
NONPARAMETRIC BELIEF PROPAGATION FOR SENSOR SELF-CALIBRATION

Alexander T. Ihler ∗, John W. Fisher III ∗, Randolph L. Moses †, and Alan S. Willsky ∗

∗ Massachusetts Institute of Technology
Cambridge MA 02139

† Ohio State University
Columbus OH 43210

Copyright 2004 IEEE. Published in the 2004 International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2004), scheduled for May 17-21, 2004 in
Montreal, Quebec, Canada. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained
from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone:

+ Intl. 908-562-3966.

ABSTRACT

Automatic self-calibration of ad-hoc sensor networks is a critical
need for their use in military or civilian applications. In general,
self-calibration involves the combination of absolute location in-
formation (e.g. GPS) with relative calibration information (e.g. es-
timated distance between sensors) over regions of the network. We
formulate the self-calibration problem as a graphical model, en-
abling application of nonparametric belief propagation (NBP), a
recent generalization of particle filtering, for both estimating sen-
sor locations and representing location uncertainties. NBP has the
advantage that it is easily implemented in a distributed fashion,
can represent multi-modal uncertainty, and admits a wide variety
of statistical models. This last point is particularly appealing in
that it can be used to provide robustness against occasional high-
variance (outlier) noise. We illustrate the performance of NBP
using Monte Carlo analysis on an example network.

1. INTRODUCTION

Improvements in sensing technology and wireless communication
are rapidly increasing the importance of sensor networks for a wide
variety of application domains [1, 2]. Collaborative networks are
created by deploying a large number of low-cost, self-powered
sensor nodes. Sensor localization, i.e. obtaining estimates of each
sensor’s position as well as accurately representing the uncertainty
of that estimate, is a critical step for effective application of large
sensor networks. Manual calibration of each sensor may be im-
practical or even impossible, while equipping every sensor with a
GPS receiver (or equivalent technology) may be cost prohibitive.
Consequently, methods of self-calibration which can exploit rela-
tive information (e.g. estimated distance between sensors) to make
the most of a limited amount of global reference information are
desirable. In the wireless sensor network context self-calibration
is further complicated by the need to minimize inter-sensor com-
munication in order to preserve energy resources.

We describe a self-calibration method making use of noisy dis-
tance measurements between neighboring sensors. In the special
case that the noise is well modeled by a Gaussian distribution, self-
calibration may be formulated as a nonlinear least-squares opti-
mization problem. In [3] it was shown that this optimization could
be solved using an iterative, centralized approach.

In contrast, we reformulate the process of self-calibration as an
inference problem on a graphical model. This allows us to apply
nonparametric belief propagation (NBP, [4]) to obtain an approxi-
mate solution. NBP provides several advantages, including a nat-
urally distributed estimation procedure and an inherent estimate
of the location uncertainties. However, here we focus primarily
on the ability of NBP to incorporate non-Gaussian noise models,
which can be used to add robustness to outlier measurements.

2. SELF-CALIBRATION OF SENSOR NETWORKS

We restrict our attention to scenarios in which individual sensors
obtain noisy distance measurements of a (usually nearby) subset
of the other sensors in the network. This includes, for example,
scenarios in which each sensor contains a transceiver and distance
is estimated by received signal strength or time delay of arrival be-
tween sensor locations. Although this formulation is slightly less
general than that presented in [3], it is straightforward to extend
our methodology to allow for the inclusion of direction-of-arrival
information and/or scenarios in which sources are not co-located
with a cooperating sensor.

Specifically, let us take N sensors scattered in a planar region.
Denote the two-dimensional location of sensor t by xt, and let two
sensors t and u obtain a noisy measurement dtu of the distance
between them with some probability Po(xt, xu):

dtu = ‖xt − xu‖ + νtu νtu ∼ pν (2.1)

We use the binary random variable otu to indicate whether this ob-
servation is available, i.e. otu = 1 if dtu is observed, and otu = 0
otherwise. Finally, each sensor t has a (potentially uninformative)
prior distribution, denoted pt(xt).

In general, finding the maximum likelihood (ML) sensor loca-
tions xt given a set of observations {dtu} is a complex nonlinear
optimization problem. If the uncertainties above are Gaussian (i.e.
the distributions pν = N(0, σ2

ν), pt(xt) = N(x̂t, σ
2
x)) and Po is

assumed constant, ML estimation of the xt’s reduces to a nonlinear
least-squares optimization [3].

