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Abstract— Automatic self-localization is a critical need for the
effective use of ad-hoc sensor networks in military or civilian ap-
plications. In general, self-localization involves the combination of
absolute location information (e.g. GPS) with relative calibration
information (e.g. distance measurements between sensors) over
regions of the network. Furthermore, it is generally desirable
to distribute the computational burden across the network
and minimize the amount of inter-sensor communication. We
demonstrate that the information used for sensor localization is
fundamentally local with regard to the network topology and use
this observation to reformulate the problem within a graphical
model framework. We then present and demonstrate the utility of
nonparametric belief propagation (NBP), a recent generalization
of particle filtering, for both estimating sensor locations and
representing location uncertainties. NBP has the advantage that
it is easily implemented in a distributed fashion, admits a wide
variety of statistical models, and can represent multi-modal
uncertainty. Using simulations of small- to moderately-sized
sensor networks, we show that NBP may be made robust to
outlier measurement errors by a simple model augmentation, and
that judicious message construction can result in better estimates.
Furthermore, we provide an analysis of NBP’s communications
requirements, showing that typically only a few messages per
sensor are required, and that even low bit-rate approximations
of these messages can have little or no performance impact.

I. INTRODUCTION

Improvements in sensing technology and wireless com-
munications are rapidly increasing the importance of sen-
sor networks for a wide variety of application domains [1,
2]. Collaborative networks are created by deploying a large
number of low-cost, self-powered sensor nodes of varying
modalities (e.g. acoustic, seismic, magnetic, imaging, etc.).
Sensor localization, i.e. obtaining estimates of each sensor’s
position as well as accurately representing the uncertainty of
that estimate, is a critical step for effective application of large
sensor networks. Manual calibration1 of each sensor may be
impractical or even impossible, and equipping every sensor
with a GPS receiver or equivalent technology may be cost
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1In the context of this paper, we use the term localization interchangeably
with the more general term calibration in sensor networks.

prohibitive. Consequently, methods of self-localization which
can exploit relative information (e.g. obtained from received
signal strength or time delay between sensors) and a limited
amount of global reference information as might be available
to a small subset of sensors are desirable. In the wireless
sensor network context, localization is further complicated by
the need to minimize inter-sensor communication in order to
preserve energy resources.

We present a localization method in which each sensor has
available noisy distance measurements to neighboring sensors.
In the special case that the noise on distance observations is
well modeled by a Gaussian distribution, localization may be
formulated as a nonlinear least-squares optimization problem.
In [3] it was shown that a relative calibration solution which
approached the Cramer-Rao bound could be obtained using an
iterative optimization approach.

In contrast, we reformulate localization as an inference
problem on a graphical model. This allows us to apply
nonparametric belief propagation (NBP, [4]), a variant of the
popular belief propagation (BP) algorithm [5], to obtain an
approximate solution. This approach has several advantages:

• It exploits the local nature of the problem; a given sen-
sor’s location estimate depends primarily on information
about nearby sensors.

• It naturally allows for a distributed estimation procedure.
• It is not restricted to Gaussian measurement models.
• It produces both an estimate of sensor locations and a

representation of the location uncertainties.
The last is notable for random sensor deployments where
multi-modal uncertainty in sensor locations is a frequent
occurrence. Furthermore, estimation of uncertainty (whether
multi-modal or not) provides guidance for expending addi-
tional resources in order to obtain more refined solutions.

In the subsequent sections, we describe the sensor local-
ization problem in more detail and relate it to inference
in graphical models. In Sections II–III, we formalize the
problem and discuss the types of uncertainty which occur in
localization. Section IV re-formulates the localization problem
as a graphical model, and presents a solution based on the NBP
algorithm. We show several empirical examples demonstrating
the ability of NBP to solve difficult distributed localization
problems. We conclude with three modifications to improve
NBP’s performance in practical applications: Section VI shows
how NBP may be augmented to include an outlier model
in the measurement process, and demonstrates its improved
robustness to non-Gaussian measurement errors; Section VII
presents an alternative sampling procedure which may improve
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the performance of NBP in systems with limited computational
resources; and Section VIII considers the communication costs
inherent in a distributed implementation of NBP, and provides
simulations to demonstrate the inherent tradeoff between com-
munication and estimate quality.

II. SELF-LOCALIZATION OF SENSOR NETWORKS

This section describes a statistical framework for the sensor
network self-localization problem, similar but more general
than that given in [6]. We restrict our attention to cases in
which individual sensors obtain noisy distance measurements
of a (usually nearby) subset of the other sensors in the network.
This includes, for example, scenarios in which each sensor
is equipped with a wireless and/or acoustic transceiver and
distance is estimated by received signal strength or time delay
of arrival between sensor locations. Typically this involves a
broadcast from each source as all other sensors listen [6, 7].

While the framework we describe is not the most general
possible, it is sufficiently flexible to be extended to more
complex scenarios. For instance, our method may be easily
modified to fit cases in which sources are not co-located with
a cooperating sensor, to incorporate direction-of-arrival infor-
mation (which also necessitates estimation of the orientation
of each sensor) [6], or simultaneous estimation of other sensor
characteristics such as transmitter power [7].

