tgdi* 2 log n) time under edge
insertions/deletions, and changes to factors.

5 Implementation and Experimental Results

We have implemented our algorithm in Matfadnd compared its performance against the standard
two-pass sum-product algorithm (used to recompute mdegafier dynamic changes). Fig. 3 shows
the results of a simulation experiment in which we consideesndomly generated factor trees be-
tween 100 and 1000 nodes, with each variable haging?, or 53 states, so that each factor has
size betweers? and5%. These factor tree correspond roughly to the junction tefesodels with
between 200 and 6000 nodes, where each node has up to 5 Qateesults show that the time
required to build the cluster tree is comparable to one rusuai-product. Furthermore, the query
and update operations in the cluster tree incur relativelglisconstant factors in their asymptotic
running time, and are between one to two orders of magnitasterfthan recomputing from scratch.

A particularly compelling application area, and one of thgioal motivations for developing our al-
gorithm, is in the analysis of protein structure. Graphmablels constructed from protein structures
have recently been used to successfully predict struguoglerties [17] as well as free energy [9].
These models are typically constructed by taking each ned@ amino acid whose states represent
their most common conformations, knownrasamers[7], and basing conditional probabilities on
proximity, and a physical energy function (e.qg., [16]) amwddmpirical data [4].

Our algorithm is a natural choice for problems where varesgects of protein structure are allowed
to change. One such applicationciemputational mutagenesi® which functional amino acids in
a protein structure are identified by examining systematiima acid mutations in the protein struc-
ture (i.e., to characterize when a protein “loses” fungtiom this setting, performing updates to
the model (i.e., mutations) and queries (i.e., the freegsner maximum likelihood set of rotameric
states) to determine the effect of updates would be likekabmore efficient than standard methods.
Thus, our algorithm has the potential to substantially dpgecomputational studies that examine
each of a large number local changes to protein structuod, &siin the study of protein flexibility
and dynamics. Interestingly, [6] actually give a sampleligation in computational biology, al-
though their model is a simple sequence-based HMM in whief tonsider the effect of changing
observed sequence on secondary structure only.

The simulation results given in Fig. 3 validate the use ofagorithm for these applications, since
protein-structure based graphical models have similapdexity to the inputs we consider: proteins
range in size from hundreds to thousands of amino acids,aetdaamino acid typically has relatively

few rotameric states and local interactions. As in priorkydr7], our simulation considers a small

number of rotamers per amino acid, but the one to two ordenagnitude speedups obtained by
our algorithm indicate that it maybe be possible also to lahijher-resolution models (e.g., with

more rotamer states, or degrees of freedom in the protekbbae).

6 Conclusion

We give an algorithm for adaptive inference in dynamicatieging tree-structured Bayesian net-
works. Givenn nodes in the network, our algorithm can support updatesgoltiserved evidence,
conditional probability distributions, as well as updateghe network structure (as long as they
keep the network tree-structured) with'n) preprocessing time an@(logn) time for queries on
any marginal distribution. Our algorithm can easily be nfiedito maintain MAP estimates as well
as compute data likelihoods dynamically, with the same timends. We implement the algorithm
and show that it can speed up Bayesian inference by ordersaghitude after small updates to
the network. Applying our algorithm on the junction tree negentation of a graph yields an in-
ference algorithm that can handle updates on conditiorstillitions and observed evidence in
general Bayesian networks (e.g., with cycles); an intergstpen question is whether updates to the
network structure (i.e., edge insertions/deletions) dam lae supported.

2Available for download ahttp://www.ics.uci.edutihler/code!

= © = Naive sum-product
—©— Build
Query 4
—&— Update
Restructure

Time (sec)

10 10
of nodes

Figure 3: Log-log plot of run time for naive sum-product, lding the cluster tree, computing
gueries, updating factors, and restructuring (adding aetidg edges). Although building the clus-
ter tree is slightly more expensive than sum-product, eabsexjuent update and query is between
10 and100 times more efficient than recomputing from scratch.

References

(1]

(2]

(3]
(4]
(5]
(6]
(7]
(8]
(9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]

Umut A. Acar, Guy E. Blelloch, Matthias Blume, and Kanat Tangwsang An experimental analysis of
self-adjusting computation. lroceedings of the ACM SIGPLAN Conference on Programming Lajggua
Design and Implementation (PLDB006.

Umut A. Acar, Guy E. Blelloch, Robert Harper, Jorge L. Vittesddfiaverick Woo. Dynamizing static
algorithms with applications to dynamic trees and history independenc&CM-SIAM Symposium on
Discrete Algorithms (SODAR004.

Umut A. Acar, Guy E. Blelloch, and Jorge L. Vittes. An experimeraalysis of change propagation in
dynamic trees. IWorkshop on Algorithm Engineering and Experimentation (ALENE®()5.

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H.i¥¥&, |. N. Shindyalov, and P. E.
Bourne. The protein data banMucl. Acids Res28:235-242, 2000.

P. Clifford. Markov random fields in statistics. In G. R. Grimmett andJDA. Welsh, editorsDisorder
in Physical Systempages 19-32. Oxford University Press, Oxford, 1990.

A. L. Delcher, A. J. Grove, S. Kasif, and J. Pearl. Logarithmiceiopdates and queries in probabilistic
networks.Journal of Artificial Intelligence Research:37-59, 1995.

R. L. Dunbrack Jr. Rotamer libraries in the 21st cent@wrr Opin Struct Bio] 12(4):431-440, 2002.
M. 1. Jordan. Graphical model$tatistical Sciencel9:140-155, 2004.

H. Kamisetty, E. P Xing, and C. J. Langmead. Free energy estirnét#satom protein structures using
generalized belief propagation. Rroceedings of the 11th Annual International Conference on Rdsearc
in Computational Molecular Biology2007. To appear.

F. Kschischang, B. Frey, and H.-A. Loeliger. Factor grapitsthe sum-product algorithMEEE Trans-
actions on Information Theory#7:498-519, 2001.

R. McEliece and S. M. Aji. The generalized distributive Ia&EE Transactions on Information Theory
46(2):325-343, March 2000.

Marina Meila and Michael I. Jordan. Learning with mixtures of treémurnal of Machine Learning
Research1(1):1-48, October 2000.

Gary L. Miller and John H. Reif. Parallel tree contraction and its apgibe. InProceedings of the 26th
Annual IEEE Symposium on Foundations of Computer Scigracges 487-489, 1985.

J. Pearl.Probabilistic Reasoning in Intelligent Systems: Networks of Plausible imferéMorgan Kauf-
mann, San Francisco, 1988.

M. J. Wainwright, T. Jaakkola, and A. S. Willsky. Tree consisteawiegt bounds on the performance of the
max-product algorithm and its generalizatioSgatistics and Computind4:143-166, April 2004.

S. J. Weiner, P.A. Kollman, D.A. Case, U.C. Singh, G. AlagddaProfeta Jr., and P. Weiner. A new
force field for the molecular mechanical simulation of nucleic acids antemrs. J. Am. Chem. Sac.
106:765-784, 1984.

C. Yanover and Y. Weiss. Approximate inference and proteiririgldin Proceedings of Neural Informa-
tion Processing Systems Conferergages 84-86, 2002.