We further note the distinction between solving for a relative
sensor geometry versus estimating the sensor locations with re-
spect to some absolute frame of reference. It was shown in [3]
that in some cases these two problems can be equivalent, essen-
tially when the influence of prior information

∏

t
pt(xt) is weak

or nonexistent. Given only the relative measurements {dtu}, the
sensor locations xt may only be solved up to an unknown rota-
tion, translation, and negation (mirror image) of the entire network.
We avoid ambiguities in the relative calibration case by assuming
known conditions on three sensors’ locations (denoted x1, x2, x3):

1. Translation: x1 = [0; 0]
2. Rotation: x2 = [0; a] for some a > 0
3. Negation: x3 = [b; c] for some b, c with b > 0

For absolute calibration, these assumptions are unnecessary if the
priors pt(xt) are sufficiently informative to resolve the ambiguity.

A number of methods have already been proposed to estimate
sensor locations when only a subset of the pairwise distances are
measured [5, 6]. For example, one may approximate each un-
observed distance by the length of the shortest path along ob-
served distances (other choices are described in [5]) between them,



Fig. 1. Graph separation and conditional independence: all
paths between the sets A and C pass through B, implying
p(xA, xC |xB) = p(xA|xB)p(xC |xB).

then apply classical multidimensional scaling [7] or other tech-
niques [5]. Alternatively, iterative least-squares methods have also
been observed to yield good performance [3, 6]. Yet another pos-
sibility is to minimize rank using heuristics while preserving the
fidelity of the observed distances [8].

In this paper we reformulate the self-calibration problem as a
graphical model, and propose an approximate solution making use
of a recent sample-based message-passing estimation technique
called nonparametric belief propagation (NBP). We conclude with
several example simulations demonstrating the ability of NBP to
solve difficult distributed localization problems, in particular fo-
cusing on its ability to robustly account for the possibility of occa-
sional, large errors (outliers) in the estimated distances.

3. GRAPHICAL MODELS

Graphical models [9] are popular formalisms for encoding known
conditional independence relationships between random variables.
An undirected graphical model consists of a set of vertices V =
{vt} and edges etu ∈ E. Two vertices vt, vu are connected if
there exists an edge etu ∈ E between them, and a subset A ⊂ V

is fully connected if all pairs of vertices vt, vu ∈ A are connected.
Each vertex vt is associated with a random variable xt, and the
edges of the graph are used to indicate conditional independence
relationships through graph separation. Specifically, if every path
from a set A ⊂ V to another C ⊂ V passes through a set B ⊂ V

(see Figure 1), then the sets of random variables xA = {xa : va ∈
A} and xC = {xc : vc ∈ C} are independent given xB = {xb :
vb ∈ B}.

The Hammersley-Clifford theorem [9] quantifies the relation-
ship between a graph and the joint distribution of its random vari-
ables xt, in terms of potential functions ψ which are defined solely
on the cliques (the fully connected subsets of V ), denoted Q:

p(x1, . . . , xN ) ∝
∏

cliques Q

ψQ({xi : i ∈ Q}) (3.1)

Again taking xt to be the location of sensor t, we relate Equa-
tion (3.1) to the self-calibration problem by examining the form
of the joint distribution between locations {xt} and observations
{otu}, {dtu}. This joint distribution is

p({xt}, {otu}, {dtu}) =
∏

t

pt(xt)

∏

(t,u)

p(otu|xt, xu)
∏

(t,u):otu=1

p(dtu|xt, xu) (3.2)

since by definition, both the binary variable otu and (if otu =
1) the observed distance dtu depend only on the sensor locations

xt, xu, and the prior information pt(xt) is assumed independent
for each xt.

From (3.2) we can immediately define potential functions to
satisfy (3.1). Notably, this only requires functions defined over
single nodes and pairs of nodes. We take

ψt(xt) = pt(xt) (3.3)

to be the single-node potential at node vt, and

ψtu(xt, xu) =
{

Po(xt, xu) pν(dtu − ‖xt − xu‖) if otu = 1

1 − Po(xt, xu) otherwise
(3.4)

to be the pairwise potential between nodes vt, vu. It follows that
the joint posterior likelihood of the xt is given by

p({xt}|{otu}, {dtu}) ∝
∏

t

ψt(xt)
∏

t,u

ψtu(xt, xu) (3.5)

This implies that every pair of sensors be joined by an edge. We
further simplify the problem by constructing a local approxima-
tion; specifically, we retain only the edges corresponding to ob-
served distances. Although including additional edges enables
NBP to benefit from more of the information provided by Po, this
approximation is an implicit part of the nonlinear least-squares es-
timate of [3] and thus leads to a more equitable comparison. Fur-
thermore, it should be noted that this approximation is exact if Po

is a constant.

3.1. Belief Propagation

We now turn to the task of estimating the sensor locations. Infer-
ence between variables defined on a graphical model is a problem
which has received considerable attention. Although exact infer-
ence in general graphs can be NP-hard, approximate inference al-
gorithms such as loopy belief propagation (BP) [10, 11] produce
excellent empirical results in many cases. BP can be formulated as
an iterative, local message passing algorithm, in which each node
vt computes its “belief” about its associated variable xt, communi-
cates this belief to and receives messages from its neighbors, then
updates its belief and repeats. In the wireless localization context,
such algorithms are particularly apropos.

