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ABSTRACT

Automatic self-calibration of ad-hoc sensor networks is a critical
need for their use in military or civilian applications. In general,
self-calibration involves the combination of absolute location infor-
mation (e.g. GPS) with relative calibration information (e.g. time
delay or received signal strength between sensors) over regions of
the network. Furthermore, it is generally desirable to distribute the
computational burden across the network and minimize the amount
of inter-sensor communication. We demonstrate that the informa-
tion used for sensor calibration is fundamentally local with regard
to the network topology and use this observation to reformulate the
problem within a graphical model framework. We then demon-
strate the utility of nonparametric belief propagation (NBP), a re-
cent generalization of particle filtering, for both estimating sensor
locations and representing location uncertainties. NBP has the ad-
vantage that it is easily implemented in a distributed fashion, admits
a wide variety of statistical models, and can represent multi-modal
uncertainty. We illustrate the performance of NBP on several exam-
ple networks while comparing to a previously published nonlinear
least squares method.
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1. INTRODUCTION

Improvements in sensing technology and wireless communica-
tions are rapidly increasing the importance of sensor networks for
a wide variety of application domains [12, 8]. Collaborative net-
works are created by deploying a large number of low-cost, self-
powered sensor nodes of varying modalities (e.g. acoustic, seis-
mic, magnetic, imaging, etc). Sensor localization, i.e. obtaining
estimates of each sensor’s position as well as accurately represent-
ing the uncertainty of that estimate, is a critical step for effective
application of large sensor networks. Manual calibration of each
sensor may be impractical or even impossible, while equipping ev-
ery sensor with a GPS receiver or equivalent technology may be
cost prohibitive. Consequently, methods of self-calibration which
can exploit relative information (e.g. obtained from received sig-
nal strength or time delay between sensors) and a limited amount
of global reference information as might be available to a small
subset of sensors are desirable. In the wireless sensor network con-
text, self-calibration is further complicated by the need to minimize
inter-sensor communication in order to preserve energy resources.

We present a self-calibration method in which each sensor has
available noisy distance measurements to neighboring sensors. In
the special case that the noise on distance observations is well mod-
eled by a Gaussian distribution, self-calibration may be formulated
as a nonlinear least-squares optimization problem. In [15] it was
shown that a relative calibration solution which approached the
Cramer-Rao bound could be obtained using an iterative, central-
ized optimization approach.

In contrast, we reformulate the process of self-localization as an
inference problem on a graphical model. This allows us to apply
nonparametric belief propagation (NBP, [21]), a variant of the pop-
ular belief propagation (BP) algorithm [18], to obtain an approxi-
mate solution. The NBP approach provides several advantages:

e It exploits the local nature of the problem; a given sensor’s
estimate of location depends primarily on information about
nearby sensors.

o It naturally allows for a distributed estimation procedure.

e Itis more general in that it is not restricted to Gaussian mea-
surement models.

e It produces both an estimate of sensor locations and a repre-
sentation of the location uncertainties.

The last is notable for random sensor deployments where multi-
modal uncertainty in sensor locations is a frequent occurrence. Fur-



thermore, estimation of uncertainty (whether multi-modal or not)
provides guidance for expending additional resources in order to
obtain more refined solutions.

2. SELF-LOCALIZATION OF SENSOR
NETWORKS

\We restrict our attention to cases in which individual sensors ob-
tain noisy distance measurements of a (usually nearby) subset of
the other sensors in the network. This includes, for example, sce-
narios in which each sensor includes a transceiver and distance is
estimated by received signal strength or time delay of arrival be-
tween sensor locations. Although this formulation is slightly less
general than that presented in [14], it is straightforward to extend
our methodology to allow for the inclusion of direction-of-arrival
information and/or scenarios in which sources are not co-located
with a cooperating sensor.

Specifically, let us assume that we have N sensors scattered in
a planar region. Denote the two-dimensional location of sensor ¢
by x;. Two sensors ¢ and « obtain a noisy measurement d,, of the
distance between them with some probability P, (z+, zv):

diu = ||zt — u|| + Viu Vtu ~ Pv (2.1)

We use the binary random variable o, to indicate whether this ob-
servation is available, i.e. 04, = 1 if dy, is observed, and 0+, = 0
otherwise. Finally, each sensor ¢ has a (potentially uninformative)
prior distribution, denoted p (z+).