Let us assume that we have N sensors scattered in a planar
region, and denote the two-dimensional location of sensor t
by xt. The sensor t obtains a noisy measurement dtu of its
distance from sensor u with some probability Po(xt, xu):

dtu = ‖xt − xu‖ + νtu νtu ∼ pν(xt, xu) (1)

We use the binary random variable otu to indicate whether this
observation is available, i.e. otu = 1 if dtu is observed, and
otu = 0 otherwise. Finally, each sensor t has a (potentially
uninformative) prior distribution, denoted pt(xt). Thus, the
joint distribution is given by

p(x1, . . . , xN , {otu}, {dtu}) =
∏

(t,u)

p(otu|xt, xu)
∏

(t,u):otu=1

p(dtu|xt, xu)
∏

t

pt(xt) (2)

The typical goal of sensor localization is to estimate the
maximum likelihood (ML) sensor locations xt given a set of
observations {dtu}. Of course, there is a distinction between
the individual ML estimates of each xt versus the ML estimate
of all {xt} jointly. For this work, it is convenient to select
the former; in a discrete system, this would correspond to
minimizing the bit-error rate (as opposed to an “all-or-nothing”
sequence-error probability).

The estimated distances dut and dtu may be different, and
it is even possible to have out 6= otu (indicating that only
one of sensors u and t can observe the other). It will later
be convenient to symmetrize these relationships, a process
which involves exchanging information between any pair of
sensors u, t which observe either dtu or dut; this may involve
multi-hop message routing or other communication protocols
which are beyond the scope of this paper. For Gaussian
pν , the two estimates are simply averaged. However, for

arbitrary distributions the process of using both measurements,
while not difficult, becomes notationally cumbersome; we thus
assume in the development that out = otu and dut = dtu, and
include remarks on the differences when this is not the case.

Also, the amount of prior location information may be
almost nonexistent. In this case, we may wish to solve for a rel-
ative sensor geometry (versus estimating the sensor locations
with respect to some absolute frame of reference) [3]. Given
only the relative measurements {otu, dtu}, the sensor locations
xt may only be solved up to an unknown rotation, translation,
and negation (mirror image) of the entire network. We avoid
ambiguities in the relative calibration case by assuming priors
which enforce known conditions for three sensors (denoted
s1, s2, s3):

1) Translation: s1 has known location (taken to be the
origin: x1 = [0; 0])

2) Rotation: s2 is in a known direction from s1 (x2 = [0; a]
for some a > 0)

3) Negation: s3 has known sign (x3 = [b; c] for some b, c
with b > 0).

Typically s1, s2, s3 are taken to be spatially close to each
other in the network. When our goal is absolute calibration
(calibration with respect to a known coordinate reference), we
simply assume that the prior distributions pt(xt) contain suf-
ficient information to resolve this ambiguity. The sensors with
significant prior information (or s1...3 for relative calibration)
are referred to as anchor nodes.

In general finding the ML sensor locations is a complex
nonlinear optimization problem. If the uncertainties pν , pt

above are Gaussian and Po is assumed constant, ML joint
estimation of the {xt} reduces to a nonlinear least-squares
optimization [6]. In the case that we observe distance measure-
ments between all pairs of sensors (i.e. Po(·) ≡ 1), this also
corresponds to a well studied distortion criterion (“STRESS”)
in multidimensional scaling problems [8]. However, for large-
scale sensor networks, it is reasonable to assume that only
a subset of pairwise distances will be available, primarily
between sensors which are in the same region. One model
(proposed by [3]) assumes that the probability of detecting
nearby sensors falls off exponentially with squared distance:

Po(xt, xu) = exp
(

−.5 ‖xt − xu‖
2/R2

)

(3)

We use (3) in our example simulations, though alternative
forms are equally simple to incorporate into our framework,
leaving open the possibility of estimating Po from training
data, if available; such experiments have already been per-
formed for certain sensor types and measurement methods [7].

A large number of methods have been previously proposed
to estimate sensor locations [7, 9–13]. An exhaustive cate-
gorization is beyond the scope of this paper; here we are
able to list only a few. For better or worse, many of these
methods eschew a statistical interpretation in favor of compu-
tational simplicity. Some examples include approximating the
unobserved distances and applying classical multidimensional
scaling [8], multi-lateration [12], or other techniques [9]. Other
approaches search for locations which satisfy convex distance
constraints [11]. Yet another method heuristically minimizes
the rank of the distance matrix [14].
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Fig. 1. Example sensor network. (a) Sensor locations are indicated by symbols and distance measurements by connecting lines. Calibration
is performed relative to the three sensors drawn as circles. (b) Marginal uncertainties for the two remaining sensors (one bimodal, the other
crescent-shaped), indicating that their estimated positions may not be reliable. (c) Estimates of the same marginal distributions using NBP.

However, these algorithms often lack a direct statistical in-
terpretation, and as one consequence rarely provide an estimate
of the remaining uncertainty in each sensor location. Iterative
least-squares methods such as [6, 10, 12, 13] do have a statisti-
cal interpretation, but assume a Gaussian model for all uncer-
tainty, which may be questionable in practice. As we discuss in
Section III, non-Gaussian uncertainty is a common occurrence
in sensor localization problems. In consequence, the Cramer-
Rao bound may be an overly optimistic characterization of
the actual sensor location uncertainty, particularly for multi-
modal distributions. Estimating which, if any, sensor positions
are unreliable is an important task when parts of the network
are under-determined. Furthermore, Gaussian noise models are
often inadequate for real-world noise, which may have some
fraction of highly erroneous (outlier) measurements.

