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ABSTRACT
Time-series of count data are generated in many different
contexts, such as web access logging, freeway traffic mon-
itoring, and security logs associated with buildings. Since
this data measures the aggregated behavior of individual
human beings, it typically exhibits a periodicity in time on
a number of scales (daily, weekly, etc.) that reflects the
rhythms of the underlying human activity and makes the
data appear non-homogeneous. At the same time, the data
is often corrupted by a number of bursty periods of unusual
behavior such as building events, traffic accidents, and so
forth. The data mining problem of finding and extracting
these anomalous events is made difficult by both of these
elements. In this paper we describe a framework for unsu-
pervised learning in this context, based on a time-varying
Poisson process model that can also account for anomalous
events. We show how the parameters of this model can
be learned from count time series using statistical estima-
tion techniques. We demonstrate the utility of this model
on two data sets for which we have partial ground truth
in the form of known events, one from freeway traffic data
and another from building access data, and show that the
model performs significantly better than a non-probabilistic,
threshold-based technique. We also describe how the model
can be used to investigate different degrees of periodicity
in the data, including systematic day-of-week and time-of-
day effects, and make inferences about the detected events
(e.g., popularity or level of attendance). Our experimen-
tal results indicate that the proposed time-varying Poisson
model provides a robust and accurate framework for adap-
tively and autonomously learning how to separate unusual
bursty events from traces of normal human activity.

Categories and Subject Descriptors
I.5.1 [Pattern Recognition]: Models—statistical ; G.3 [Pro-
bability and Statistics]: Probabilistic Algorithms
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1. INTRODUCTION
Analyzing and understanding patterns of human behavior

over time is an area of increasing interest in a number of dif-
ferent data mining applications. Examples include analysis
and understanding of Web access logs, event detection and
prediction with vehicular traffic and accident data, and clas-
sifying human activities from low–cost observation modal-
ities used for ubiquitous sensing such as RFID, video, et
cetera. In this paper we focus on time-series data where time
is discrete and N(t) is a measurement of the number of in-
dividuals or objects recorded over the time-interval [t−1, t].
For example, an optical sensor at a door might report an
estimate of how many people have entered a building over a
30-minute period, or an inductive loop sensor on a freeway
might report an estimate of how many vehicles have passed
over the sensor in the previous 5 minutes. Since this type
of data measures the aggregated behavior of many individ-
uals, it typically exhibits a temporal periodicity on many
scales (daily, weekly, etc.) reflecting the rhythms of under-
lying human activity. It is often also corrupted by sustained
(bursty) periods of anomalous behavior, which we will refer
to in this paper as events. Note that the term event is some-
times used in the time series literature to refer to individual
measurements (e.g., the recording of a single person walk-
ing through a door at a particular time). Here, however,
we will use event in a different manner, to refer to a large-
scale activity that is unusual relative to normal patterns of
behavior, such as a large meeting in a building, a malicious
attack on a Web server, or a traffic accident on a freeway.

To fully understand such data, we often care about both
the patterns of the typical and predictable behavior, and de-
tecting and extracting information from the deviations from
this behavior. However, this leads to an inherent “chicken
and egg” deconvolution problem, since detecting anomalous
periods of time requires some knowledge of what constitutes
normal behavior, but our historical data consists of both
normal and anomalous (event) data mixed together.

As an example, Figure 1 shows counts of the estimates
number of people entering a building over time from an op-
tical sensor at the front door of a UCI campus building. The

207

Research Track Paper



6 12 18
0

10

20

30

40

50

60

A

B

Figure 1: Jittered scatterplot of the number of peo-
ple entering on any weekday over a four–month pe-
riod, shown as a function of the time of day (in half-
hour intervals). Although certain points (e.g., set A)
are clearly “outliers” and represent unusual events
with greater than normal attendance, it is less clear
which, if any, of the values in set B represent some-
thing similar.

data are “jittered” slightly by Gaussian noise to give a bet-
ter sense of the density of counts at each time. Once again,
there are parts of this signal which are clearly periodic, and
other parts which are obvious outliers; but there are many
samples which fall into a gray area. For example, set (A) in
Figure 1 is clearly far from the typical behavior for their time
period; but set (B) contains many points which are some-
what unusual but may or may not be due to the presence
of an event. In order to separate the two, we need to define
a model of uncertainty (how unusual is the measurement?),
and additionally incorporate a notion of event persistence,
i.e., the idea that a single, somewhat unusual measurement
may not signify anything but several in a row could indicate
the presence of an event.

