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Abstract

Belief propagation (BP) is an increasingly popular method of perform-
ing approximate inference on arbitrary graphical models. At times,
even further approximations are required, whether from quantization or
other simplified message representations or from stochastic approxima-
tion methods. Introducing such errors into the BP message computations
has the potential to adversely affect the solution obtained. We analyze
this effect with respect to a particular measure of message error, and show
bounds on the accumulation of errors in the system. This leads both to
convergence conditions and error bounds in traditional and approximate
BP message passing.

1 Introduction

Graphical models and message-passing algorithms defined on graphs are a growing field of
research. In particular, the belief propagation (BP, or sum-product) algorithm has become
a popular means of solving inference problems exactly or approximately. One part of
its appeal is its optimality for tree-structured graphical models (models which contain no
loops). However, its is also widely applied to graphical models with cycles. In these cases
it may not converge, and if it does its solution is approximate; however in practice these
approximations are often good. Recently, further justifications for loopy belief propagation
have been developed, including a few convergence results for graphs with cycles [1–3].

The approximate nature of loopy BP is often a more than acceptable price for efficient in-
ference; in fact, it is sometimes desirable to make additional approximations. There may be
a number of reasons for this—for example, when exact message representation is compu-
tationally intractable, the messages may be approximated stochastically [4] or determinis-
tically by discarding low-likelihood states [5]. For BP involving continuous, non-Gaussian
potentials, some form of approximation is required to obtain a finite parametrization for
the messages [6–8]. Additionally, graph simplification by edge removal may be regarded
as a coarse form of message approximation. Finally, one may wish to approximate the
messages and reduce their representation size for another reason—to decrease the commu-
nications required for distributed inference applications. In a distributed environment, one
may approximate the transmitted message to reduce its representational cost [9], or discard
it entirely if it is deemed “sufficiently similar” to the previously sent version [10]. This may
significantly reduce the amount of communication required.

Given that message approximation may be desirable, we would like to know what effect
the introduced errors have on our overall solution. To characterize the effect in graphs



with cycles, we analyze the deviation from a solution given by “exact” loopy BP (not, as is
typically considered, the deviation of loopy BP from the true marginal distributions). In the
process, we also develop some results on the convergence of loopy BP. Section 3 describes
the major themes of the paper; but first we provide a brief summary of belief propagation.

2 Graphical Models and Belief Propagation

Graphical models provide a convenient means of representing conditional independence
relations among large numbers of random variables. Specifically, each node s in a graph
is associated with a random variable xs, while the set of edges E is used to describe the
conditional dependency structure of the variables. A distribution satisfies the conditional
independence relations specified by an undirected graph if it factors into a product of poten-
tial functions ψ defined on the cliques (fully-connected subsets) of the graph; the converse
is also true if p(x) is strictly positive [11]. Here we consider graphs with at most pairwise
interactions (a typical assumption in BP), where the distribution factors according to

p(x) =
∏

(s,t)∈E

ψst(xs, xt)
∏

s

ψs(xs) (1)

The goal of belief propagation [12], or BP, is to compute the marginal distribution p(xt) at
each node t. BP takes the form of a message-passing algorithm between nodes, expressed
in terms of an update to the outgoing message from each node t to each neighbor s in terms
of the (previous iteration’s) incoming messages from t’s neighbors Γt,

mts(xs) ∝

∫

ψts(xt, xs)ψt(xt)
∏

u∈Γt\s

mut(xt)dxt (2)

Typically each message is normalized so as to integrate to unity (and we assume that such
normalization is possible). At any iteration, one may calculate the belief at node t by

M i
t (xt) ∝ ψt(xt)

∏

u∈Γt

mi
ut(xt) (3)

For tree-structured graphical models, belief propagation can be used to efficiently perform
exact marginalization. Specifically, the iteration (2) converges in a finite number of itera-
tions (at most the length of the longest path in the graph), after which the belief (3) equals
the correct marginal p(xt). However, as observed by [12], one may also apply belief prop-
agation to arbitrary graphical models by following the same local message passing rules
at each node and ignoring the presence of cycles in the graph; this procedure is typically
referred to as “loopy” BP.
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Figure 1: For a graph with cycles, one
may show an equivalence between n it-
erations of loopy BP and the n-level
computation tree (shown here for n = 3
and rooted at node 1; example from [2]).