In this paper we pose the sensor localization problem as
inference on a graphical model, and propose an approximate
solution making use of a recent sample-based message-passing
estimation technique called nonparametric belief propagation
(NBP). NBP allows us to apply the general, flexible statistical
formulation described above, and can capture the complex
uncertainties which occur in localization of sensor networks.

III. UNCERTAINTY IN SENSOR LOCATION

The sensor localization problem as described in the previous
section involves the optimization of a complex nonlinear
likelihood function. However, it is often desirable to also have
some measure of confidence in the estimated locations. Even
for Gaussian measurement noise ν, the nonlinear relationship
of inter-sensor distances to sensor positions results in highly
non-Gaussian uncertainty of the sensor location estimates.

For sufficiently small networks it is possible to use Gibbs
sampling [15] to obtain samples from the joint distribution
of the sensor locations. In Fig. 1(a), we show an example
network with five sensors. Calibration is performed relative
to measurements from the three sensors marked by circles. A
line is shown connecting each pair of sensors which obtain
a distance measurement. Contour plots of the marginal distri-
butions for the two remaining sensors are given in Fig. 1(b);
these sensors do not have sufficient information to be well-
localized, and in particular have highly non-Gaussian, multi-
modal uncertainty (suggesting the utility of a nonparametric
representation). Although we defer the details of NBP to
Section IV-C, for comparison an estimate of the same marginal
uncertainties performed using NBP is displayed in Fig. 1(c).

Fig. 2. Graph separation and conditional independence of variables:
all paths between the sets A and C pass through B, implying
p(xA, xC |xB) = p(xA|xB)p(xC |xB).

IV. GRAPHICAL MODELS FOR LOCALIZATION

Graphical models are a popular means of encapsulating
the factorization of a probability distribution, enabling the
application of a number of simple, general algorithms for
exact or approximate inference [5, 16, 17]. Interpreting the
distribution (2) as a graphical model allows one in principle
to apply any of a number of inference algorithms [16, 17],
of which belief propagation (BP) is perhaps the best-known.
In practice, however, we shall see that the typical, discrete
implementation of BP has an unacceptably high computational
cost. However, a particle-based approximation to BP, called
nonparametric belief propagation (NBP), results in a more
tractable algorithm.

A. Graphical Models

An undirected graphical model consists of a set of vertices
V = {vt} and a collection of edges etu ∈ E. Two vertices
vt, vu are connected if there exists an edge etu ∈ E between
them, and a subset A ⊂ V is fully connected if all pairs of
vertices vt, vu ∈ A are connected. Each vertex vt is also asso-
ciated with a random variable xt, and the edges of the graph
are used to indicate conditional independence relationships
through graph separation. Specifically, if every path between
two sets A,C ⊂ V passes through a set B ⊂ V (see Fig. 2),
then the sets of random variables xA = {xa : va ∈ A} and
xC = {xc : vc ∈ C} are independent given xB = {xb : vb ∈
B}. This relationship may also be written in terms of the joint
distribution: p(xA, xB , xC) = p(xB)p(xA|xB)p(xC |xB).

The relationship between the graph and joint distribution
may be quantified in terms of potential functions ψ which are
defined over the graph’s cliques (the fully connected subsets
of V ), which we denote by Q [16]:

p(x1, . . . , xN ) ∝
∏

cliques Q

ψQ({xi : i ∈ Q}) (4)
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Again taking xt to be the location of sensor t, we may
immediately define potential functions which equate (4) to
the joint distribution (2). Notably, this only requires functions
defined over single nodes and pairs of nodes. Take

ψt(xt) = pt(xt) (5)

to be the single-node potential at each node vt, and define the
pairwise potential between nodes vt and vu as

ψtu(xt, xu)=

{

Po(xt, xu) pν(dtu − ‖xt − xu‖) if otu = 1

1 − Po(xt, xu) otherwise
(6)

We make no distinction between ψtu and ψut, only one
of which2 appears in the product (4). The joint posterior
likelihood of the xt is then

p(x1, . . . , xN |{otu, dtu}) ∝
∏

t

ψt(xt)
∏

t,u

ψtu(xt, xu) (7)

Notice also that for non-constant Po every sensor t has some
information about the location of each sensor u (i.e. there
is some information contained in the fact that two sensors
do not observe a distance between them, namely that they
should prefer to be far from each other). This is a probabilistic
relationship, and thus can account for the fact that sometimes
(such as in the case of physical barriers) sensors which are
near may still not observe each other.3

Unfortunately, fully connected graphs are very difficult
for most inference algorithms, and thus it behooves us to
approximate the exact model. Experimentally (see [18]) it
appears that there is little loss in information by discarding
the interactions between nodes which are far apart, in the
following sense. Let the “1-step” graph be the graph in which
we join two nodes t, u if and only if we observe a distance
dtu (so that otu = 1). We create the “2-step” graph by also
adding an edge between t and u if we observe dtv and dvu for
some sensor v, but not dtu, and may extend this definition to
“3-step” and so forth. Edges for which otu = 1 we refer to as
observed; those with otu = 0 we call unobserved edges. Note
that the “1-step” graph is exact if Po is a constant, since in this
case the unobserved edges offer no additional information.