In general, finding the maximum likelihood (ML) sensor loca-
tions z; given a set of observations {d:.} is a complex nonlin-
ear optimization problem. If the uncertainties above are Gaus-
sian (i.e. the distributions p, = N(0,02), ps(2:) = N(dy,02))
and P, is assumed constant, ML estimation of the x+’s reduces to
a nonlinear least-squares optimization [15]. In the case that we
observe distance measurements between all pairs of sensors (i.e.
P,(-) = 1), this also corresponds to a well studied distortion crite-
rion (“STRESS”) in multidimensional scaling problems [23]. How-
ever, for large-scale sensor networks, it is reasonable to assume that
only a subset of pairwise distances will be available, primarily be-
tween sensors which are in the same region. One potential model
assumes that the probability of detecting nearby sensors falls off
exponentially with some power of the distance:

P
Py(x¢,xu) = €xp (fw) (2.2)
Rl
The intuition is that detection probability is directly related to re-
ceived power. Both quadratic p = 2 (e.g. [15]) and quartic p = 4
(for fading channels [19]) power laws have been discussed in the
literature.

We also draw a distinction between solving for a relative sen-
sor geometry versus estimating the sensor locations with respect to
some absolute frame of reference. It was shown in [15] that in some
cases these two problems can be equivalent, essentially when the
influence of prior information [T, p:(x:) is weak or nonexistent.
Given only the relative measurements {d.. }, the sensor locations
2, may only be solved up to an unknown rotation, translation, and
negation (mirror image) of the entire network. We avoid ambigui-
ties in the relative calibration case by assuming known conditions
for three sensors (denoted s1, s2, s3):

1. Trandation: s; has known location (taken to be the origin:
z1 = [0;0])

2. Rotation: s3 is in a known direction from s1 (z2 = [0; a] for
some a > 0)

3. Negation: s3 has known sign (z3 = [b; ¢| for some b, ¢ with
b > 0).

When our goal is absolute calibration, we assume that the prior
distributions p.(z:) contain sufficient information to resolve this
ambiguity.

A number of methods have already been proposed to estimate
sensor locations when only a subset of the pairwise distances are
measured. For example, one may approximate each unobserved
distance by the length of the shortest path along observed distances
between them, then apply classical multidimensional scaling; a
similar technique has become popular for low-dimensional embed-
ding problems [22]. Alternatively, iterative least-squares methods
have also been observed to yield good performance [15]. Yet an-
other possibility is to minimize rank using heuristics while preserv-
ing the fidelity of the observed distances [5].

However, the methods above are typically formulated as central-
ized, joint optimizations. In many cases, we would prefer a solution
whose computation is easily distributed throughout the network.
Decentralized estimation is particularly useful when the number of
sensors in our network is large but some (possibly small) fraction of
them have absolute location information (e.g. from GPS receivers).
In such scenarios, collecting and disseminating information across
the entire network can become more expensive than the local com-
munications required by a distributed method; see, for example, the
hop-count based algorithm of [17].

Perhaps more importantly, the methods above do not provide
an estimate of the remaining uncertainty about each sensor loca-
tion. As we show in the next sections, non-Gaussian uncertainty
is a common occurrence in sensor localization problems. In con-
sequence, the Cramer-Rao bound may give an overly optimistic
(and thus less useful) characterization of the actual sensor location
uncertainty, particularly for multi-modal distributions. Estimating
which, if any, sensor positions are unreliable is an important task
when parts of the network are under-determined. Furthermore, sim-
ulations in Section 4 suggest that under-determined networks of
sensors may be surprisingly common.

In this paper we propose an approximate solution making use of
a recent sample-based message-passing estimation technique called
nonparametric belief propagation (NBP). Prior to describing an
NBP-based approach to sensor localization, we attempt to char-
acterize some of the uncertainties which occur in self-calibration
of sensor networks. We then analyze an idealized version of the
calibration problem for randomly deployed sensors showing how
frequently a unique solution of sensor locations exists. In Section 5
we re-formulate the self-calibration problem as a graphical model,
and present a solution based on the NBP algorithm in Section 5.2.
We conclude with several empirical examples demonstrating the
ability of NBP to solve difficult distributed localization problems.

3. UNCERTAINTY INSENSOR LOCATION

The sensor localization problem as described in the previous sec-
tion involves the optimization of a complex nonlinear likelihood
function. However, it is often desirable to also have some measure
of confidence in the estimated locations. Even for Gaussian noise
v on measured distance, the nonlinear relationship of inter-sensor
distances to sensor positions results in highly non-Gaussian uncer-
tainty.

