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Abstract—In this paper, we analyze data from a large mobile
phone provider in Europe, pertaining to time series of aggregate
communication volume Ai,j(t) > 0 between cells i and j,
for all pairs of cells in a city over a month. We develop a
methodology for predicting the future (in particular whether
two cells will talk to each other Ai,j(t) > 0) based on past
activity. Our data set is sparse, with 80% of the values being
zero, which makes prediction challenging. We formulate the
problem as binary classification and, using decision trees and
random forests, we are able to achieve 85% accuracy. By giving
higher weight to false positives, which cost more to network
operators, than false negatives, we improved recall from 40% to
94%. We briefly outline potential applications of this prediction
capability to improve network planning, green small cells, and
understanding urban ecology, all of which can inform policies
and urban planning.

I. INTRODUCTION

Cellular penetration has increased dramatically over the
past decades and the number of unique mobile subscribers
is estimated around 3.4 billion users [17]. At the same time
there is an even greater growth in demand for wireless access
bandwidth worldwide, due to the fast adoption of smartphones.
The traffic volume generated by mobile phones will increase
approximately by 8 times in 2020 (30.6 exabytes/month)
compared to 2015 (3.7 exabytes/month), according to traffic
trends forecasts [6].

To address this demand, mobile phone providers and the
3GPP are currently working on improvements to the cur-
rent 4G standards as well as on future 5G networks [15].
More specifically, a mixture of macro-cells and small cells
(i.e. heterogeneous nets) is currently being considered for
increasing 4G capacity. Small cells are feasible by utilizing
femtocells [3], i.e. low power base stations with limited range,
typically designed for use in a home or business, covering the
spectrum holes of the larger cells. This shift (towards smaller
cells and denser networks) is closely connected with a shift
towards virtualization of computational resources, that follows
software defined networking (SDN) and self-organizing net-
works (SON) principles1.

However, a dense infrastructure is complicated and costly to
maintain. The energy consumption of base stations is one of
the largest costs for mobile phone providers [7]. Hence, they
try to make their infrastructure more energy efficient, e.g. by
switching femtocells on or off or by lowering the transmission
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1SON is an example of this trend [11, 2, 10]. SON is a software module
responsible for planning, configuring, and managing the cellular infrastructure.
For example, SON could use cognitive radio techniques to exploit under-
utilized spectrum in the unlicensed bands, during high load hours [15].

power. The aforementioned technologies will incorporate the
necessary logic for smart decisions and network configuration
based on network events, to automate resource allocation. For
instance, [8] describes the architecture of SDN - SON where
traffic prediction algorithms will be utilized in the control
plane for the assignment of virtualized radio resources. Thus,
being able to predict cellular traffic patterns city-wide, can
inform and enable network provisioning and control.

In addition, cellular activity reflects information about hu-
man activity patterns in a city. In our prior work [5], we
showed the connection between cellphone activity (in partic-
ular, aggregate cellular activity per cell) and urban ecology.
Using time series analysis, we showed that the seasonal com-
ponent captures regular patterns of socio-economic activity
within an area and can be used to segment a city into distinct
clusters (such as business, residential, etc), while the residual
component enables the detection of regions that are subject
to mutual social influence or in direct communication contact.
Such intra-urban structure, often referred to as urban ecology,
is difficult to obtain using traditional methods (e.g., informant
interviews, ethnographic observation, etc.) especially today
that urban growth is rapid, but can be invaluable for urban
governance (e.g., urban planning, infrastructure management,
administration, and law enforcement). Understanding city-
wide human activity patterns as manifested in cellular activity,
is an opportunity to achieve that goal in an automated and
inexpensive way that also covers a large part of the population.

In all the aforementioned cases, accurate prediction of
mobile phone traffic in a city is necessary for enabling urban
planning and a number of smart city applications. In this paper,
we develop a building block in that direction: machine learning
techniques for cell-to-cell mobile traffic prediction based on
past cellular records,.