Another example of this “chicken and egg” problem is
illustrated in Figure 2. The top panel shows vehicle counts
every five minutes for an on-ramp on the 101 freeway in
Los Angeles located near Dodger Stadium, where the Los
Angeles Dodgers baseball team plays their home games. The
darker line shows the average count for the set of “normal”
Fridays when there were no baseball games (averaged over
every non game-day Friday for each specific 5-minute time
slice). The daily rhythm of normal Friday vehicle flow is
clear from the data: little traffic in the early hours of the
morning, followed by a sharp consistent increase during the
morning rush hour, relatively high volume and variability of
traffic during the day, another increase for the evening rush
hour, and a slow decay into the night back to light traffic.

The light line in the top panel shows the counts for a par-
ticular Friday when there was a baseball game: the “event”
can be seen in the form of significantly increased traffic
around 22:00 hours, corresponding to a surge of vehicles
leaving from the baseball stadium. It is clear that relative
to the average profile (the darker line) that the baseball traf-
fic is anomalous and should be relatively easy to detect.

Now consider what would happen if we did not know when
the baseball games were being held. The lower panel shows
the time series for the same Friday as the top panel (the
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Figure 2: Example of freeway traffic data for Fri-
days for a particular on-ramp. (a) Average time pro-
file for normal, non game-day Fridays (dark curve)
and data for a particular Friday (6/10/05) with a
baseball game that night (light curve). (b) Average
time profile over all Fridays (dark curve) superposed
on the same Friday data (light curve) as in the top
panel.

lighter line) but now with the average over all Fridays su-
perposed, i.e., the average time-profile including both game-
day and non game-day Fridays. This average profile has now
been pulled upwards around 22:00 hours and sits roughly
halfway between normal traffic for that time of night (the
darker line in the top panel) and the profile that corresponds
to a baseball event (the light curve). Ideally we would like
to learn both the patterns of normal behavior and to detect
events that indicate departures from the norm. For exam-
ple, given the time series shown in Figure 2, we would like
to learn a model that reflects the bimodal nature of such
data, namely a combination of the normal traffic patterns
to which is occasionally added additional counts caused by
aperiodic events.

In this paper we investigate the use of Markov-Poisson
models for this purpose, and illustrate how to learn such
models from data to both characterize normal behavior and
detect anomalous events. The model consists of a time-
varying Poisson process that includes both systematic diur-
nal (time of day) and calendar (day of week) variation in
Poisson rates over time, as well as a hidden Markov event
process. We adopt a Bayesian approach to learning and in-
ference, allowing us to pose and answer a variety of queries
within a probabilistic framework, queries such as “did any
events occur in this time-period?”, “how many additional
counts were caused by a particular event?”, “what is the es-
timated duration of an event?”, and so forth. Different high-
level questions about the data can also be addressed, such
as “are Monday and Tuesday normal patterns the same?”
or “are the patterns of normal behavior consistent over time
or changing?” using Bayesian model selection techniques.

The remainder of the paper proceeds by discussing re-
lated work in Section 2 and then, in Section 3, describing
in more detail the two data sets, freeway traffic data and
“people counter” building data, that we use throughout the
paper. Section 4 illustrates the limitations of a simple base-
line approach to event detection based on thresholding. In
Section 5 we describe our proposed probabilistic model and
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Section 6 describes how this model can be learned from data
using a Bayesian estimation framework. Section 7 discusses
how we can use the learned model for event detection and
validates the model’s predictions of anomalous events by us-
ing known ground-truth schedules of events. We show that
our proposed approach is significantly more accurate in prac-
tice than a baseline threshold-based method. Section 8 uses
Bayesian model selection techniques to investigate different
levels of time-heterogeneity in the model, and Section 9 il-
lustrates how the model can be used for estimating event
attendance. In Section 10 we conclude with a brief discus-
sion of open research problems and summary comments.

2. RELATED WORK
There has been a significant amount of prior work in both

data mining and statistics on finding surprising patterns,
outliers, and change–points in time series. For example,
Keogh et al. [1] described a technique that represents a real-
valued time-series by quantizing into it a finite set of symbols
and then uses a Markov model to detect surprising patterns
in the symbol sequence. Guralnik and Srivastava [2] pro-
posed an iterative likelihood-based method for segmenting a
time-series into piecewise homogeneous regions. Salmenkivi
and Mannila [3] investigated the problem of segmenting sets
of low-level time-stamped events into time-periods of rel-
atively constant intensity, using a combination of Poisson
models and Bayesian estimation methods. Kleinberg [4]
demonstrated how a method based on an infinite automaton
could be used to detect bursty events in text streams.

All of these approaches share a common goal with that
of this paper, namely detection of novel and unusual data
points or segments in time-series. However, none of this
earlier work focuses on the specific problem we address here,
namely detection of bursty events embedded in time series of
counts that reflect the normal diurnal and calendar patterns
of human activity.

The model proposed here is derived from the Markov–
modulated Poisson processes used by Scott and Smyth [5] for
analysis of Web surfing behavior and Scott [6] for telephone
network fraud detection. We extend the latter model by
employing a more flexible model of event–related counts and
including missing data, and show that not only is it accurate
at detecting the presence of events in two new data sets by
using ground truth for validation, but also how it can be
used to perform additional tasks such as model selection and
inference over other quantities of interest about the event.