There is also a convenient relationship between the statis-
tical and communications graph in localization. Specifically,
distance measurements are only obtained for sensor pairs
which have communications links4. Thus, messages along ob-
served edges may be communicated directly, while messages
along unobserved edges may require a multi-hop forwarding
protocol (with 2-step edges requiring at most 2 hops, etc.).

2The definition of ψ is slightly more complicated for asymmetric measure-
ments, since to obtain a self-consistent undirected graphical model we require
both t and u to know and agree on ψtu = ψut, which will thus involve all
four quantities otu, out, dtu, dut.

3The effect of these constraints is similar to, but less strict than, that
achieved by approximating unobserved distances by shortest paths [12], and to
the non-convex constraints mentioned in [11]. This has the additional benefit
of being less vulnerable to distortion (as observed by [12]) when the sensor
configuration is not entirely convex.

4While technically the time-varying nature of these links means that
communications may not be entirely reliable, we ignore this subtlety and
assume that, over the short period of time in which localization is performed,
the communications graph is stable.

B. Belief Propagation

Having defined a graphical model for sensor localization,
we now turn to the task of estimating the sensor locations.
Inference among variables in a graphical model is a problem
which has received considerable attention. Although exact
inference in general graphs can be NP-hard, approximate infer-
ence algorithms such as loopy belief propagation (BP) [5, 19]
produce excellent empirical results in many cases. BP can be
formulated as an iterative, local message passing algorithm, in
which each node vt computes its “belief” about its associated
variable xt, communicates this belief to and receives messages
from its neighbors, then updates its belief and repeats. In the
wireless localization context, such algorithms are apropos.

The computations performed at each iteration of BP are
relatively simple. In integral form, each node vt computes
its belief about xt (a normalized estimate of the posterior
likelihood of xt) at iteration n by taking a product of its local
potential ψt with the messages from its neighbors, denoted Γt:

p̂n(xt) ∝ ψt(xt)
∏

u∈Γt

mn
ut(xt) (8)

Typically the (arbitrary) proportionality constants are chosen
to normalize p̂n, i.e.

∫

p̂n(xt)dxt = 1. The messages mtu

from the node vt to vu are computed in a similar fashion:

mn
tu(xu) ∝

∫

ψtu(xt, xu)ψt(xt)
∏

v∈Γt\u

mn−1
vt (xt) dxt

∝

∫

ψtu(xt, xu)
p̂n−1(xt)

mn−1
ut (xt)

dxt (9)

One appealing consequence of using a message-passing
inference method and assigning each vertex of the graph
to a sensor in the network is that computation is naturally
distributed. Each node (sensor) performs computations using
information sent by its neighbors, and disseminates the results,
as described in Alg. 1. This process is repeated until some
convergence criterion is met, after which each sensor is left
with an estimate of its location and uncertainty.

Alg. 1 also uses a suggestion of [20], in which a re-
weighted marginal distribution p̂n(xt) is used as an estimate
of the product of messages (9). In addition to the advantages
discussed in [20], this has a hidden communication benefit—
all messages from t to its neighbors Γt may be communicated
simultaneously via a broadcast step. This is because the
message from t to each neighbor u ∈ Γt is a function of
the marginal p̂n−1(xt), the previous iteration’s message from
u to t, and the compatibility ψtu (which depends only on the
observed distance between t and u). Since the latter two quan-
tities are also known at node u, t may simply communicate
its estimated marginal p̂n(xt) to all its neighbors, and allow
each u to deduce the rest.

C. Nonparametric Belief Propagation

The BP update and belief equations (8)-(9) are easily
computed in closed form for discrete or Gaussian likelihood
functions; unfortunately neither discrete nor Gaussian BP is
well-suited to localization, since even the two-dimensional
space in which the xt reside is too large to accommodate an
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Alg. 1: Belief propagation for sensor self-localization.

efficient discretized estimate5, and the presence of nonlinear
relationships and potentially highly non-Gaussian uncertainties
makes Gaussian BP undesirable as well. The development of
a version of BP making use of particle-based representations,
called nonparametric belief propagation (NBP) [4], enables the
application of BP to inference in sensor networks.

In NBP, each message is represented using either a sample-
based density estimate (as a mixture of Gaussians) or as an
analytic function. Both types are necessary for the sensor
localization problem. Messages along observed edges are
represented by samples, while messages along unobserved
edges must be represented as analytic functions since often
1 − Po(xt, xu) is not normalizable (typically tending to 1 as
‖xt − xu‖ becomes large) and thus is poorly approximated
by any finite set of samples. The belief and message update
equations (8)-(9) are performed using stochastic approxima-
tions, in two stages: first, drawing samples from the estimated
marginal p̂(xt), then using these samples to approximate each
outgoing message mtu. We discuss each of these steps in turn,
and summarize the procedure in Alg. 2.

Given M weighted samples {w
(i)
t , x

(i)
t } from the marginal

estimate p̂n
t (xt) obtained at iteration n, computing a Gaussian

mixture estimate of the outgoing message from t to u is
relatively simple. We first consider the case of observed edges.
Given a measurement of the distance dtu, each sample x(i)

t is
moved in a random direction by dtu plus noise6:

m
(i)
tu = x

(i)
t + (dtu + ν(i))[sin(θ(i)); cos(θ(i))]

θ(i) ∼ U [0, 2π) ν(i) ∼ pν (10)

The samples are then weighted by the remainder of (9),
w

(i)
tu = w

(i)
t · Po(m

(i)
tu )/mut(x

(i)
t ), and (as is typical in kernel

density estimation) a single covariance Σtu is assigned to
all samples. There are a number of possible techniques for
choosing the covariance Σtu; one simple method is the rule
of thumb estimate [23], given by computing the (weighted)

5For M bins per dimension, calculating each message requires O(M4)
operations, though there has been some work to improve this [21, 22].