We analyzed a data set provided by Telecom Italia as part of
the Big Data Challenge [18] competition, and more specifically
the part of the dataset that describes the intra-city activity in
Milan: time series Ai,j(t) describe the communication volume
between two areas of the city, i and j, for t = 1..N . We
formulate the traffic prediction problem as a classification
problem. Based on past activity our goal is to predict whether
two cells will talk to each other during at time t, i.e.,
Ai,j(t) > 0. First, we visualize important aspects of our
data using SVD to better understand the data. We use the
insights gained from the data analysis for feature selection;
for example, we found that neighbors tend to talk more to
each other and are more correlated. Second, we used decision
tree classifiers and random forest in order to do prediction.
We were able to achieve accuracy 85%, which outperforms
the naive max-class predictor (80%) that predicts the most



frequent class. A key insight and challenge was the sparsity of
the dataset: most cell pairs have zero communication activity
with each other. This leads to high skewness of our classes and
low recall rate (lower than 40%). Since, Fp (false positive)
and Fn (false negative) errors don’t have the same cost for
providers, we show how to improve recall up to 94%, by giving
higher weight on Fp.

The rest of this paper as organized as follows. Section II
discusses related work, and Section III formulates the problem.
Section IV presents the data and the analysis. Section V
describes the methodology and Section VI the results. Finally,
Section VII concludes the paper.

II. RELATED WORK

Related work can be roughly classified in three categories:
(a) traffic volume prediction from a mobile telephony cell
tower, (b) link prediction in telecommunication or or social
networks and (c) analysis and assessment of network opera-
tors’ data sets which reveals the spatio-temporal characteristics
and the dynamics of the cellular network infrastructure.

In traffic volume prediction, the goal is to forecast the
volume (voice or data) generated by a specific base station
(i.e. cell tower) for a future time window, given historic traffic
traces. Methodologies include, but not limited to, moving aver-
age [7], Holt-Winters’s exponential smoothing [7], [19], [12],
hybrid prediction models [7], temporal compressive sens-
ing [8] and Kalman filtering [7]. For instance, work in [8]
utilizes entropy for assessing the predictability of the traffic
and quantify what time window (temporal dimension) and how
many adjacent cells (spatial dimension) would actually help.
Furthermore, [7] proposes a framework for optimizing power
consumption by switching off a portion of the base stations in
low network traffic condition. Interestingly, [7] distinguishes
the base stations between the typical traffic profiles and the
opportunistic profiles (e.g. stadiums where the traffic is present
only in weekends), which was a key observation made also by
our prior work [5].

However, the traffic volume prediction problem differs sig-
nificantly in 4G and 5G due to the small cells deployment [4].
A femtocell covers a much smaller area with less users,
therefore, bursty traffic is more likely rather than a periodic
volume activity which is usually generated by a macro-cell.
More interestingly, burstiness and sparsity of the traffic were
observed in our data set analysis. Thus, [4] proposes a solution
which combines Gaussian processes (GPs) and kernel based
methods for the periodic component and tolerance intervals
for the bursty component. The data used are a combination
of synthetic and real data sets. In contrast, our work studies
a real world data set and we predict if a cell i communicate
with a cell j, i.e. a binary classification problem considering
directed communication, which has not been studied by any
of the previous works.

Link prediction in networks (social networks, IP subnet-
works, mobile phones etc) is also related to our problem. The
goal is to predict if two nodes of the network (e.g. two persons
in an social network or two mobiles) will form a link and
communicate at time t. For instance, work in [16] tries to
predict a network attack, given historic data and by considering

properties that network attackers and regular users share.
The authors use the recommendation systems framework and
utilize SVD for principal component analysis, an idea explored
in this paper as well. Work in [9] considers the problem
of link prediction in time t for a data set containing phone
calls between users. It investigates several factors such as
the class imbalance problem, the sparsity of the links, time
and statistical features , the strong neighborhoods and other
topological features of the phone calls graph. Then, it assesses
several supervised learning approaches and proposes a novel
flow-based predictor.