3. DATA SET CHARACTERISTICS
We use two different data sets throughout the paper to

illustrate our approach. In this section we describe these
data sets in more detail.

The first data set will be referred to as the building data,
consisting of 3 months of count data automatically recorded
every 30 minutes at the front door of the Calit2 institute
building on the UC Irvine campus. The data are generated
by a pair of battery–powered optical detectors that measure
the presence and direction of objects as they pass through
the building’s main set of doors. The number of “counts” in
each direction are then communicated via a wireless link to
a base station with internet access, at which they are stored.

The observation sequences (“people counts”) acquired at
the front door form a noisy time series with obvious struc-
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Figure 4: (a) One week of traffic data (light curve)
from Sunday to Saturday (June 5-11), with the esti-
mated normal traffic profile (estimated by the pro-
posed model described later in the paper) super-
posed as a dark curve. (b) Ground truth list of
events (baseball games).

ture but many outliers (see Figure 3). The data is corrupted
by the presence of “events”—non-periodic activities which
take place in the building and (typically) cause an increase in
foot traffic entering the building before the event, and leav-
ing the building after the event, possibly with some “churn”
(people going in and out) during the event. Some of these
events can be seen easily in the time–series, for example the
two large spikes in both entry and exit data on days four
and twelve in Figure 3. However, many of these events may
be less obvious and only become visible when compared to
the behavior over a long period of time.

The second data set will be referred to as the freeway
traffic data and consists of estimated vehicle counts every
5 minutes over 6 months from an inductive loop–sensor lo-
cated on the Glendale on-ramp to the 101-North freeway in
Los Angeles [7]. Figure 4 shows the temporal pattern for a
particular week starting with Sunday morning and ending
Saturday night. The daily rhythms of traffic flow are clearly
visible as is the distinction between weekdays and week-
ends. Also visible are “local excursions” corresponding to
significantly different counts compared to relatively smooth
normal pattern, such as the baseball games on Sunday after-
noon and every evening except Thursday. The lower panel
of Figure 4 shows a set of known events (“ground truth”)
for this data (which will be unknown to the model and only
used for validation) corresponding to the dates and times of
baseball games. Note that the “on-ramp events” correspond
to traffic leaving at the end of a baseball game when large
numbers of individuals leave the stadium and get on the
freeway—thus, the event has a signature in the data that
will tend to lag in time that of the baseball game itself.

Both data sets included a small number of holidays (1-3)
which were removed before modeling, since these days were
known apriori to involve relatively different (atypical) be-
havior. (Treating these days as normal tends to slightly de-
crease their respective days’ profiles and may increase prob-
abilities of false alarms, etc.) Alternatively, the model de-
scribed later could be augmented to estimate the profile of
holiday behavior separately, if desired.
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Figure 3: (a) Entry data for the main entrance of the Calit2 building for three weeks, beginning 7/23/05
(Sunday) and ending 8/13/05 (Saturday). (b) Exit data for the same door over the same time period.

4. A BASELINE MODEL AND ITS
LIMITATIONS

One relatively straightforward baseline for detecting un-
usual events in count data is to perform a simple threshold
test based on a Poisson model for each time period. Specifi-
cally, let us estimate the Poisson rate λ of a particular time
and day by averaging the observed counts on similar days
(e.g., Mondays) at the same time, i.e., the maximum likeli-
hood estimate. Then, we detect an event of increased activ-
ity when the observed count N is sufficiently greater than
the average, as measured by the Poisson distribution:

P(N ; λ) = e−λλN/N ! < ε

and λ < N .
For some data sets, this approach can be quite adequate—

in particular, if the events interspersed in the data are suf-
ficiently few compared to the amount of non–event obser-
vations, and if they are sufficiently noticeable in the sense
that they cause a large increase in activity. However, these
assumptions do not always hold, and we can observe several
modes of failure in such a simple model.

One way this model can fail is because of the “chicken
and egg” problem referred to in the introduction and illus-
trated in Figure 2. As discussed earlier, the presence of large
events distorts the estimated rate of “normal”behavior, in-
creasing it slightly, which causes the threshold test to miss
the presence of other events around that same time.

A second type of failure occurs when there is a slight in-
crease in traffic level which is not of sufficient magnitude to
be noticed; however, the increase is sustained over a period
of several observations signaling the presence of a persistent
event. In Figure 5, the event indicated for the first day
can be easily found by the threshold model by setting the
threshold sufficiently high enough to detect the event but
low enough so that there are no false alarms. In order for
the threshold model to detect the event on the second day,
however, the threshold must be increased, which also causes
the detection of two false alarms over the two-day period.
Anomalies detected by the threshold model are shown in
the second panel of the figure while known events (baseball
games) are displayed in the third panel.