For loopy BP, the sequence of messages defined
by (2) is not guaranteed to converge to a fixed
point after any number of iterations. Under rela-
tively mild conditions, one may guarantee the ex-
istence of fixed points [13]. However, they may
not be unique, nor are the results exact (the be-
lief M i

t does not converge to the true marginal).
In practice however the procedure often arrives at
a reasonable set of approximations to the correct
marginal distributions.

It is sometimes convenient to think of loopy BP
in terms of its computation tree [2]. The n-level
computation tree rooted at some node t is a tree-
structured “unrolling” of the graph, so that n iterations of loopy BP on the original graph
is equivalent at the node t to exact inference on the computation tree. An example of this
structure is shown in Figure 1.
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Figure 2: (a) A message m(x), solid, and its approximation m̂(x), dashed. (b) Their log-ratio
logm(x)/m̂(x); log d (e) characterizes their similarity by measuring the error’s dynamic range.

3 Overview of Results

To orient the reader, we lay out the order and general results which are obtained in this pa-
per. We begin by considering multiplicative error functions which describe the difference
between a “true” message m(x) (typically meaning consistent with some BP fixed-point)
and some approximation m̂(x) = m(x) · e(x). We apply a particular functional measure
d (e) (defined below) and show how this measure behaves with respect to the BP equa-
tions (2) and (3). When applied to traditional BP, this results in a novel sufficient condition
for its convergence to a unique solution, specifically

max
(s,t)∈E

∑

u∈Γt\s

d (ψut)
2
− 1

d (ψut)
2

+ 1
< 1, (4)

and may be further improved in most cases. The condition (4) is shown to be slightly
stronger than the sufficient condition given in [2]. More importantly, however, the method
in which it is derived allows us to generalize to many other situations:

• The condition (4) is easily improved for graphs with irregular geometry or potential
strengths

• The method also provides a bound on the distance between any two BP fixed points.
• The same methodology may be applied to the case of quantized or otherwise approx-

imated messages, yielding bounds on the ensuing error (our original motivation).
• By regarding message errors as a stochastic process and applying a few additional

assumptions, a similar analysis obtains alternate, tighter estimates (though not
necessarily bounds) of performance.

4 Message Approximations

In order to discuss the effects and propagation of errors introduced to the BP messages,
we first require a measure of the difference between two messages. Although there are
certainly other possibilities, it is very natural to consider the message deviations (which we
denote ets) to be multiplicative, or additive in the log-domain, and examine a measure of
the error’s dynamic range:

m̂ts(xs) = mts(xs)ets(xs) d (ets) = max
a,b

√

ets(a)/ets(b) (5)

Then, we have that mts(x) = m̂ts(x)∀x if and only if log d (ets) = 0. This measure may
also be related to more traditional error measures, including an absolute error on logm(x),
a floating-point precision on m(x), and the Kullback-Leibler divergence D(m(x)‖m̂(x));
for details, see [14]. In this light our analysis of message approximation (Section 5.3)
may be equivalently regarded as a statement about the required precision for an accurate
implementation of loopy BP. Figure 2 shows an example messagem(x) and approximation
m̂(x) along with their associated error e(x).

To facilitate our analysis, we split the message update operation (2) into two parts. In the
first, we focus on the message products

Mts(xt) ∝ ψt(xt)
∏

u∈Γt\s

mut(xt) Mt(xt) ∝ ψt(xt)
∏

u∈Γt

mut(xt) (6)



where as usual, the proportionality constant is chosen to normalize M . We show the mes-
sage error metric is (sub-)additive, i.e. that the errors in each incoming message (at most)
add in their impact on M . The second operation is the message convolution

mts(xs) ∝

∫

ψts(xt, xs)Mts(xt)dxt (7)

where M is a normalized message or product of messages. We demonstrate a level of
contraction, that is, the approximation of mts is measurably better than the approximation
of Mts used to construct it.

We use the convention that lowercase quantities (mts, ets, . . .) refer to messages and mes-
sage errors, while uppercase ones (Mts, Ets,Mt, . . .) refer to products of messages or
errors—all incoming messages to node t (Mt and Et), or all except the one from s (Mts

and Ets). Due to space constraints, many omitted details and proofs can be found in [14].