6If pν is non-Gaussian and dtu 6= dut, we may draw some samples
according to each of p(xu|xt, dtu) and p(xu|xt, dut) and weight by the
influence of the other observation.

covariance of the samples

Covar[m(i)
tu ] =

∑

i,j

w
(i)
tuw

(j)
tu (m

(i)
tu − m̄)(m

(j)
tu − m̄)T (11)

(where m̄ =
∑

i w
(i)
tum

(i)
tu ) and dividing by M

1

3 . A simple
and computationally efficient alternative has been proposed
by [24]; if the uncertainty added by ψtu is Gaussian, we may
simply use the mean (ν(i) = 0) and apply the covariance of
the Gaussian uncertainty to each sample (Σtu = σ2

νI). This
method may also be extended to small Gaussian mixtures, and
works well when the number of particles is sufficiently large.

As stated previously, messages along unobserved edges
(pairs t, u for which dtu is not observed) are represented using
an analytic function. Using the probability of detection Po and
samples from the marginal at xt, an estimate of the outgoing
message to u is given by

mtu(xu) = 1 −
∑

i

w
(i)
t Po(xu − x

(i)
t ) (12)

which is easily evaluated for any analytic model of Po.
Estimation of the marginal p̂n = ψt

∏

mut is potentially
more difficult. Since it is the product of several Gaussian
mixtures, computing p̂n exactly is exponential in the number
of incoming messages. However, efficient methods of drawing
samples from the product of several Gaussian mixture densities
is investigated in [25]; in this work we primarily use a
technique called mixture importance sampling. Denote the
set of neighbors of t having observed edges to t by Γo

t . In
order to draw M samples, we create a collection of k · M
weighted samples (where k ≥ 1 is a parameter of the sam-
pling algorithm) by drawing kM

|Γo
t
| samples from each message

mut, u ∈ Γo
t and assigning each sample a weight equal to the

ratio
∏

v∈Γt
mvt/

∑

v∈Γo
t

mvt. We then draw M values from
this collection with probability proportional to their weight
(with replacement), yielding equal-weight samples drawn from
the product of all incoming messages. Computationally, this
requires O(k|Γt|M) operations per marginal estimate.

V. EMPIRICAL CALIBRATION EXAMPLES

We show two example sensor networks to demonstrate
NBP’s utility. All the networks in this section have been
generated by placing N sensors at random with spatially
uniform probability in an L × L area, and letting each
sensor observe its distance from another sensor (corrupted by
Gaussian noise with variance σ2

ν) with probability given by (3).
We investigate the relative calibration problem, in which the
sensors are given no absolute location information; the anchor
nodes are indicated by open circles. These simulations used
M = 200 particles and underwent three iterations of the
sequential message schedule described in Section VIII; each
iteration took less than 1 second per node on a P4 workstation.

The first example (Fig. 3(a)) shows a small graph (N = 10),
generated using R/L = .2 and noise σν/L = .02; this made
the average measured distance about .33L, and each sensor
observed an average of 5 neighbors. One sensor (the lowest)
has significant multi-modal location uncertainty, since it ob-
serves only two measurements. The joint MAP configuration
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Fig. 3. (a) A small (10-sensor) graph with edges denoting observed pairwise distances; (b) the same network with “2-step” unobserved
relationships also shown. Calibration is performed relative to the sensors drawn as open circles. (c) A centralized estimate of the MAP solution
shows generally similar errors (lines) to (d), NBP’s approximate (marginal maximum) solution. However, NBP’s estimate of uncertainty (e)
for the poorly-resolved sensor displays a clear bi-modality. Adding “2-step” potentials (f) results in a reduction of the spurious mode and
an improved estimate of location.

Alg. 2: Using NBP to compute messages and marginals for sensor
localization.

is shown in Fig. 3(c) while the “1-step” NBP estimate is
shown in Fig. 3(d). Comparison of the error residuals would
indicate that NBP has significantly larger error on the sensor
in question. However, this is mitigated by the fact that NBP
has a representation of the marginal uncertainty (shown in
Fig. 3(e)) which accurately captures the bi-modality of the
sensor location, and which could be used to determine that
the location estimate is questionable. Additionally, exact MAP
uses more information than “1-step” NBP. We approximate
this information by including some of the unobserved edges
(“2-step” NBP). The result is shown in Fig. 3(f); the error

residuals are now comparable to the exact MAP estimate.
While the previous example illustrates some important de-

tails of the NBP approach, our primary interest is in automatic
calibration of moderate- to large-scale sensor networks with
sparse connectivity. We examine a graph of a network with
100 sensors generated with R/L = .08 (giving an average
of about 9 observed neighbors) and σν/L = .005, shown in
Fig. 4. For problems of this size, computing the true MAP
locations is considerably more difficult. The iterative nonlinear
minimization of [3] converges slowly and is highly dependent
on initialization. As a benchmark to illustrate the best possible
performance, an idealized estimate in which we initialize using
the true locations is shown in Fig. 4(c). In practice, we cannot
expect to perform this well; starting from a more realistic value
(initialization given by classical MDS [8]) finds the alternate
local minimum shown in Fig. 4(d). The “1-step” and “2-step”
NBP solutions are shown in Fig. 4(e)-(f). Errors due to multi-
modal uncertainty similar to those discussed previously arise
for a few sensors in the “1-step” case. Examination of the
“2-step” solution shows that the errors are comparable to the
estimate with an idealized initialization.