A third weakness of the threshold model is its difficulty
in capturing the duration of an event. In order to detect
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Figure 5: Illustration of the baseline threshold
model set to detect the event on the second day,
with (a) original freeway traffic time series in the
top panel (light curve) for May 17-18, and mean
profile as used by the threshold model (dark curve),
(b) events detected by the threshold method in the
center panel, and (c) ground truth (known events)
in the bottom panel. Note the false alarms.
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Figure 6: Same as Figure 5 but with an even lower
threshold to detect the full duration of the large
event on the second day, causing multiple false
alarms.
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not only the presence of the event on the second day but
also its duration, the threshold must be raised to the point
that the number of false alarms becomes quite prohibitive,
as illustrated in Figure 6. (Note that the traffic event, cor-
responding to people departing the game, begins at or near
the end of the actual game time.)

In the remaining sections of the paper we will discuss
a more sophisticated probabilistic model that accounts for
these different aspects of the problem, and show (in Sec-
tion 7) that it can be used to obtain significantly more ac-
curate detection performance than the simple thresholding
method.

5. PROBABILISTIC MODELING
Let N(t), for t ∈ {1, . . . , T}, generically refer to the ob-

served count at time t for any of the time-dependent count-
ing processes, such as the freeway traffic 5-minute aggregate
count process or either of the two (entering or exiting) build-
ing 30-minute aggregate people count processes. In order
to model N(t), we require both a model of the “normal”,
typical behavior (intuitively corresponding to the periodic
portion of the data), and a model of the event process (in-
tuitively corresponding to rare increases in the number of
observed counts). Let us assume that the two processes are
additive, so that

N(t) = N0(t) + NE(t) (1)

where N0(t) is the number of occurrences attributed to the
normal building occupancy, and NE(t) represents the num-
ber of occurrences attributed to an event at time t. We
discuss modeling each of these in turn. Note that, although
the models described here are defined for discrete time peri-
ods, they can also be extended to continuous time measure-
ments [6,8].

5.1 Modeling Periodic Count Data
Perhaps the most common probabilistic model for count

data is the Poisson distribution, whose probability mass
function is given by

P(N ; λ) = e−λλN/N ! N = 0, 1, . . . (2)

where the parameter λ represents the rate, or average num-
ber of occurrences in a fixed time interval. When λ is a
function of time, i.e. λ(t), (2) becomes a nonhomogeneous
Poisson distribution, in which the degree of heterogeneity
depends on the function λ(t).

We employ a model derived from that of Scott [8], which
has been used to detect and segment fraud patterns in tele-
phone network usage [6]. Specifically, we decompose λ(t)
as

λ(t) = λ0 δd(t) ηd(t),h(t) (3)

where d(t) takes on values {1, . . . , 7} and indicates the day
on which time t falls (so that Sunday = 1, Monday = 2,
and so forth), and h(t) indicates the interval (e.g., half-hour
periods for the building data) in which time t falls. By
further requiring that

7X
i=1

δi = 7 and

DX
i=1

ηj,i = D ∀j,

where D is the number of time intervals in a day (48 for the
building data and 288 for the freeway traffic data), we can
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Figure 7: The effect of δd(t), as seen over a week of
building exit data. Clearly, the relative rates over
the weekend (Sunday, Saturday) are much lower
than those on weekdays.
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Figure 8: The effect of ηd(t),h(t) in modulating the
Poisson rate of building exit data over a single day.
There is a clear peak around lunchtime, and a heavy
bias towards the end of the day.

ensure that the values λ0, δ, and η are easily interpretable:
λ0 is the average rate of the Poisson process over a full week,
δi is the day effect, or the relative change for day i (so that,
for example, Sundays have a lower rate than Mondays), and
ηj,i is the relative change in time period i given day j (the
time of day effect).

Figures 7–8 illustrate these two effects for the building
data. Figure 7 shows one week’s worth of data alongside
the estimated rate with day effect only, i.e., λ0 δd(t); this
is the full Poisson rate λ(t) averaged over the time of day.
Figure 8 then shows how ηd(t),h(t) then modulates λ(t) over
a single day to achieve a sensible time–dependent rate value.

Figure 9 shows a graphical model in the form of a plate
diagram for the periodic data N0(t) and its parameters. A
key point is that, given N0(t), the parameters λ0, δ, and η
are all independent of N(t).

By choosing conjugate prior distributions for these vari-
ables we can ensure that the inference computations in Sec-
tion 6 have a simple closed form:

λ0 ∼ Γ(λ; aL, bL)

1

7
[δ1, . . . , δ7] ∼ Dir(αd

1, . . . , α
d
7)

1

D
[ηj,1, . . . , ηj,D] ∼ Dir(αh

1 , . . . , αh
D)

where Γ is the Gamma distribution,

Γ(λ;a, b) ∝ λa−1e−bλ

and Dir(·) is a Dirichlet distribution with the specified pa-
rameter vector.