4.1 Additivity and Error Contraction

The log of (5) is sub-additive, since for several incoming messages {m̂ut(x)} we have

log d (Ets) = log d
(

M̂ts/Mts

)

= log d
(

∏

eut

)

≤
∑

log d (eut) (8)

We may also derive a minimum rate of contraction on the errors. We consider the message
from t to s; since all quantities in this section relate to mts and Mts we suppress the
subscripts. The error measure d (e) is given by

d (e)
2

= d (m̂/m)
2

= max
a,b

∫

ψ(xt, a)M(xt)E(xt)dxt
∫

ψ(xt, a)M(xt)dxt
·

∫

ψ(xt, b)M(xt)dxt
∫

ψ(xt, b)M(xt)E(xt)dxt
(9)

subject to certain constraints, such as positivity of the messages and potentials. Since
∀f, g > 0,

∫

f(x) dx /
∫

g(x) dx ≤ max
x

f(x)/g(x) (10)

we can directly obtain the two bounds:
d (e)

2
≤ d (E)

2 and d (e)
2
≤ d (ψ)

4 (11)

log d(ψ)2 d(E)+1
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g
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Figure 3: Bounds on the error output
d (e) as a function of the error in the
product of incoming messages d (E).

where we have extended the measure d (·) to
functions of two variables (describing a mini-
mum rate of mixing across the potential) by

d (ψ)
2

= max
a,b,c,d

ψ(a, b)

ψ(c, d)
. (12)

However, with some work one may show [14] the
stronger measure of contraction,

d (e) ≤
d (ψ)

2
d (E) + 1

d (ψ)
2

+ d (E)
. (13)

Sketch of proof: While the full proof is rather involved,
we outline the procedure here. First, use (10) to show
that the maximum of (9) given d (ψ) is attained by potentials of the form ψ(x, a) ∝ 1 + KχA(x)
and ψ(x, b) ∝ 1 + KχB(x), where K = d (ψ)2 − 1 and χA and χB take on only values {0, 1},
along with a similar form for E(x). Then define the variables MA =

∫

M(x)ζA(x), MAE =
∫

M(x)ζA(x)ζE(x), etc., and optimize given the constraints 0 ≤ MA, MB , ME ≤ 1, MAE ≤
min[MA, ME ], and MBE ≥ max[0, ME − (1 −MB)] (where the last constraint arises from the
fact that ME +MB −MBE ≤ 1). Simplifying and taking the square root yields (13).

The bound (13) is shown in Figure 3; note that it improves both error bounds (11), shown
as straight lines. In the next section, we use (8)-(13) to analyze the behavior of loopy BP.

5 Implications in Graphs with Cycles

We begin by examining loopy BP with exact message passing, using the previous results
to derive a new sufficient condition for convergence to a unique fixed point. When this



condition is not satisfied, we instead obtain a bound on the relative distances between any
two fixed points of the loopy BP equations. We then consider the effect of introducing
additional errors into the messages passed at each iteration, showing sufficient conditions
for this operation to converge, and a bound on the resulting error from exact loopy BP.

5.1 Convergence of Loopy BP & Fixed Point Distance

Tatikonda and Jordan [2] showed that the convergence and fixed points of loopy BP may
be considered in terms of a Gibbs measure on the graph’s computation tree, implying that
loopy BP is guaranteed to converge if the graph satisfies Dobrushin’s condition [15]. Do-
brushin’s condition is a global measure and difficult to verify; given in [2] is a sufficient
condition (often called Simon’s condition):

max
t

∑

u∈Γt

log d (ψut) < 1 (14)

where d (ψ) is defined as in (12). Using the previous section’s analysis, we may argue
something slightly stronger. Let us take the “true” messages mts to be any fixed point of
BP, and “approximate” them at each iteration by performing loopy BP from some arbitrary
initial conditions. Now suppose that the largest message-product error log d (Eut) in any
node u with parent t at level i of the computation tree (corresponding to iteration n− i out
of n total iterations of loopy BP) is bounded above by some constant log εi. Note that this
is trivially true (at any i) for the constant log εi = max(u,t)∈E |Γt| log d (ψut)

2. Now, we
may bound d (Ets) at any replicate of node t with parent s on level i− 1 of the tree by

log d (Ets) ≤ gts(log ε
i) =

∑

u∈Γt\s

log
d (ψut)

2
εi + 1

d (ψut)
2

+ εi
. (15)

and we may define log εi−1 = maxt,s gts(log ε
i) to bound the error at level i−1. Loopy BP

will converge if the sequence εi, εi−1, . . . is strictly decreasing for all ε > 1, i.e. gts(z) < z
for all z > 0. This is guaranteed by the conditions gts(0) = 0, g′ts(0) < 1 and g′′ts(z) < 0.
The first is easy to show, the third can be verified by algebra, and the condition g′ts(0) < 1
can be rewritten to give the convergence criterion

max
(s,t)∈E

∑

u∈Γt\s

d (ψut)
2
− 1

d (ψut)
2

+ 1
< 1 (16)