The object of the BP algorithm is to estimate the posterior
marginal distributions p(xt|{oij}, {dij}) of each variable xt. Ide-
ally, we might prefer the joint MAP (maximum a posteriori) con-
figuration of sensor locations; however, approximating the joint
MAP by the max likelihood location of each posterior marginal
is a common practice in problems defined on graphs [12]. Thus,
we apply BP to estimate each sensor’s posterior marginal, and use
the ML locations and associated uncertainty to characterize sensor
placements.

The computations performed at each iteration of BP are rela-
tively simple. Each node vt computes its belief about xt (an es-
timate of the posterior likelihood of xt) at iteration n by taking a
product of its local potential ψt (if any) with the messages from its
neighbors Γt:

p̂
n(xt) = αψt(xt)

∏

u∈Γt

m
n
ut(xt) (3.6)



Compute messages: GivenM weighted samples {w(i)
t , x

(i)
t } from

p̂n(xt), estimate mn
tu(xu) for each neighbor u ∈ Γt:

• Draw random values for θ(i) ∼ U [0, 2π) and ν(i) ∼ pν

• Means: m(i)
tu = x

(i)
t + (dtu + ν(i))[sin(θ(i)); cos(θ(i))]

• Weights: w(i)
tu =

Po(m
(i)
tu

,x
(i)
t

) w
(i)
t

m
n−1
ut

(x
(i)
t

)

• Variance: e.g. Σtu = M− 1
6 · Covar[m(i)

tu ]

Compute marginals: Given Gaussian mixture messages mn
ut =

{m
(i)
ut , w

(i)
ut ,Σut}, u ∈ Γt, draw samples from p̂n+1(xt):

• For each neighbor u ∈ Γt,

– Draw kM
|Γt|

samples {x(i)
t } from each message mn

ut

– Weight by w(i)
ut =

∏

v∈Γt\u
mn

vt(x
(i)
t )

• From these kM locations, re-sample by weight M times

Algorithm 1: Using NBP to compute messages and marginals for
sensor localization.

Here α denotes an arbitrary constant of proportionality, usually
chosen to normalize p̂n, i.e.

∫

p̂n(xt)dxt = 1. The messagesmtu

from the node vt to vu are computed by

m
n
tu(xu) = α

∫

ψtu(xt, xu)
p̂n−1(xt)

mn−1
ut (xt)

dxt (3.7)

(with α again chosen to normalizemn
tu). Both equations are easily

computed for discrete or Gaussian likelihood functions; however
for more general likelihoods (such as those occurring in sensor lo-
calization) exact computation is intractable. We thus approximate
the computations using a recent Monte Carlo method called non-
parametric belief propagation (NBP), discussed next.

3.2. Nonparametric Belief Propagation

Neither discrete nor Gaussian BP is well-suited for the sensor self-
calibration problem, as even the two-dimensional space in which
the xt reside is too large to accommodate an efficient discretized
estimate, and the presence of non-Gaussian uncertainties and non-
linear relationships makes Gaussian BP undesirable as well. For-
tunately, the recent development of a version of BP making use of
particle-based representations, called nonparametric belief prop-
agation (NBP, [4]) enables the application of BP to inference in
sensor networks.

In NBP, each message is represented using a sample-based
density estimate (as a mixture of Gaussians). The belief and mes-
sage update equations (3.6-3.7) are performed using stochastic ap-
proximations, in two stages: first drawing samples from the esti-
mated marginal p̂(xt), then using these samples to approximate
each outgoing message mtu. We discuss each of these steps in
turn, and summarize the procedure in Algorithm 1.

Given M samples {x
(i)
t } from the marginal estimate p̂n

t (xt)
obtained at iteration n, computing a Gaussian mixture estimate of
the outgoing message from t to u is relatively simple. Each sample
x

(i)
t is moved in a random direction by dtu plus noise:

m
(i)
tu = x

(i)
t + (dtu + ν

(i))[sin(θ(i)); cos(θ(i))] (3.8)

where θ ∼ U [0, 2π) and ν ∼ pν . The samples are then weighted

by Po(m
(i)
tu

,x
(i)
t

)

mut(x
(i)
t

)
(see Equation (3.7)), and a single covariance Σtu

is assigned to all samples. There are a number of possible tech-
niques for choosing the covariance Σtu; one simple method is the
rule of thumb estimate [13], given by computing the (weighted)
covariance of the samples (denoted Covar[m(i)

tu ]) divided by M
1
6 .