5.2 Modeling Rare, Persistent Events
In the data examined in this paper, the anomalous mea-

surements can be intuitively thought of as being due to rel-
atively short, rare periods in which an additional random
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1 : T

Figure 9: Graphical model for λ(t) and N0(t). The
parameters λ0, δ, and η (the periodic components of
λ(t)) couple the distributions over time.

process also contributes to the observations (e.g., people
arriving for an event), increasing the number of observed
counts. The model can be easily modified to capture alter-
native situations, i.e., the presence of an event suppressing or
otherwise altering the number of “normal” counts by chang-
ing (1) into a more general relationship; however, in practice
our simple additivity assumption seems sufficient.

To model the behavior of anomalous periods of time, we
use a binary process z(t) to indicate the presence of an event,
i.e.,

z(t) =

(
1 if there is an event at time t

0 otherwise;

and define the probability distribution over z(t) to be Markov
in time, with transition probability matrix

Mz =

„
1 − z0 z1

z0 1 − z1

«

so that the length of each time period between events is
geometric with expected value 1/z0, and the length of each
event is geometric with expected value 1/z1. We give z0, z1

priors

z0 ∼ β(z; aZ
0 , bZ

0 ) z1 ∼ β(z; aZ
1 , bZ

1 )

where β(·) is the Beta distribution.
Given z(t), we can model the increase in observation counts

due to the event, NE(t), as Poisson with rate γ(t)

NE(t) ∼
(

0 z(t) = 0

P(N ; γ(t)) z(t) = 1

and γ(t) as independent at each time t

γ(t) ∼ Γ(γ; aE , bE).

In fact, γ(t) may be marginalized over analytically, sinceZ
P(N ; γ)Γ(γ; aE, bE) = NBin(N ; aE , bE/(1 + bE)) (4)

where NBin is the negative binomial distribution. A graphi-
cal model representing the distribution over z(t), NE(t), and
N(t) is shown in Figure 10. Here, z(t) provides the time–
dependent structure of the process; from Figures 9–10, one
can see that N(t) has temporal structure both from λ(t) and
z(t).

z(t − 1) z(t) z(t + 1)

N0(t)NE(t)

N(t)

Figure 10: Graphical model for z(t) and N(t). The
Markov structure of z(t) couples the variables over
time (in addition to the coupling of N0(t) from Fig-
ure 9).

This type of gated Poisson contribution, called a Markov–
modulated Poisson model, is a common component of many
network traffic models [6,9]. In our application we are specif-
ically interested in detecting the periods of time in which
Our event process z(t) is active, and perhaps using the rate
γ(t) or the associated count NE(t) to provide information
about its “popularity”. While it is also possible to couple
the rates γ(t) in order to capture the idea that, for example,
two detections at times t and t + 1 are likely to be related
and thus have correlated count increases, we do not address
this additional complexity here.

6. LEARNING AND INFERENCE
Let us initially assume that our total length of observation

comprises some integral number of weeks, so that T = 7 ∗
D ∗W for some integer W . Although not strictly necessary,
this assumption greatly simplifies the inference procedure
for estimating the parameters of the model [6]; nor is it at
all restrictive in our setting, since we can always extend a
region of interest to cover an integer number of weeks by
taking the additional data to be unobserved.

Given the complete data {N0(t), NE(t), z(t)}, it is straight-
forward to compute maximum a posteriori (MAP) estimates
or draw posterior samples of the parameters λ(t) and {z0, z1},
since all variables λ0, δ, η, z0, and z1 are conditionally in-
dependent (see Figures 9–10, or Section 6.2).

We can thus infer posterior distributions over each of
the variables of interest using Markov chain Monte Carlo
(MCMC) methods [10, 11]. Specifically, we iterate between
drawing samples of the hidden variables {z(t), N0(t), NE(t)}
(described in Section 6.1) and the parameters given the com-
plete data (described in Section 6.2). The complexity of each
iteration of MCMC is O(T ), linear in the length of the time
series, and experimentally converges quite rapidly. These
samples can be used to not only to provide a point estimate
of the value of each parameter (for example, its posterior
mean) but also to gauge the amount of uncertainty about
that value.