We may relate (16) to Simon’s condition (14) by expanding the set Γt \ s to the larger Γt
and noting that log x ≥ x2−1

x2+1 for all x ≥ 1 with equality as x → 1. Doing so, we see
that Simon’s condition is sufficient to guarantee (16), but that (16) may be true (implying
convergence) when Simon’s condition is not satisfied. The improvement over Simon’s con-
dition becomes negligible as connectivity increases (assuming the graph has approximately
equal-strength potentials), but can be significant for low connectivity. For example, if the
graph consists of a single loop then each node t has at most two neighbors. In this case,
the contraction (16) tells us that the outgoing message in either direction is always closer
to the BP fixed point than the incoming message. Thus we obtain the result of [1], that (for
finite-strength potentials) BP always converges to a unique fixed point on graphs containing
a single loop. Simon’s condition, on the other hand, is too loose to demonstrate this fact.

If the condition (16) is not satisfied, then the sequence {εi} is not always decreasing and
there may be multiple fixed points. In this case, the sequence {εi} as defined will decrease
until it reaches the largest value ε such that maxts gts(log ε) = log ε. Since the choice of
initialization was arbitrary, we may opt to initialize to any other fixed point, and observe
that the difference Et between these two fixed point beliefs is bounded by

log d (Et) ≤
∑

u∈Γt

log
d (ψut)

2
ε+ 1

d (ψut)
2

+ ε
(17)
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Figure 4: Two small (5 × 5) grids, with (a) all equal-strength potentials log d (ψ)2 = α and (b)
several weaker ones (log d (ψ)2 = .5α, thin lines). The methods described provide bounds (c) on the
distance between any two fixed points as a function of potential strength α, all of which improve on
Simon’s condition. See text for details.

Thus, the fixed points of BP lie in some potentially small set. If log ε is small (the con-
dition (16) is nearly satisfied) then although we cannot guarantee convergence to a unique
fixed point, we can guarantee that every fixed point and our estimate are all mutually close
(in a log-ratio sense).

5.2 Improving the Bounds by Path-counting

If we are willing to put a bit more effort into our bound-computation, we may be able to
improve it.In particular the proofs of (16)-(17) assume that, as a message error propagates
through the graph, repeated convolution with only the strongest set of potentials is possible.
But often even if the worst potentials are quite strong, every cycle which contains them
also contains several weaker potentials. Using an iterative algorithm much like BP itself,
we may obtain a more globally aware estimate of error propagation.

Let us consider a message-passing procedure (potentially performed offline) in which node
t passes a (scalar) bound υits on the message error d

(

eits
)

at iteration i to its neighbor s.

The bound may be initialized to υ1
ts = d (ψts)

2, and the next iteration’s (updated) outgoing
bound is given by the pair of equations

log υi+1
ts = log

d (ψts)
2
εits + 1

d (ψts)
2

+ εits
log εits =

∑

u∈Γt\s

log υiut (18)

Here, as in Section 5.1, εits bounds the error d (Ets) in the product of incoming messages.

If (18) converges to log υits → 0 for all t, s we may guarantee a unique fixed point for
loopy BP; if not, we may compute log εit =

∑

Γt

log υiut to obtain a bound on the belief
error at each node t. If every node is identical (same number of neighbors, same potential
strengths) this yields the same bound as (17); however, if the graph or potential strengths are
inhomogeneous it provides a strictly stronger bound on loopy BP convergence and errors.

This situation is illustrated in Figure 4—we specify two 5×5 grids in terms of their potential
strengths and compute bounds on the log-range of their fixed point beliefs. (While potential
strength does not completely specify the graphical model, it is sufficient for all the bounds
considered here.) One grid (a) has equal-strength potentials log d (ψ)

2
= α, while the other

has many weaker potentials (α/2). The worst-case bounds are the same (since both have
a node with four strong neighbors), shown as the solid curve in (c). However, the dashed
curves show the estimate of (18), which improves only slightly for the strongly coupled
graph (a) but considerably for the weaker graph (b). All three bounds give considerably
more information than Simon’s condition (dotted vertical line).