For sufficiently small networks it is possible to use Monte Carlo
techniques such as Gibbs sampling [7] to obtain samples from the
joint distribution of the sensor locations. In Figure 1(a), we show
an example network with five sensors. Calibration is performed
relative to measurements from the three sensors marked by circles.
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Figure 1: Example sensor network. (a) Sensor locations are indicated by symbols and distance measurements by connecting lines.
Calibration is performed relative to the three sensors drawn as circles. (b) Marginal uncertainties are shown for the two remaining
sensors (one bimodal, the other crescent-shaped) indicating that their estimated positions may not be reliable. (c) Estimate of the

same marginal distributions using NBP.

A line is shown connecting each pair of sensors which obtain a dis-
tance measurement. Contour plots of the marginal distributions for
the two remaining sensors are given in Figure 1(b); these sensors do
not have sufficient information to be well-localized, and in particu-
lar have highly non-Gaussian, multi-modal uncertainty (suggesting
the utility of a nonparametric representation). Although we defer
the details of NBP to Section 5.2, for purposes of comparison an
estimate of the same marginal uncertainties performed using NBP
is displayed in Figure 1(c). In the next section, we investigate how
often we may expect non-unique solutions for randomly deployed
sensor networks. In particular, we find that non-uniqueness of at
least part of the network is surprisingly likely unless the number of
observed distance measurements is high.

4. UNIQUENESS

To address the problem of how often we may expect a network
to have uniquely determined locations, we examine an idealized
situation in which a solution is more readily quantified. Let us take
N sensors which are distributed at random (in a spatially uniform
manner) within a planar circle of radius Ro, and let

1 for||z: — zu|| < R:

4.1
0 otherwise (1)

Po(zt,xu) = {

so that sensors ¢ and « obtain a measurement of their distance dy.,
ifand only if d,, < R1. We assume that no prior location informa-
tion is available to any sensor (V¢, p:(z+) is uninformative) and that
the uncertainty v¢,, present in each measurement d,,, is negligibly
small. An example of sensors distributed in this manner is given in
Figure 2(a).

As discussed, without prior knowledge of the absolute location
of sensors in the network this problem can only be solved up to an
unknown rotation, translation, and negation. Therefore, we assume
a minimal set of known values; in the negligible-noise case (as-
suming these sensors are mutually co-observing) this is equivalent
to assuming known locations for three sensors: z; = [0;0],z2 =
[0; di12], 3 = [b; c], where

dis + dis — d3:
= /2. — ¢2 _ %12 T dis — dog
b dig —c¢ c %1

4.1 A sufficient condition for uniqueness

We now derive a sufficient condition for all sensors to be localiz-
able (have a uniquely determined location). Some subtleties arise if
any sensors are perfectly co-linear, however, under our model this

occurs with probability zero and we proceed to describe conditions
which are sufficient for uniqueness with probability one. This same
sufficient condition (called a trilateration graph) has also recently
been investigated by [4].

Let S be the set of nodes which are localizable (with probability
one), and let “~” denote the equivalence relation of observing an
inter-sensor distance. It is straightforward to show that

SA,8B,Sc € S and Sp ~ SA, SDp ~SB, 8D~ SC
= speS (42

We then define .S recursively as the minimal set which satisfies (4.2)
with {s1, s2, s3} C S; all sensor locations are uniquely determined
if |S| = N. In practice we may evaluate this condition by initializ-
ing S = {s1, s2, s3} and iteratively adding to .S all nodes with at
least three neighbors in S. This condition also has the nice property
that it is computable using only the distance measurements.

While this condition is sufficient to uniquely determine all sen-
sor locations, it is not necessary. A useful source of information,
not used in (4.2), arises from the lack of distance measurement be-
tween two sensors. Specifically, the lack of measurement d.,, (S0
that oz, = 0) implies ||z — .|| > Ri; thus, to draw a parallel
to (4.2), two Sensors sa ~ sp, sg ~ sp and a third s¢ ¢ sp may
localize sp, or may not (depending on the locations of the sensors
involved). An example of each case is shown in Figure 2(b). This
yields an alternative sufficient condition to (4.2), which we also
investigate.

4.2 Probability of uniqueness

The existence of a unique solution to our idealized problem may
now be addressed, in terms of how often a graph generated in the
manner described satisfies either of the given sufficient conditions
as a function of the parameters NV and g—é. We use Monte Carlo tri-
als to investigate the frequency with which the conditions are true.
In doing so, we note a number of interesting observations — first,
that almost all information useful for localizing sensor s; is in a lo-
cal neighborhood around xz; and second, that in order to have high
probability that a random network is uniquely determined, we re-
quire a surprisingly high average connectivity (significantly greater
than the minimum of 3).