6.1 Sampling the hidden variables given
parameters

Given the periodic Poisson mean λ(t) and the transi-
tion probability matrix M , it is relatively straightforward to
draw a sample sequence z(t) using a variant of the forward–
backward algorithm [12]; we provide the necessary equations
for completeness. Specifically, in the forward pass we com-
pute, for each t ∈ {1, . . . , T} the conditional distribution
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Figure 11: (a) Entry data, along with λ(t), over a period of three weeks (Sept. 25–Oct. 15). Also shown are
(b) the posterior probability of an event, p(z), and (c) the periods of time in which an event was scheduled
for the building. Most of the scheduled events are detected, along with a few other time periods (such as a
period of greatly heightened activity on the first Saturday).

p(z(t)|{N(t′), t′ ≤ t}) using the likelihood functions

p(N(t)|z(t)) =

(
P(N(t); λ(t)) z(t) = 0P

i P(N(t) − i; λ(t))NBin(i) z(t) = 1

(where the parameters of NBin(·) are as in (4)). Then, for
t ∈ {T, . . . , 1}, we draw samples

Z(t) ∼ p(z(t)|z(t + 1) = Z(t + 1), {N(t′), t′ ≤ t}).
Given z(t) = Z(t), we can then determine N0(t) and NE(t),
by taking N0(t) = N(t) if z(t) = 0 and drawing N0(t) from
the discrete distribution

N0(t) ∼ f(i) ∝ P(N(t) − i; λ(t))NBin(i; aE, bE/(1 + bE))

if z(t) = 1, and setting NE(t) = N(t) − N0(t). If N(t) is
unobserved (missing), N0(t) and NE(t) are decoupled given
z(t) and we may draw them independently.

6.2 Sampling the parameters given the
complete data

Because T is an integral number of weeks, T = 7 ∗D ∗W ,
we have that the complete data likelihood is given byY

t

e−λ(t)λ(t)N0(t)
Y

t

p(Z(t)|Z(t − 1))
Y

Z(t)=1

NBin(NE(t))

Considering the first term, which only involves λ0, δ, and η,
we have

e−Tλ0λ
P

N0(t)
0

Y
i

δ
P

d(t)=i N0(t)

i

Y
j,i

η
(...)
j,i

By virtue of choosing conjugate prior distributions, we have
that the posteriors are given by distributions of the same
form, but with parameters given by the sufficient statistics
of the data. Defining

Si,j =
X

t:
d(t)=i,
h(t)=j

N0(t) Si =
X

j

Si,j S =
X

i

Si

we have the posterior distributions

λ0 ∼ Γ(λ; aL + S, bL + T )

1

7
[δ1, . . . , δ7] ∼ Dir(αd

1 + S1, . . . , α
d
7 + S7)

1

D
[ηj,1, . . . , ηj,D] ∼ Dir(αh

1 + Sj,1, . . . , α
h
D + Sj,D).

Sampling z0, z1 is similarly straightforward—we merely
compute

Zij =
X

t:z(t)=i,z(t+1)=j

1 for i = 0, 1, j = 0, 1

to obtain posterior distributions

z0 ∼ β(z; aZ
0 +Z01, b

Z
0 +Z00) z1 ∼ β(z; aZ

1 +Z10, b
Z
1 +Z11)

As noted by Scott [6], Markov–modulated Poisson processes
appear to be relatively sensitive to the selection of prior dis-
tributions over z0, z1 and γ(t), perhaps because there are
no direct observations of the processes they describe. This
appears to be particularly true for our model, which has
considerably more freedom in the anomaly process (i.e., in
γ(t)) than the telephony application of Scott [6]. We avoid
over-explanation of the data by applying relatively strong
priors to the transition parameters of z(t) which force the
marginal probability of z(t) to 1–2 incidents per day, on av-
erage. By adjusting these priors one can increase or decrease
the number of events detected; see Section 7.

7. ADAPTIVE EVENT DETECTION
One of the primary goals in our application is to auto-

matically detect the presence of unusual events in the ob-
servation sequence. The presence or absence of these events
is captured by the process z(t), and thus we may use the
posterior probability p(z(t)|{N(t)}) as an indicator of when
such events occur.

Given a sequence of data, we can use the samples drawn
in the MCMC procedure (Section 6) to estimate the poste-
rior marginal distribution over events. For comparison to
a ground truth of the events in the building data set, we
obtained a list of the events which had been scheduled over
the entire time period from the building’s event coordinator.
For the freeway traffic data set, the game times for 76 home
games in the LA Dodgers 2005 regular season were used
as the validation set. Five additional regular season games
were not included in this set because they occurred during
extended periods of missing loop sensor count information.
Note that both sets of “ground truth” may represent an
underestimate of the true number of events that occurred
(e.g., due to unscheduled meetings and gatherings, concerts
held at the baseball stadium, etc.). Nonetheless this ground
truth is very useful in terms of measuring how well a model
can detect a known set of events.
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Figure 12: Data for Oct. 3, 2005, along with rate λ(t)
and probability of event p(z). At 3:30 P.M. an event
was held in the building atrium, causing anomalies
in both the incoming and outgoing data over most
of the time period.
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Figure 13: A Friday evening game, Apr. 29, 2005.
Shown are (a) the prediction of normal activity, λ(t);
(b) the estimated probability of an event, p(z); and
(c) the actual game time. Panels (d)-(f) show the
threshold model’s prediction for the same day.