In the “2-step” examples above, we have included all “2-
step” edges, but this is often not required. The sensors which
require this additional information are typically those with too
few observed neighbors, and we could achieve similar results
by including only “2-step” edges which are incident on a node
with fewer than, for example, four observed edges.

VI. MODELING NON-GAUSSIAN MEASUREMENT NOISE

It is straightforward to change the form of the noise distri-
bution pν so long as sampling remains tractable. This may be
used to accommodate alternative distance noise models such
as the log-normal model of [10], as might arise when distance
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Fig. 4. Large (100-node) example sensor network. (a-b) 1- and 2-step edges. Even in a centralized solution we can at best hope for (c)
the local minimum closest to the true locations; a more realistic initialization (d) yields higher errors. NBP (e-f) provides similar or better
estimates, along with uncertainty, and is easily distributed. Calibration is performed relative to the three sensors shown as open circles.

between sensor pairs is estimated using the received signal
strength, or models which have been learned from data [7].

Although this fact can also be used to model the presence
of a broad outlier process, the form of NBP’s messages
as Gaussian mixtures provides a more elegant solution. We
augment the Gaussian mixtures in each message by a single,
high-variance Gaussian to approximate an outlier process in
the uncertainty about dtu, in a manner similar to [24]. To be
precise, we add an extra particle to each outgoing message,
centered at the mean of the other particles and with weight and
variance chosen to model the expected outliers, e.g. weight
equal to the probability of an outlier, and standard deviation
sufficiently large to cover the expected support of Po. Direct
approximation of the outlier process requires fewer particles
than naive sampling to adequately represent the message, and
thus is also more computationally efficient.

Fig. 5(a) shows the same small (N = 10) “1-step” network
examined in Fig. 3 but with several additional distance mea-
surements (indicated as lines), on which we have introduced
a single outlier measurement (the dashed line). We again
perform calibration relative to the three sensors shown as
circles. If we possessed an oracle which allowed us to detect
and discard the erroneous measurement, the optimal sensor lo-
cations can be found using an iterative nonlinear least-squares
optimization [3]; the residual errors after this procedure (for a
single noise realization) are shown in Fig. 5(b). However, with
the outlier measurement present, the same procedure results
in a large distortion in the estimates of some sensor locations
(Fig. 5(c)). NBP, by virtue of the measurement outlier process
discussed in Section IV-C, remains robust to this error and
produces the near-optimal estimate shown in Fig. 5(d).

In order to provide a measure of the robustness of NBP in

the presence of non-Gaussian (outlier) distance measurements,
we perform Monte Carlo trials, keeping the same sensor
locations and connectivity used in Fig. 5(a) but introducing
different sets of observation noise and outlier measurements.
At every trial, each distance measurement is replaced with
probability .05 by a value drawn uniformly in [0, L]. As there
are 37 measurements in the network, on average approximately
two outlier measurements are observed in each trial. We then
measure the number of times each sensor’s estimated location
is within distance r of its true location, as a function of r/L.
We repeat the same experiments for two noise levels, σν/L =
.02 and σν/L = .002. The curves are shown in Fig. 6 for
both NBP and nonlinear least-squares estimation. As can be
seen, NBP provides an estimate which is more often “nearby”
to the true sensor location, indicating its increased robustness
to the outlier noise; this becomes even more prominent as the
σν becomes small and the outlier process begins to dominate
the total noise variance. Both methods asymptote around 90%,
indicating the probability that the outlier process completely
overwhelms the information at one or more nodes.

However, Fig. 6 understates the advantages of NBP for this
scenario. NBP also provides an estimate of the uncertainty
in sensor position; trials resulting in large errors also display
highly uncertain (often bimodal) estimates for the sensor loca-
tions in question, as in Fig. 1. Thus, in addition to providing
a more robust estimate of sensor location, NBP also provides
a measure of the reliability of each estimate.

VII. PARSIMONIOUS SAMPLING

We may also apply techniques from importance sam-
pling [26, 27] in order to improve the small-sample perfor-
mance of NBP, which may play an important part of reducing
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Fig. 5. (a) A small (10-sensor) graph and the observable pairwise distances; calibration is performed relative to the location of the sensors
shown in green. One distance (shown as dashed) is highly erroneous, due to a measurement outlier. (b) The MAP estimate of location,
discarding the erroneous measurement. (c) A nonlinear least-squares estimate of location is highly distorted by the outlier; (d) NBP is robust
to the error by inclusion of a measurement outlier process in the model.

Fig. 6. Monte Carlo localization trials on the sensor network in
Fig. 5(a). We measure the probability of a sensor’s estimated location
being within a radius r of its true location (normalized by the region
size L), with noise σν = .02L and .002L for both NBP and nonlinear
least-squares, indicating NBP’s superior performance in the presence
of outlier measurements.

its computational burden. In Alg. 2, the outgoing messages
are computed via an importance sampling procedure to esti-
mate (9). In particular, samples are drawn from an approxi-
mation to (9) (called the proposal distribution in importance
sampling literature), then re-weighted so as to asymptotically
represent the target distribution (9).