The probability of a random graph having a unique solution as a
function of % is shown in Figure 3 for several values of N. The
solid lines indicate the probability when all sensors contribute in-
formation (i.e. we also utilize information between sensors which
do not obtain a distance measurement), while the dashed lines il-
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Figure 2: (a) N sensors distributed uniformly within radius Ry, each sensor seeing its neighbors within radius R;. (b) The two
potential locations of sensor D (denoted D, and D-) given distance measurements from sensors A and B is resolved by the lack of

observation at sensor C, while sensor E is uninformative.
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Figure 3: Probability of satisfying the uniqueness condition for various N, as a function of (a) R1/Ro; (b) Expected number of
observed neighbors given R1/Ro and N. Solid lines use information from all sensors (equivalent to 2-step neighbors); the dashed

lines use only the 1-step neighbor constraints.

lustrate the comparative loss in performance when only informa-
tion from co-observing sensors is used. Both follow the same trend
in N, and appear to agree with the asymptotic behavior predicted
by [4].

Notably, most of the information for computing a sensor posi-
tion is local to the sensor. We quantify the notion of locality by the
following: define the “1-step” neighbors of sensor ¢ as those sen-
sors u which observe a distance d,, from ¢, the “2-step” neighbors
as those for which we observe d.,, and d,., for some node v but
not d:., and so forth. We see that a substantial portion (though not
all) of the information is already captured by the 1-step neighbors;
using more distant sensors reduced the radius required to achieve
a given probability of uniqueness by about 10%. Furthermore, in
500 Monte Carlo trials at each setting of N and %, every network
which was uniquely determined was also uniquely determined us-
ing only the 1- and 2-step neighbors. This locality of information
is an important part of creating a distributed algorithm for sensor
localization.

It is also interesting to note the relationship between how fre-
quently we obtain a unique solution and the average number of

neighboring sensors which observe a distance. Clearly a minimal
value is three (or two, with the possibility that a sensor which does
not observe its distance may assist); but we find that the average is
quite high (104 for even relatively small networks). This is also
predicted by theoretical results of [4], and is indicative of the fact
that the minimum connectivity is the driving factor in uniqueness.
The implication of this statement is that in practical networks, there
may be a number of under-determined sensors, and suggests that
having an estimate of the uncertainty associated with each sensor
position may be of great importance.

Nonparametric methods provide an appealing means to charac-
terize highly non-Gaussian uncertainties. For example, particle
filters [3, 1] are an increasingly popular technique for inference
in nonlinear, non-Gaussian time series. For the sensor calibra-
tion problem, we turn to a recent generalization of particle filter-
ing, called NBP. This requires that we first describe sensor self-
calibration in the framework of graphical models; we then discuss
how NBP may be applied to estimate the sensor locations.



Figure 4: Graph separation and conditional independence of
variables: all paths between the sets A and C pass through B,
implying p(za,zc|zs) = p(zalzs)p(zc|rs).

5. GRAPHICAL MODELS FOR SELF-
CALIBRATION

The results of Section 4 indicate that the information present for
self-localization in sensor networks is primarily limited to a small
locale; to be precise, that a sensor position x; is (nearly) indepen-
dent of the rest of the network given the position of nearby sensors.
This type of conditional independence relationship is exactly the in-
formation exploited by graphical models (also sometimes referred
to as Markov random fields) [13]. An undirected graphical model
consists of a set of vertices V' = {v,} and a collection of edges
ew, € E. Two vertices vy, v,, are connected if there exists an edge
e, € E between them, and a subset A C V is fully connected if
all pairs of vertices v, v, € A are connected.

Each vertex v, is also associated with a random variable z, and
the edges of the graph are used to indicate conditional indepen-
dence relationships through graph separation. Specifically, if ev-
ery path from a set A C V to another C' C V passes through
aset B C V (see Figure 4), then the sets of random variables
24 = {24 : vo € A} and z¢ = {z. : v. € C} are in-
dependent given zp = {z» : v» € B}. This relationship may
also be written in terms of the joint distribution: p(z 4, x5, zc) =
p(zs)p(zalzs)p(rc|es).