Analysis of network operators’ data sets, such as Call Detail
Records (CDRs), have also been studied [14], [13]. The casual
influence from a base station to neighboring base stations
load is studied in [14] to assess Granger Causality for traffic
prediction. In [14], the time granularity for traffic aggregation
is studied showing higher cross correlation between pairs of
base stations for time interval of one hour vs 10min intervals.
Our prior work in [5] also looked at the data set from the
city of Milan and used the aggregate activity per cell as a
signature of human activity in that cell, in order to cluster
similar areas of the city together for urban ecology. In contrast,
this paper (i) studies not a single cell time series but cell-to-
cell communication series and (ii) its goal is to predict future
based on past activity.

In summary, this paper focuses on traffic prediction between
two different areas of the city/cellular network and not a
call prediction between two independent users, and has the
following main differences compared to prior work. First, we
consider aggregated CDRs in the spatial dimension (i.e., total
volume of calls between all users in the two cells), while [9]
considers phone calls between individual users and do not
not consider the problem from the perspective of cellular
providers: false negatives can be really costly. Last but not
least, with all the concerns regarding privacy [20], aggregated
CDRs are more likely to be available from the providers.

III. FORMULATION

Let S be the set of cells; in this paper, the term cell refers
to a small area unit (in the city of Milan), which we will
describe in the next section2. And, let T be the time axis as a
set of timestamps T = {t1, t2, ..., tm}. We denote as Ai,j(t)
the volume of mobile activity from cell i to cell j, where
t ∈ T , and i, j ∈ S.

We formulate the traffic prediction problem as a binary
classification problem. Given activity series Ai,j(t), which
shows the activity from i to j at time t, we build a set of
features using the past (< t) records, and our goal is to predict
if Ai,j(t) > 0. In other words, our goal is to predict if cells i
and j communicate at time t (class 1), or not (class 0).

Finally, we partition time T into two subsets: (i) a training
set called Ttrain and (ii) a testing set called Ttest. This is done
via a random 70/30 split of the data, where 70% of the data
is used for training and the remaining 30% for testing.



Fig. 1. The figure shows the communication strength between cells. The
communication strength have been calculated by aggregating the interaction
during the 1st of Nov. 2013. We can observe that there is strong communi-
cations between neighboring cells. For clarity we show only the top 10% of
the edges.
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Fig. 2. Average activity Ai,j(t). We see that when mobile phone activ-
ity, when averaged across all cell-to-cell traffic, is predictable and follows
expected daily and weekly patterns. Also, these patterns are similar across
various weeks.

IV. DATA AND KEY OBSERVATIONS

Our data set consists of time series of aggregate cell phone
traffic sent or received by users within small areal units in the
city of Milan, made available for the Big Data Challenge [18]
competition. In this paper, we focused on a 4-week period of
November 2013. The city of Milan, an area of 550 km2, was
divided into a 100× 100 grid. Each square of the grid has the
same dimensions: a side length of 0.235 km and an area of
0.055 km2. This is the areal unit we use throughout the paper,
and we refer to it as a “cell”. The temporal unit is the 10-
minute interval3. The data set contains information regarding
the directional interaction strength (as per terminology in [5])
between two cells, based on the calls exchanged between them.
Each activity record consists of the following fields: ID of cell
i where call was initiated from, ID of cell j where the call
was made to, time slot, and value of directional strength from
i to j. Fig. 1 visualizes the 10% strongest connections.4