So long as the proposal distribution f is absolutely contin-
uous with respect to the target distribution g (meaning g(x) >
0 ⇒ f(x) > 0), we are guaranteed that, for a sufficiently large
sample size M we can obtain samples which are representative
of g by drawing samples from f and weighting by g/f .
However, the sample size M is limited by computational
power, and as is well-known in particle filtering the low-
sample performance of any such approximation is strongly
influenced by the quality of the proposal distribution [26, 27].
In general, one takes f to be as close as possible to g while
remaining tractable for sampling. We accomplished this for (9)
by drawing samples from the marginal (8), weighting by the
remainder, and moving the particles in a random direction θ
by the observed distance dtu plus noise.

However, in the context of belief propagation, a good
proposal distribution is one which allows us to accurately
estimate the portions of mtu which contribute to the product
pu =

∏

smsu. We would like to use our limited representative
power on parts of the message which overlap with other
incoming messages, and any additional knowledge of p(xu)

Alg. 3: Using an alternative angular proposal distribution for NBP.
The previous iteration’s marginals may be used to estimate their
relative angle, and better focus samples on the region of importance.
The estimate is made asymptotically equivalent to that of Alg. 2 by
importance weighting.

may be used to focus samples in the correct region [20].
One alternative proposal distribution involves utilizing pre-

vious iterations’ information to determine the angular direction
to neighboring sensors. Rather than estimating a ring-like
distribution at each iteration (most of which is ignored as it
does not overlap with any other rings), successive estimates
are improved by estimating smaller and smaller arcs located in
the region of interest. A simple procedure implementing this
idea is given in Alg. 3. In particular, we use samples from the
marginal distributions computed at the previous iteration to
form a density estimate pθ of the relative direction θ, draw
samples from pθ, and weight them by 1

pθ

so as to cancel
the asymptotic effect of drawing samples from pθ rather than
uniformly. The process requires estimating a density which is
2π-periodic; this is accomplished by sample replication [23].

We first demonstrate the potential improvement on a small
example of only four sensors. Fig. 7(a)-(b) shows example
messages from three sensors to a fourth, with M = 30
particles. Using the additional angular information results in
the samples being clustered in the region of the product,
effectively similar to a larger value of M . To compare both
methods’ performance, we first construct the marginal estimate
using a large-M approximation (M = 1000), and compare (in
terms of KL-divergence) to the results of running NBP with
fewer samples (10 ≤ M ≤ 100) using both naive sampling
(θ ∼ U [0, 2π)) and Alg. 3. The results are shown in Fig. 7(c);
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Fig. 7. By using an alternate proposal distribution during NBP’s message construction step, we may greatly improve the fidelity of the
messages. (a) Naive (uniform) sampling in angle produces ring-shaped messages; however, (b) using previous iterations’ information we
may preferentially draw samples from the useful regions. Monte Carlo trials (c) show the improvement in terms of average K-L divergence
of the sensor’s estimated marginal (from an estimate performed with M = 1000 samples) as a function of the number of samples M used.
(d) In a larger (10-node) network, we begin to observe the effects of bias: for sufficiently large M performance improves, but for small M
we may become overconfident in a poor estimate.

as expected, we find that Alg. 3 concentrates more samples in
the region of interest, reducing the estimate’s KL divergence.

As noted in [20], however, by re-using previous iterations’
information we run the risk of biasing our results. The re-
sults of a more realistic situation are shown in Fig. 7(d)—
performing the same comparison on for a relative calibration
of the 10-node sensor network (shown in Fig. 3(b) reveals
the possibility of biased results. When the number of particles
is sufficiently large (M ≥ 100), we observe the same im-
provement as seen in the 4-node case. However, for very few
particles (M = 25), we see that it is possible for our biased
sampling method to reinforce incorrect estimates, ultimately
worsening performance.

VIII. INCORPORATING COMMUNICATIONS CONSTRAINTS

Communications constraints are extremely important for
battery-powered, wireless sensor networks; it is one of the
primary factors determining sensor lifetime. There are a num-
ber of factors which influence the communications cost of a
distributed implementation of NBP. These include

1) Resolution, β, of all fixed- (or floating-) point values.
2) Number of iterations performed
3) Schedule—the order in which sensors transmit
4) Approximation—the fidelity to which the marginal esti-

mates are communicated between sensors
5) Censoring—sensors may save energy by electing not to

send a marginal which is “sufficiently similar” to the
previous iteration’s marginal.

All these aspects are, of course, interrelated, and also influence
the quality of any solution obtained; often their effects are
difficult to separate. Note that the number of particles M
used for estimating each message and marginal influences only
computational complexity. The following experiments used
M = 200 samples per message and marginal estimate, with
k = 5 times oversampling in the product computation.

Due to space constraints, we do not consider resolution or
similarity-based censoring here. We assume the resolution is
sufficiently high to avoid quantization artifacts; for example,
taking β = 16 bits is typically more than sufficient. Message
censoring can be used to decrease the total number of mes-
sages and as a convergence criterion [28], but its overall effect
in loopy graphs is difficult to determine [29].