The Hammersley-Clifford theorem [2] quantifies the relationship
between a graph and the joint distribution of its random variables
x¢, in terms of potential functions vy which are defined solely on
the cliques (the fully connected subsets of V'), which we denote by

Q:
p(z1,...,xN) =

I[I ¢elmi:ic@d) (I

cliques @

Again taking z: to be the location of sensor ¢, we may relate
Equation (5.1) to the self-calibration problem by examining the
form of the joint distribution between locations {z:} and obser-
vations {0 }, {d¢. }. This joint distribution is given by

p(-’L'l,- .. vav{Otu}v{dtu}) =
II plowulze,za) [  pldealae, zu) [[ pe(ze)  (B5.2)

(t,u) (t,u):04y=1 t

since by definition, both the (binary) variable o, and (if o¢, =
1) the observed distance d:,, depend only on the sensor locations
¢, Ty, and all other sensor information is captured by the prior
information p(x+).

From (5.2) we can immediately define potential functions which
satisfy (5.1). Notably, this only requires functions defined over sin-
gle nodes and pairs of nodes. Take

Ye(we) = pe(we) (5.3)

to be the single-node potential at each node v, and

Py(ze, 20) po(diw — |7t — zu]) 1o =1
1— Po(xt,2u) otherwise

(5.4)
to be the pairwise potential between nodes v; and v,,. It then fol-
lows that the joint posterior likelihood of the x; is given by

p(@1, . en{o} {di}) o [ [ ve(@e) [ ew (s, wu)

(5.9)
Notice that for non-constant P, every sensor ¢ has some infor-
mation about the location of each sensor w (i.e. there is some in-
formation contained in the fact that two sensors do not observe a
distance between them). By keeping only a subset of edges deemed
sufficiently informative, a local approximation, we can perform in-
ference in a distributed manner. Specifically, we consider two pos-
sible graphs (stemming from the notions of distance and neighbors
in Section 4). Let the “1-step” graph be the graph in which we join
only “1-step” neighbors, i.e. e;, € E if and only if we observe a
distance d.,,; note that this is exact if P, is a constant. We create
the “2-step” graph by also adding the “2-step” neighbors (et,, € E
if we observe d:, and d,. for some sensor v, but not d:,). The
former type of edges we refer to as observed, and call the latter
unobserved edges.

5.1 Belief Propagation

Having defined a graphical model which encapsulates the cali-
bration information present in a sensor network, we now turn to
the task of estimating the sensor locations. Inference between vari-
ables defined on a graphical model is a problem which has received
considerable attention. Although exact inference in general graphs
can be NP-hard, approximate inference algorithms such as loopy
belief propagation (BP) [18, 16] produce excellent empirical re-
sults in many cases. BP can be formulated as an iterative, local
message passing algorithm, in which each node v, computes its
“belief” about its associated variable z;, communicates this belief
to and receives messages from its neighbors, then updates its belief
and repeats. In the wireless localization context, such algorithms
are particularly apropos.

The following discussion focuses on the belief propagation (or
sum-product) algorithm, whose purpose is to estimate the poste-
rior marginal distributions p(x:|{0s;}, {d:;}) of each variable ;.
Note that ideally, we would like the to find the joint MAP (maxi-
mum a posteriori) configuration of sensor locations. While there
exists an algorithm (called the max-product or belief revision al-
gorithm [18]) for estimating the MAP configuration of a discrete-
valued graphical model, this technique has yet to be generalized
to continuous-valued graphical models. However, determining a
likely configuration with the maximum likelihood location of each
marginal estimated via BP is a common practice [6]. In fact, in-
vestigation of the performance of both max- and sum-product al-
gorithms in iterative decoding schemes have shown that the latter
may even be preferable in some situations [24]. Thus, we apply BP
to estimate each sensor’s posterior marginal, and use the maximum
of that marginal and associated uncertainty to characterize sensor
placements.

One appealing consequence of using a message-passing infer-
ence method and assigning each vertex of the graph to a sensor in
the network is that computation is naturally distributed. Each node
(sensor) performs computations using information communicated
from its neighbors, and disseminates the results. This process is
repeated until some convergence criterion is met, after which each
sensor is left with an estimate of its location. If there is a sufficient

1/Jtu(xt1 Iu) = {



amount of information nearby to meet the convergence criterion
(for example when a number of sensors scattered through the net-
work have strong prior distributions on their absolute location) this
can require relatively few inter-sensor communications.