2This is the best approximation for a cell tower that is publicly available.
3Telecom Italia, which is the data set provider, decided the spatial and the

temporal granularity of the data before making it available for the competition.
4We focus on the prediction of voice traffic since dropped or bad quality

voice calls are noticed immediately as a“poor service” by the customers.
However, the methodology should apply to any data set of cell-to-cell
communication activity.
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Fig. 3. The above figures show the distribution of activity correlations for all
pairs of cells (∀(i, j)), as well as pairs that are within a maximum distance of
2-hops; the correlation for a pair of cells, i and j, is calculate by this formula:
ρ (Ai,j(t), Aj,i(t)), where ρ denotes the Pearson correlation. We observe
that there is much higher correlation when i and j are neighbors. Moreover,
this picture shows that by aggregating cell phone activity into hourly time
reports then traffic becomes more structured (Ai,j(t) and Aj,i(t) are more
correlated).

A. Aggregation of Traffic per Hour

The initial data consist of 10-minute traffic reports. How-
ever, we aggregated traffic per 1 hour because (1) traffic in
such short intervals is very dynamic and fluctuates heavily,
(2) allocation of resources in the cellular infrastructure (e.g. by
SON) is not an easy task and planning of resource allocation in
10-min. intervals may lead to unstable networks or excessive
overhead, (3) 95% of the activity is zero in such short time
intervals, making traffic very sparse and (4) work in [14]
faced the same dilemma regarding the time granularity for
traffic aggregation (10-min. vs 1 hour) and concluded in 1-
hour aggregation since it had higher cross correlation between
pairs of base stations.

Traffic aggregation leads to more predictable series. As you
can you see from Fig. 3(a), in the case of 10-minute time
intervals, traffic between pairs of cells seems to be random and
uncorrelated; 60% of the random pairs have zero correlation
and more than 95% of them have a correlation lower than
0.2. However, when we aggregate traffic into one-hour time
intervals, the time series become more similar and correlated
(See Fig. 3(b)).

B. Challenges and Key Insights

In this section we present some of the intuitions that we
obtained from our exploratory analysis, and we highlight the
challenges for the traffic prediction.
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Fig. 4. SVD of A(i,j)(t) for 1week for aggregated data. Top-6 Principal Components.
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Fig. 5. Distribution of communication values. These figures describe a zero-
inflated and skewed distribution.

(1) Zero–Inflated Distribution: One of the main challenges
with cell-to-cell communication data is their sparsity. The
distribution of the cell phone activity is a zero–inflated distri-
bution – almost 80% the activity is zero (See Fig. 5) – while
the remaining non-zero activity follows a skewed distribution.
This makes prediction very hard since we cannot fit traditional
time series models. Also, on aggregate mobile activity exhibits
well-understood seasonal patterns and is easy to predict (See
Fig. 2), but cell-to-cell traffic is dynamic, it fluctuates and
prediction is hard.
(2) Strong communication between Neighboring Cells: Traffic
between neighboring cells is much stronger (see Fig. 1),
in comparison to the rest of the city. Also, traffic between
neighboring cells is more structured, e.g. Ai,j(t) and Aj,i(t)
are more likely to be correlated when cells i and j are within
a 2-hop distance (See Fig. 3(b)).
(3) We observe seasonal patterns in data: In order to get a
better understanding of the data, we decompose the activity se-
ries into their first six principal components, which we achieve
via singular value decomposition (SVD). Fig. 4 demonstrates
the components of the traffic from three different weeks. We
observe that the first two principal components are structured
and tend to be similar across weeks, but the remaining
principal components look more spiky and dissimilar across
weeks. For example, the second principal component shows