Estimation of the marginal p̂n = ψt

∏

mut is potentially
more difficult. Since it is the product of several Gaussian mix-
tures, computing p̂n exactly is exponential in the number of in-
coming messages. However, efficient methods of drawing sam-
ples from the product of several Gaussian mixture densities has
been previously investigated in [14]; in this work we primarily use
a technique called mixture importance sampling. In order to draw
M samples from pn(xt), we create a collection of k ·M weighted
samples (where k ≥ 1 is a parameter of the sampling algorithm)
by drawing kM

|Γt|
samples from each message mut, u ∈ Γt and

assigning each sample a weight equal to the product of the other
messages

∏

v∈Γt\u
mvt. We then drawM values from this collec-

tion with probability proportional to their weight, yielding samples
drawn from the product of all incoming messages.

Furthermore, it is trivial to change the form of the noise distri-
bution pν so long as sampling remains tractable. This fact can be
used to approximate a broad outlier process, but due to the form of
NBP’s messages as Gaussian mixtures there is a more elegant so-
lution available. We augment the Gaussian mixtures in each mes-
sage by a single, high-variance Gaussian to approximate an outlier
process in the uncertainty about dtu. To be precise, we add an ex-
tra particle to each outgoing message, centered at the mean of the
other particles and with weight and variance chosen to model the
expected outliers, e.g. weight equal to the probability of an out-
lier, and standard deviation sufficiently large to cover the expected
support of Po. This method requires fewer samples to adequately
represent the message, and thus is also more computationally effi-
cient when sampling from the product of many messages.

4. SELF-CALIBRATION SIMULATIONS

We demonstrate NBP’s utility for solving self-calibration prob-
lems on an example sensor network. Figure 2(a) shows a small
network (N = 10), with distance measurements indicated as lines,
on which we have introduced a single outlier measurement (the
dashed line). We perform calibration relative to the three sen-
sors shown as circles. If the erroneous measurement could be
detected and discarded, the optimal joint MAP sensor locations
can be found using an iterative nonlinear least-squares optimiza-
tion [3]; the residual errors after this procedure (for a single noise
realization) are shown in Figure 2(b). However, with the outlier
measurement present, the same nonlinear least-squares procedure
results in a large distortion in the estimates of some sensor loca-
tions (Figure 2(c)). NBP, by virtue of the measurement outlier
process discussed in Section 3.2, remains robust to this error and
produces the near-optimal estimate shown in Figure 2(d).

In order to provide a measure of the robustness of NBP in
the presence of non-Gaussian (outlier) distance measurements, we
perform Monte Carlo trials, keeping the same sensor locations and
connectivity used in Figure 2(a) but introducing different sets of
outlier measurements. At every trial, each distance measurement is
replaced with probability .05 by a value drawn uniformly between
zero and the maximum distance (dmax) between any two sensors.
As there are 37 measurements in the network, on average approx-
imately two outlier measurements are observed in each trial. We
then measure the number of times each sensor’s estimated location
is within distance R of its true location, as a function of R (nor-



(a) (b) (c) (d)

Fig. 2. (a) A small (10-sensor) graph and the observable pairwise distances; calibration is performed relative to the location of the sensors
shown in green. One distance (shown as dashed) is highly erroneous, due to a measurement outlier. (b) The MAP estimate of location,
discarding the erroneous measurement. (c) A nonlinear least-squares estimate of location is highly distorted by the outlier; (d) NBP is
robust to the error by inclusion of a measurement outlier process in the model.
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Fig. 3. Monte Carlo self-calibration trials on the sensor network
in Figure 2(a). We measure the probability of a sensor’s estimated
location being within a radius R of its true location (normalized
by the max inter-sensor distance dmax) for both NBP and non-
linear least-squares, indicating NBP’s superior performance in the
presence of outlier measurements.

malized by dmax). This curve is shown in Figure 3 for both NBP
and nonlinear least-squares estimation. As can be seen, NBP more
often provides an estimate which is “nearby” to the true sensor
location, indicating its increased robustness to the outlier noise.

However, Figure 3 understates the advantages of NBP for this
scenario. One of the features of NBP is that it also provides an
estimate of the uncertainty in sensor position; the trials which re-
sulted in large errors also showed highly uncertain (often bimodal)
estimates for the sensor locations in question. Thus, in addition
to providing a more robust estimate of sensor location, NBP also
provides a measure of the reliability of each estimate.

5. CONCLUSIONS

We have described a method for sensor self-calibration based on
NBP, a nonparametric message-passing algorithm for inference
in graphical models. NBP provides a number of advantages, in-
cluding naturally distributed computation, an inherent estimate of
uncertainty, and the ability to incorporate non-Gaussian measure-
ment models. Focusing primarily on the latter, we demonstrated
that by incorporating an outlier process in the model, NBP’s esti-
mates of sensor location can be made robust to the occurrence of a
few highly erroneous measurements.
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