The results obtained by performing MCMC for the build-
ing data are shown in Figure 11. We plot the observations
N(t) together with the posterior mean of the rate parame-
ters λ(t) over a three week period (Sept. 25–Oct. 15); Fig-
ure 11 shows incoming (entry) data for the building. Dis-
played below the time series is the posterior probability of
z(t) at each time t, drawn as a sequence of bars, below which
dashes indicate the times at which scheduled events in the
building took place. In this sequence, all of the known events
are successfully detected, along with a few additional detec-
tions that were not listed in the building schedule. Such
unscheduled activities often occur over weekends where the
baseline level of activity is particularly low.

Figure 12 shows a detailed view of one particular day,
during which there was an event scheduled in the building
atrium. Plots of the probability of an unusual event for both
the entering and exiting data show a high probability over
the entire period allocated to the event, while slight increases
earlier in the day were deemed much less significant due to
their relatively short duration.

The results obtained by performing MCMC for the free-
way traffic data for three game-days are shown in Figures 13–
14. Figure 13 shows a Friday game that is more sparsely
attended than the Friday game plotted in Figure 2 and is
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Figure 14: (a) Data for May 17-18,2005, along with
rate λ(t); (b) probability of event p(z); (c) actual
event times.

Total Number MMPP Threshold
of Predicted Events Model Model

104 100.0% 86.2%
70 96.6% 75.9%
48 79.3% 65.5%

Table 1: Accuracies of predictions for the building
data: the percentage of the 29 known events cor-
rectly predicted by each model, for different num-
bers of total events predicted.

an example of where our model successfully separates the
normal Friday evening activity from game-day evening ac-
tivity. The threshold model was able to detect the Friday
games with heavy attendance, but more sparsely attended
games such as this one were missed.

Figure 14 displays the same two–day period where the
threshold model was shown to detect false alarms when the
threshold level was set appropriately to detect the event on
day two (Figure 5–6). Our model detects the two events
with no false alarms, and nicely shows the duration of the
predicted events.

Tables 1 and 2 compare the accuracies of the Markov-
modulated Poisson process (MMPP) model described in Sec-
tion 5 and the baseline threshold model of Section 4 on val-
idation data not used in training the models for both the
building and freeway traffic data respectively. For each row
in the table, the MMPP model parameters were adjusted so
that a specific number of events were detected, by adjusting

Total Number MMPP Threshold
of Predicted Events Model Model

203 100.0% 86.8%
186 100.0% 81.6%
134 100.0% 72.4%
98 98.7% 60.5%

Table 2: Accuracies of predictions for the free-
way traffic data: the percentage of the 76 known
events correctly predicted by each model, for differ-
ent numbers of total events predicted.
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the priors on the transition probability matrix. The thresh-
old model was then modified to find the same number of
events as the MMPP model by adjusting its threshold ε.

In both data sets, for a fixed number of predicted events
(each row), the number of true events detected by the MMPP
model is significantly higher than that of the baseline model.
This validates the intuitive discussion of Section 4 in which
we outlined some of the possible limitations of the baseline
approach, namely its inability to solve the “chicken and egg”
problem and the fact that it does not explicitly represent
event persistence. As mentioned earlier, the events detected
by the MMPP model that are not in the ground truth list in
many cases plausibly correspond to real events rather than
false alarms, such as unscheduled building activities for the
building data and accidents and non-sporting events for the
freeway traffic data.

8. TESTING HETEROGENEITY
One question we may wish to ask about the data is, how

time–varying is the process itself? For example, how differ-
ent is Friday afternoon from that of any other weekday? By
increasing the number of degrees of freedom in our model,
we improve its potential for accuracy but may increase the
amount of data required to learn the model well. This also
has important consequences in terms of data representation
(for example, compression), which may need to be a time–
dependent function as well. Thus, we may wish to consider
testing whether the amount of data we have thus far ac-
quired supports a particular degree of heterogeneity.

We can phrase many of these questions as tests over sub-
models which require equality among certain subsets of the
variables. For example, we may wish to test for the presence
of the day effect, and determine whether a separate effect for
each day is warranted. Specifically, we might test between
three possibilities:

D0 : δ1 = . . . = δ7 (all days the same)

D1 : δ1 = δ7, δ2 = . . . = δ6 (weekends, weekdays the same)

D2 : δ1 �= . . . �= δ7 (all day effects separate)

We can compare these various models by estimating each
of their marginal likelihoods [13]. The marginal likelihood is
the likelihood of the data under the model, having integrated
out the uncertainty over the parameter values, e.g.,

p(N |D2) =

Z
p(N |λ0, δ, η)p(λ0, δ, η) ∂λ0 ∂δ ∂η

Since uncertainty over the parameter values is explicitly ac-
counted for, there is no need to penalize for an increasing
number of parameters. Moreover, we can use the same
posterior samples drawn during the MCMC process (Sec-
tion 6) to find the marginal likelihood, using the estimate of
Chib [14].