the areas that exchange traffic only on weekdays and that do
not communicate on weekend (observe the negative direction
in weekends). This happens for example in universities or
in business areas. In addition, there are spikes in the traffic
around noon (5-th principal component) which models another
“direction” of cellular traffic. This is also demonstrated by Fig.
6, where we use the principal components for a week (training
week) as a model for another (testing week). The parameter k
(number of principal components used) denotes the complexity
of the model. We observe that as the complexity increases the
model is a better fit for the training week – the mean squared
error (MSE) decreases. However, MSE for the testing week
MSE decreases until k = 2, and the it start increasing. This
shows that we cannot expect much gain in prediction from the
seasonal patterns of our data.
(4) Unexpected events affect communication: Finally, traffic
can be affected by unpredictable event. For example, in Fig 4,
for the second principal component we observed a significant
difference at the traffic level for the Friday (t = 96 · · · 120)
of the 1st and the 2nd week. This principal component
encapsulates the traffic during the week days as we discussed.
The traffic in the 2nd week is significant lower only for
Friday. This day was the 15-th of November of 2013. We were
intrigued from this difference and we searched for potential
causes. After a short search in Google, we found that the 15-th
of November was the first day of the big social protests and
strikes in Italy in 2013 [1]. Apart from the fact that mobile
traffic can be affected by unexpected events, this also shows
that cell phone activity series can enable many other types of
Smart City application, i.e. they can be used to reveal abnormal
activities in a city.

V. METHODOLOGY

Since we are dealing with a zero-inflated distribution –
and our data are skewed towards zero – it is difficult to
apply classical time series prediction methodologies, such as
ARIMA models. Instead we will treat the prediction task as
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a classification problem; we will generate a set of features
for each prediction we want to make, and we will apply
standard but powerful classifiers. More specifically we will use
a Random Forest Classifier. Next, we describe the features we
used for the prediction. This decision was inspired from key
insights (1) and (4) from the previous section.

A. Feature Selection

For each communication series from cell i to cell j we use
the following features:

1) Static features: We denote as static features, those
features that are constant across weeks. These are:

• Geographic distance between cell i and cell j. This was
inspired by our earlier analysis that show that neighboring
cells tend to talk more.

• Hour of the day. Human activity and communication is
heavily influenced by the hour of the day.

• Day of the week. Human activity and communication
may change depending on the day of the week (e.g.
Monday vs. Saturday).

The geographic distance feature was inspired from key
insights (2) of the previous section, while the other two static
features were inspired by key insight (3).

2) Dynamic features: These are features that change from
one week – or even day – to the other.

• Past traffic (3 previous hours) of Ai,j . For example, for
target value Ai,j(t), the features are Ai,j(t− 1), Ai,j(t−
2), Ai,j(t− 3).

• Past traffic (3 previous hours) of reverse series, i.e. from
cell j to cell i. E.g. for target value Ai,j(t), the features
are Aj,i(t− 1), Aj,i(t− 2), Aj,i(t− 3).

• Average traffic of neighbors (3 previous hours). For target
value Ai,j(t):
• E[Ai,k(t− 1)], E[Ai,k(t− 2)], E[Ai,k(t− 3)], where k
is a neighbor of j.
• E[Ak,j(t − 1)], E[Ak,j(t − 2)], E[Ak,j(t − 3)], where
k is a neighbor of i.

• Standard deviation of neighboring traffic (3 previous
hours). For target value Ai,j(t):
•
√
V ar[Ai,k(t− 1)],
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Scores Max-class
predictor

Decision Tree Random Forest

Accuracy 80% 84% 85%
Precision - 72% 68%
Recall - 37% 40 %
F1-score - 48% 51%

TABLE I
SCORES FOR MAX-CLASS PREDICTOR, DECISION TREE CLASSIFIER AND

RANDOM FOREST.
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Fig. 8. Normalized Confusion Matrix. Each square of the matrix has been
normalized based on the true class, e.g. the square at (0,0) and (0,1) have
been divided with the size of class 0, and the square at (1,0) and (1,1) have
been divided by the size of class 1.In Fig. 8(a) when both classes have the
same importance, class 0 is accurately predicted 96% of the times, but class
1 is predicted correctly only 41% of the times. In Fig. 8(b), where class 1 is
considered more important than class 0, then the accuracy for class 0 dropped
down to 74%, but accuracy for class 1 increased to 79% of the times.