A. Schedule and iterations

The message schedule has a strong influence on BP, af-
fecting the number of iterations until convergence and even
potentially the quality of the converged solution [30]. We
consider two possible BP message schedules, and analyze
performance on the 10-node graph shown in Fig. 3(b). Because
we are primarily concerned with the inter-sensor communica-
tions required, we enforce a maximum number of messages
per sensor, rather than the actual number of iterations.

The first BP schedule is a “sequential” schedule, in which
each sensor in turn transmits a message to all its neighbors.
We determine the order of transmission by beginning with
the anchor nodes, and moving outward in sequence based
on the shortest observed distance to any anchor. This has
similarities to schedules based on spanning trees [31], though
(since each sensor is transmitting to all neighbors) it is not
a tree-structured message ordering. For this schedule, one
iteration corresponds to one message from each sensor. Strictly
speaking, this ordering is only available given global informa-
tion (the observed distances of each sensor), but in practice
the schedule is robust to small reorderings and thus local or
randomized approximations to the sequential schedule could
be substituted. Here, however, we will ignore this subtlety.

The second BP schedule we consider is a “parallel” sched-
ule, in which a set of sensors transmit to their neighbors si-
multaneously. Since initially, large numbers of sensors have no
information about their location, we restrict the participating
nodes to be those whose belief is well-localized, as determined
by some threshold on the entropy of the belief p̂n(xt). To
provide a fair comparison with the sequential schedule, we
limit the number of iterations by allowing each sensor to
transmit only a fixed number of messages, terminating when
no more sensors are allowed to communicate.

Fig. 8(a) compares the two schedules’ performance over
100 Monte Carlo trials, measured by mean error in the
location estimates and as a function of the number of message
transmissions allowed by each schedule. As can be seen,
both schedules produce reasonably similar results, and neither
requires more than a few iterations (inter-sensor communica-
tions) to converge. Empirically, we find that the sequential
schedule performs slightly better on average.
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Fig. 8. Analyzing the communications cost of NBP. (a) The number of iterations required may depend on the message schedule, but is
typically very few (1-3). (b) The transmitted marginal estimates may be compressed by fitting a small Gaussian mixture distribution; a few
(1-3) components is usually sufficient.

Faulty communications (nodes’ failure to receive some
messages) may also be considered in terms of small deletions
in the BP message schedule. While the exact effect of these
changes is difficult to quantify, it is typically not catastrophic
to the algorithm.

B. Message approximation

We may also reduce the communications by approximat-
ing each marginal estimate as a small mixture of (diagonal
covariance) Gaussians before transmission (instead of sending
all particles). Such approximations may be constructed in any
number of ways; we use the Kullback-Liebler based approx-
imation of [32] due to its computational efficiency, though
more traditional methods such as Expectation-Maximization
could also be employed. Note that locally, each node retains
its sample-based density estimate (allowing tests for multi-
modality, etc.) regardless of how coarsely the transmissions
are approximated.

In order to observe the effect of this operation on mul-
timodal uncertainty, we performed 100 Monte Carlo trials of
NBP with measurement outliers (as in Section VI), but approx-
imated each message by a fixed number of components be-
fore transmitting. We apply the sequential schedule described
above. Fig. 8(b) shows the resulting marginal estimate errors
(measured by KL-divergence from exact message-passing with
1000 particles) as a function of the number of retained com-
ponents. Single Gaussian (unimodal) approximations to the
marginal beliefs resulted in a slight loss in performance, while
two-component (potentially bimodal) estimates proved better
at capturing the uncertainty. As a benchmark, representing
each Gaussian component costs at most 4β bits, so that a
two-component mixture at β = 16 is ≤ 128 bits per message.

IX. DISCUSSION

We proposed a novel approach to sensor localization, apply-
ing a graphical model framework and using a nonparametric
message-passing algorithm to solve the ensuing inference
problem. The methodology has a number of advantages.
First, it is easily distributed (exploiting local computation and
communications between nearby sensors), potentially reducing
the amount of communications required. Second, it computes
and makes use of estimates of the uncertainty, which may

subsequently be used to determine the reliability of each
sensor’s location estimate. The estimates easily accommodate
complex, multi-modal uncertainty. Third, it is straightforward
to incorporate additional sources of information, such as a
model of the probability of obtaining a distance measurement
between sensor pairs. Lastly, in contrast to other methods,
it is easily extensible to non-Gaussian noise models, which
may be used to model and increase robustness to measurement
outliers. In empirical simulations, NBP’s performance is com-
parable to the centralized MAP estimate, while additionally
representing the inherent uncertainties.

We have also shown how modifications to the NBP algo-
rithm can result in improved performance. The NBP frame-
work easily accommodates an outlier process model, increas-
ing the method’s robustness to a few large errors in distance
measurements for little to no computation and communication
overhead. Also, carefully chosen proposal distributions can
result in improved small-sample performance, reducing the
computational costs associated with calibration. Finally, appro-
priate message schedules require very few message transmis-
sions, and reduced-complexity representations may be applied
to lessen the cost of each message transmission with little or
no impact on the final solution.

There remain many open directions for continued research.
First, other message-passing inference algorithms (e.g. max-
product) might improve performance if adapted to high-
dimensional non-Gaussian problems. Also, alternative graph-
ical model representations may bear investigating; it may
be possible to retain fewer edges, or improve the accuracy
of BP by clustering nodes [16]. Given its promising initial
performance and many possible avenues of improvement, NBP
appears to provide a useful tool for estimating unknown sensor
locations in large ad-hoc networks.
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