The computations performed at each iteration of BP are rela-
tively simple. In integral form, each node v; computes its belief
about z; (a normalized estimate of the posterior likelihood of )
at iteration n by taking a product of its local potential v, (if any)
with the messages from its neighbors, denoted T';:

P" (@) = atpe(z4) H Mt (T4) (5.6)
uel

Here o denotes an arbitrary constant of proportionality, usually
chosen to normalize p", i.e. [ p"(z¢)dz: = 1. The messages m.,
from the node v; to v,, are computed in a similar fashion:

myy () = a/ Yiu(Tt, T )i (T4) H My wt) da;

vel\u
P ()
=« wtu Tty Tur) T dxs (5.7)
ut (:rt)

(with « again chosen to normalize m.,,). Each of these equations
is easily computed for discrete or Gaussian likelihood functions;
however for more general likelihood functions (such as those oc-
curring in sensor localization) exact computation is intractable. We
thus approximate the computations using a recent Monte Carlo
method called nonparametric belief propagation (NBP), discussed
in the next section.

5.2 Nonparametric Belief Propagation

Neither discrete nor Gaussian BP is well-suited for the sensor
self-localization problem, since even the two-dimensional space in
which the z; reside is too large to accommodate an efficient dis-
cretized estimate (for M bin locations per dimension, calculating
each message requires O(M*) operations), and the presence of
nonlinear relationships and potentially highly non-Gaussian uncer-
tainties makes Gaussian BP undesirable as well. Development of a
version of BP making use of particle-based representations, called
nonparametric belief propagation (NBP) [21], enables the applica-
tion of BP to inference in sensor networks.

In NBP, each message is represented using either a sample-based
density estimate (as a mixture of Gaussians) or as an analytic func-
tion. Both types are necessary for the sensor localization problem.
Messages along observed edges are represented by samples, while
messages along unobserved edges must be represented as analytic
functions since often 1 — P, (x+, z.) is not normalizable (see e.g.
Equation 2.2) and thus is poorly approximated by any finite set of
samples. The belief and message update equations (5.6-5.7) are
performed using stochastic approximations, in two stages: first,
drawing samples from the estimated marginal p(x:), then using
these samples to approximate each outgoing message mt,. We
discuss each of these steps in turn, and summarize the procedure in
Algorithm 1.

Given M samples {wﬁ’)} from the marginal estimate p; (z+) ob-
tained at iteration n, computing a Gaussian mixture estimate of the
outgoing message from ¢ to w is relatively simple. We first consider
the case of observed edges. Given a measurement of the distance
dtv, €ach sample :pgi) is moved in a random direction by d:,, plus
noise:

m) = & + (deu + v [sin(0); cos(6V)]

where 69 ~ U0,27), v ~p, (5.8)

The samples are then weighted by P””(”‘“) (see Eq. (5.7)), and a

single covariance Y., is assigned to all samples There are a num-
ber of possible techniques for choosing the covariance X,; one
simple method is the rule of thumb estimate [20], given by comput-

ing the (weighted) covariance of the samples (denoted Covar[m(”}

tu
and dividing by Ms.

Here we have used a suggestion of [11], in which a re-weighted
marginal distribution p (z.) is used as an estimate of the product
of messages (see Equation (5.7)). In addition to the advantages
discussed in [11], this has two desirable qualities. First, it can be
computed more efficiently (requiring one product of |I";| messages
rather than |I";| products of |T';| — 1 messages). Second, this pro-
cedure has a hidden communication benefit — all messages from
t to its neighbors I"; may be communicated simultaneously. This
is because the message from ¢ to each u € I'; is a function of the
marginal 57!, the previous iteration’s message from v to ¢, and the
compatibility 1, (which depends only on the observed distance
between ¢ and w). Since the latter two quantities are also known at
node u, t may simply communicate its estimated marginal 53 to all
its neighbors, and allow w to deduce the rest.

As stated previously, messages along unobserved edges (pairs
t, u for which d,,, is not observed) are represented using an analytic
function. Using the probability of detection P, and samples from
the marginal at z:, an estimate of the outgoing message to w is
given by

Miu () =1 — Z wt“Po(l'u — :ril)) (5.9)

Estimation of the marginal p™ = v [[ m.: is potentially more
difficult. Since it is the product of several Gaussian mixtures, com-
puting p™ exactly is exponential in the number of incoming mes-
sages. However, efficient methods of drawing samples from the
product of several Gaussian mixture densities has been previously
investigated in [9]; in this work we primarily use a technique called
mixture importance sampling. Denote the set of neighbors of ¢ hav-
ing observed edges to ¢ by T'?. In order to draw M samples, we
create a collection of k- M weighted samples (where &k > 1 is a pa-
rameter of the sampling algorithm) by drawing I’“F"f samples from
each message m.:,u € T'¢ and assigning each sample a weight
equal to the product of the other messages Hvert\u mye. We then
draw M values from this collection with probability proportional
to their weight (with replacement), yielding samples drawn from
the product of all incoming messages.