Computing the marginal likelihoods for each of the models
D1, . . . , D3 for the building data, and normalizing by the
number of observations T , we obtain the values shown in
Table 3. From these values, it appears that D0 (all days the
same) is a considerably worse model, and that D1 and D2

are essentially equal, indicating that either model will do an
equally good job of predicting behavior.

We can derive similar tests for other symmetries that
might exist. For example, we might wonder whether every
day has the same time profile. (Note that this is possi-

Model E[log2 p(N−(t))] E[log2 p(N+(t))]
D0 -2.86 -2.58
D1 -2.55 -2.29
D2 -2.55 -2.29

Table 3: Average log marginal likelihood of the
data (exit and entry) under various day–dependency
models: D0, all days the same; D1, weekends and
weekdays separate; and D2, each day separate.
There does not appear to be a significant change in
behavior among weekend days or among weekdays.
Parameters ηi,j were unconstrained.

Model E[log2 p(N−(t))] E[log2 p(N+(t))]
T0 -2.58 -2.30
T1 -2.52 -2.27
T2 -2.55 -2.29

Table 4: Average log marginal likelihood under vari-
ous time-of-day dependency models for the building
data: T0, all days have the same time profile; D1,
weekend days and weekdays share time profiles; D2,
each day has its own individual time profile. There
appears to be a only slight improvement at each
stage. Parameters δi were unconstrained.

ble, since Sunday might be a severely squashed version of
Monday, i.e., fewer people come to work, but they follow
a similar hourly pattern.) Alternatively, is each day of the
week unique, or (again) might all weekdays be the same,
and similarly weekend days? Our tests become

T0 : ∀i, η1,i = . . . = η7,i (same time every day)

T1 : ∀i, η1,i = η7,i, η2,i = . . . = η6,i (weekends, weekdays)

T2 : ∀i, η1,i �= . . . �= η7,i (all time effects separate)

The results, shown in Table 4, show a small but distinct
preference for T1, indicating that although weekends and
weekdays have differing profiles, one can better predict be-
havior by combining data across weekdays and weekends.
Other tests, such as whether Fridays differ from other days,
can be accomplished using similar estimates.

9. ESTIMATING EVENT ATTENDANCE
Along with estimating the probability that an unusual

event is taking place, as part of the inference procedure our
model also estimates the number of counts which appear
to be associated with that event. Marginalizing over the
other variables, we obtain a distribution over how many ad-
ditional people seem to be entering or leaving the building
or the number of extra vehicles entering the freeway during
a particular time period. One intriguing use for this infor-
mation is to provide a score, or some measure of popularity,
of each event.

As an example, taking our collection of LA Dodgers base-
ball games, we compute and sum the posterior mean of extra
(event-related) vehicles observed, NE(t), during the dura-
tion of the event detection. Figure 15 shows that our esti-
mate of the number of additional cars is positively correlated
with the actual overall attendance recorded for the games
(correlation coefficient 0.66). Similar attendance scores can
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Figure 15: The attendance of each baseball game
(y-axis) shows correlation with the number of ad-
ditional (event–related) vehicles detected by the
model (x-axis).

be computed for the building data, or other quantities such
as duration estimated, though for these examples no ground
truth exists for comparison.

10. CONCLUSION
We have described a framework for building a probabilis-

tic model of time–varying counting processes, in which we
observe a superposition of both time–varying but regular
(periodic) and aperiodic processes. We then applied this
model to two different time series of counts of the number
of people entering and exiting through the main doors of
a campus building and the number of vehicles entering a
freeway, both over several months. We described how the
parameters of the model may be estimated using MCMC
sampling methods, while simultaneously detecting the pres-
ence of anomalous increases in the counts. This detection
process naturally accumulates information over time, and by
virtue of having a model of uncertainty gives a natural way
to compare potentially anomalous events occurring on dif-
ferent days or times. We also showed that the detection can
be performed in real–time by fixing the parameter distrib-
utions obtained during MCMC and performing a simplified
form of forward inference.

Using a probabilistic model also allows us to pose alter-
native models and test among them in a principled way.
Doing so, we can answer questions about how the observed
behavior varies over time, and how predictable that behav-
ior is. Finally, we described how the information obtained in
the inference process can be used to provide an interesting
source of feedback, for example estimating event popularity
and attendance.

An interesting direction for future work is to simultane-
ously model multiple correlated time-series, such as those
arising from people counts from multiple doors (and perhaps
from multiple different types of sensors) as well as multi-
ple time-series from different loop sensors along a freeway.
More sensors provide richer information about occupancy
and behavioral patterns, but it is an open question how
these co-varying data streams should be combined, and to
what degree their parameters can be shared.
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