5.3 Introducing additional errors

As discussed in the introduction, we may wish to introduce or allow additional errors in our
messages at each stage, in order to improve the computational or communication efficiency
of the algorithm. This may be the result of an actual distortion imposed on the message



(perhaps to decrease its complexity, for example quantization), from censoring the message
update (reusing the message from the previous iteration) when the two are sufficiently
similar, or from approximating or quantizing the model parameters (potential functions).
Any of these additional errors can be easily incorporated into our framework.

If at each iteration, we introduce an additional (perhaps stochastic) error to each message
which has a dynamic range bounded by some constant δ, the relationships of (18) become

log υi+1
ts = log

d (ψts)
2
εits + 1

d (ψts)
2

+ εits
+ log δ log εits =

∑

u∈Γt\s

log υiut (19)

and gives a bound on the steady-state error (distance from a fixed point) in the system.

5.4 Stochastic Analysis

Unfortunately, the above bounds are often pessimistic compared to actual performance. By
treating the perturbations as stochastic we may obtain a more realistic estimate (though no
longer a strict bound) on the resulting error. Specifically, let us describe the error func-
tions log ets(xs) for each xs as a random variable with mean zero and variance σ2

ts. By
assuming that the errors in each incoming message are uncorrelated, we obtain additivity
of their variances: Σ2

ts =
∑

u∈Γt\s
σ2
ut. The assumption of uncorrelated errors is clearly

questionable since propagation around loops may couple the incoming message errors, but
is common in quantization analysis, and we shall see that it appears reasonable in practice.

We would also like to estimate the contraction of variance incurred in the convolution step.
We may do so by applying a simple sigma-point quadrature (“unscented”) approxima-
tion [16], in which the standard deviation of the convolved function mts(xs) is estimated
by applying the same nonlinearity (13) to the standard deviation of the error on the incom-
ing product Mts. Thus, similarly to (18) and (19), we have

σ2
ts =

(

log
d (ψts)

2
λts + 1

λts + d (ψts)
2

)2

+ (log δ)2 (log λts)
2 =

∑

u∈Γt\s

σ2
ut (20)

The steady-state solution of (20) yields an estimate of the variances of the log-belief log pt
by σ2

t =
∑

u∈Γt

σ2
ut; this estimate is typically much smaller than the bound (18) due to the

strict sub-additive relationship between the standard deviations. Although it is not a bound,
using a Chebyshev-like argument we may conclude that, for example, the 2σt distance will
be greater than the typical errors observed in practice.

6 Experiments

We demonstrate the error bounds for perturbed messages with a set of Monte Carlo trials.
In particular, for each trial we construct a binary-valued 5 × 5 grid with uniform poten-
tial strengths, which are either (1) all positively correlated, or (2) randomly chosen to be
positively or negatively correlated (equally likely); we also assign random single-node po-
tentials to each xs. We then run a quantized version of BP, rounding each log-message
to discrete values separated by 2 log δ (ensuring that the newly introduced error satisifies
d (e) ≤ δ). Figure 5 shows the maximum belief error in each of 100 trials of this procedure
for various values of δ.

Also shown are the bound on belief error developed in Section 5.3 and the 2σ estimate
computed assuming uncorrelated message errors. As can be seen, the stochastic estimate
is often a much tighter, more accurate assessment of error, but it does not possess the
same strong theoretical guarantees. Since, as observed in analysis of quantization and
stability in digital filtering [17], the errors introduced by quantization are typically close to
independent, the assumptions of the stochastic estimate are reasonable and empirically we
observe that the estimate and actual errors behave similarly.
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Figure 5: Maximum belief errors incurred as a function of the quantization error. The scatterplot
indicates the maximum error measured in the graph for each of 200 Monte Carlo runs; this is strictly
bounded above by the solution of (18), solid, and bounded with high probability (assuming uncorre-
lated errors) by (20), dashed.

7 Conclusions

We have described a particular measure of distortion on BP messages and shown that it is
sub-additive and measurably contractive, leading to sufficient conditions for loopy BP to
converge to a unique fixed point. Furthermore, this enables analysis of quantized, stochas-
tic, or other approximate forms of BP, yielding sufficient conditions for convergence and
bounds on the deviation from exact message passing. Assuming the perturbations are un-
correlated can often give tighter estimates of the resulting error. For additional details as
well as some further consequences and extensions, see [14].

The authors would like to thank Erik Sudderth, Martin Wainwright, Tom Heskes, and Lei Chen for
many helpful discussions.
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