Changing the form of the noise distribution p, is straightfor-
ward so long as sampling remains tractable. One convenient conse-
quence is the ability to incorporate a broad outlier process. Specifi-
cally, we can exploit the Gaussian mixture form of NBP’s messages
by augmenting each message by a single, high-variance Gaussian
to approximate an outlier process in the uncertainty about d;.,. This
representation (similar to a technique proposed by [10]) requires
fewer samples to adequately represent the message, and thus is also
more computationally efficient.

6. EMPIRICAL CALIBRATION
EXAMPLES

We show a humber of example sensor networks to demonstrate
NBP’s utility. All the networks in this section have been created in
a manner similar to those of Section 4; N sensors are placed at ran-
dom with spatially uniform probability, and each sensor observes
its distance from another sensor (corrupted by Gaussian noise with
variance ¢2) with probability given by (2.2) where p = 2. We



Compute outgoing messages: Given M weighted samples {wti), a:i“}
from p™ (x¢), construct an approximation to mJ:, (x.) for each neighbor
u € 'y
e If o4, = 1 (we observe inter-sensor distance d¢,, ), approximate with
a Gaussian mixture:

— Draw random values for 6(*) ~ U[0, 27) and (9 ~ p,

- Means: m!") = xgi) + (i + v D) [sin(8(D); cos(8())]

tu
Po(mﬁ,i)) wgi)
mn—l (151))

ut

Weights: wiff =

— Variance: e.9. ¢y = M™% . Covar[mi,f)}
e Otherwise, use the analytic function:
- mey(Ty) =1 — Ziwﬁi)Po(acu — xiz))
Compute local marginals: Given several Gaussian mixture messages
my, = {mﬁjg,wyg, Sut}, u € T'2, compute samples from p 1 (x4):
o For each observed neighbor u € T'?,

kM
el

()
— Draw samples {x; ’ } from each message m!,

- Weight by (") = [Toerou miy (i)

e From these kM locations, re-sample by weight (with replacement)
M times

Algorithm 1: Using NBP to compute messages and marginals
for sensor localization.

first investigate the relative calibration problem, in which the sen-
sors are given no absolute location information. We then show the
potential improvement when several sensors which are distributed
randomly within the network have absolute location estimates.

The first example (Figure 5(a)) shows a small graph (N = 10).
One sensor (the lowest) has significant multi-modal location un-
certainty due to the fact that it observes only two distance mea-
surements. The joint MAP configuration is shown in Figure 5(c)
while the “1-step” NBP estimate is shown in Figure 5(d). Compar-
ison of the error residuals would indicate that NBP has significantly
larger error on the sensor in question. However, this is mitigated by
the fact that NBP has a representation of the marginal uncertainty
(shown in Figure 5(e)) which accurately captures the bi-modality of
the sensor location, and which could be used to determine that the
location estimate is questionable. Additionally, exact MAP uses
more information than “1-step” NBP. We approximate this infor-
mation by including some of the unobserved edges (“2-step” NBP).
The result is shown in Figure 5(f); the resulting error residuals are
now comparable to the exact MAP estimate.

While the previous example illustrates some important details of
the NBP approach, our primary interest is in automatic calibration
of moderate- to large-scale sensor networks with sparse connectiv-
ity. We examine a graph of a network with 100 sensors, shown in
Figure 6. For problems of this size, computing the true MAP loca-
tions is considerably more difficult. The iterative nonlinear mini-
mization of [15] converges slowly and is highly dependent on ini-
tialization. As a benchmark to show the best possible performance,
an idealized estimate in which we initialize using the true sensor
locations is shown in Figure 6(c). In practice, we cannot expect
to perform this well; starting from a more realistic value (initializa-
tion given by classical MDS [22]) finds the alternate local minimum
shown in Figure 6(d). The “1-step” and “2-step” NBP solutions af-
ter 12 iterations (approximately 600 messages total) are shown in
Figures 6(¢) and (). Errors due to multi-modal uncertainty similar
to those discussed previously arise for a small number of sensors

in the “1-step” case. Examination of the “2-step” solution shows
that the errors compare favorably to the estimate with an idealized
initialization. The errors also appear to be less correlated than in
the nonlinear least squares approach. Recall that the NBP solution
is attained via a distributed algorithm, while the nonlinear least-
squares approach is a centralized algorithm.