√
V ar[Ai,k(t− 3)], where k ∈ neighborhood(j).
•
√
V ar[Ak,j(t− 1)],

√
V ar[Ak,j(t− 2)],√

V ar[Ak,j(t− 3)], where k ∈ neighborhood(i).
The latest set of features (average traffic of neighbors, and

standard deviation of neighboring traffic) were inspired by our
analysis that showed that there is higher correlation among 2-
hop neighbors (key insight (2) from the previous section).

VI. RESULTS

We elected to use a tree classifier, since tree classifiers are
powerful tools that can learn complex functions. We tuned the
classifier’s parameters and made sure that we don’t overfit by
applying standard complexity control techniques (see Fig. 7).

After tuning the classifier we apply it on our testing data
and we analyze the initial results (see Tab. I). Since we are
dealing with a highly skewed distribution (class 0 dominates
our data set) we will compare against the majority predictor –



Scores weight = 3 weight = 4 weight = 10
Accuracy 79% 75% 61%
Precision 47% 42% 33%
Recall 71% 79% 94%
F1-score 57% 55% 49%

TABLE II
RESULTS FOR DECISION TREE WITH WEIGHTED SAMPLES. WE CAN

IMPROVE THE RECALL BY GIVING HIGHER WEIGHT TO POSITIVE
SAMPLES, IN EXPENSE OF PRECISION.

a naive predictor that always predicts the most frequent class.
Based on the accuracy, we see that our model outperforms the
majority class predictor. However, when we dive into more
details, namely we look at precision5, recall6, and F1-score –
the harmonic mean of precision and recall – we see that due
to the highly skewed distribution the recall is very low (37%).
This is also confirmed by the confusion matrix in Fig. 8(a).

We applied a Random Forest of 200 ensembles (larger
numbers did not show improvement). Because the ensemble
averaging will avoid overfitting, we also increased the maxi-
mum depth of each tree to 30. The random forests classifier
improved the results, e.g. recall increased to 40%, and the
F1-sore reached 51%.

A. Improving Recall

Up to now we have made the assumption that Fp and
Fn have the same cost. However, this may not be the case.
Providers would prefer having a high recall than high accuracy
or precision (Fn will have a higher cost ).

The same as when detecting patients with cancer, Fn has a
much higher cost. In this case a naive classifier that predicts
always zero – a patient doesn’t have cancer – will be very
accurate, due to the skewness of the two classes, but that’s
not necessary the best classifier.

Therefore, in this last section we will investigate how to
improve recall, even if that means sacrificing accuracy. This
is achieved by increasing the weight of positive samples. A
higher weight on positive samples forces the decision tree
to pay more attention to class 1 than class 0. Tab. II show
the improvement of recall given different weights, e.g. for
weight of 3 – positive samples are 3 times more important
than negative ones – recall rises to 79% (from 37%), and
for a weight of 10 – positive samples are 10 times more
important than negative ones – recall is 94%. This change
is also reflected in the confusion matrix (see Fig. 8(b)).

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we applied machine learning techniques
to predict cell-to-cell activity, based solely on past cellular
activity records. We were able to achieve 85% accuracy and
94% recall, for the voice call data set provided by Telecom
Italia for the city of Milan.

In future work, we will further improve the prediction by
exploiting information outside the cellular activity data set,
such as similarities between cells based on the socio-economic
activity occurring in the surrounding areas. We could also
extend the problem formulation (for example, instead of binary

5 Tp

Tp+Fp
, where Tp is the true positive rate, and Fp the false positive rate.

6 Tp

Tp+Fn
, where Tp is the true positive rate, and Fn the false negative rate.

traffic prediction, we could predict multiple classes of traffic,
such as no traffic, low traffic and high traffic between cells)
or apply the methodology to other data sets (e.g., other cities
or data instead of voice activity). Finally, we will investigate
the use of this prediction methodology as a building block for
network planning and control, urban ecology and smart city
applications.
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