Additionally, we expect the performance of NBP to improve
and achieve faster convergence (requiring fewer communications),
when there is absolute calibration information scattered through-
out the network. We simulate this case using the same 100-node
network, but now providing 6 additional sensors (chosen at ran-
dom) strong prior information (in the form of a Gaussian prior
pe(x+)) about their location. The resulting solution, shown in Fig-
ures 6(g-h), is significantly better (average error is halved) and re-
quires fewer iterations (8 iterations, or about 500 messages trans-
mitted), as expected. Note, however, that for these experiments we
have made no effort to optimize or reduce NBP’s communications
cost; such optimization is one subject of ongoing research.

7. DISCUSSION

We have empirically demonstrated that multi-modal uncertainty
is a common occurrence in the sensor localization problem. Sur-
prisingly, a relatively high degree of connectivity is required in or-
der to obtain a unique solution in the zero-noise case; this is only
more difficult with noisy measurements. Additionally, we showed
that calibration information is dominated by local relationships,
characterized by observed inter-sensor distances (“1-step” informa-
tion) and a few unobserved distances (“2-step” information).

\We proposed a novel approach to the sensor self-calibration prob-
lem, applying a graphical model framework and using a nonpara-
metric message-passing algorithm to solve the ensuing inference
problem. The methodology has a number of advantages. First, it
is easily distributed (exploiting local computation and communi-
cations between nearby sensors), potentially reducing the amount
of communications required. Second, it computes and makes use
of estimates of the uncertainty, which may subsequently be used
to determine the reliability of each sensor’s location estimate. The
estimates easily accommodate complex, multi-modal uncertainty.
Third, it is straightforward to incorporate additional sources of in-
formation, such as a model for the probability of obtaining a dis-
tance measurement between sensor pairs. Lastly, in contrast to
other methods, it is easily extensible to non-Gaussian noise mod-
els, potentially including outlier processes. In empirical simula-
tions, NBP’s performance is comparable to the centralized MAP
estimate, while additionally representing the inherent uncertainties.
Application of NBP to large sensor networks may be particularly
advantageous when absolute location information is available to a
small number of sensors distributed throughout the network.

There remain many open directions for continued research. For
example, BP estimates each sensor’s marginal distribution, rather
than a joint MAP configuration. An alternative inference algorithm
(e.g. max-product) might improve performance if adapted to high-
dimensional non-Gaussian problems. Also, alternative graphical
model representations may bear investigating; it may be possible to
retain fewer edges, or improve BP by clustering nodes (grouping
tightly connected variables, performing optimal inference within
these groups, and passing messages between groups). Finally, it
may be possible to increase computational efficiency by improving
how particles are chosen, and to reduce the required communica-
tions via a more judicious representation of each message. Given
its promising initial performance and many possible avenues of im-
provement, NBP appears to provide a useful tool for estimating un-
known sensor locations in large ad-hoc networks.
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(a) “1-step” graph
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(d) “1-step” NBP estimates

(b) “2-step” graph

(e) “1-step” NBP marginal

(c) MAP estimate

(f) “2-step” NBP estimates

Figure 5: (a) A small (10-sensor) graph and observed pairwise distances; (b) the same network with “2-step” unobserved relation-
ships also shown. Calibration is performed relative to the sensors drawn as open circles. (c) A centralized estimate of the MAP
solution shows generally similar errors (lines) to (d), NBP’s approximate (marginal maximum) solution. However, NBP’s estimate of
uncertainty (e) for the poorly-resolved sensor displays a clear bi-modality. Adding “2-step” potentials (f) results in a reduction of the
spurious mode and an improved estimate of location.
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Sensor Network Graphs
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Figure 6: Large (100-node) example sensor network. (a-b) 1- and 2-step edges. Even in a centralized solution we can at best hope
for (c) the local minimum closest to the true locations; a more realistic initialization (d) yields higher errors. NBP (e-f),(g-h) provides
similar or better estimates, along with uncertainty, in an easily distributed computation. Calibration in (c-f) is performed relative to
the three sensors shown as open circles; (g-h) improve performance and convergence rate by adding extra prior information scattered
throughout the network (shown as additional circles).



