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ABSTRACT of how many people are in a building given noisy count data from
its entrances and exits. The probabilistic nature of the model makes

KnOWI'f:'dﬂe of thﬁ n?mber ofhpeople in a building at a gslven time;, relatively robust to both sensor noise and to sensor failure in the
is crucial for applications such as emergency response. Sensors ¢ . ocp o missing and erroneous observations,

be used to gather noisy measurements which when combined, can be Obtaining accurate estimates of occupancy over time is an im-

used to make inferences about the location, movement and density of . > : ) .
people. In this paper we describe a probabilistic model for predict: brtant component in many applications, including urban design and

: L . . _"plannin rity monitorin nd crisis r nse. For exampl
ing the occupancy of a building using networks of people-countlndfj)a g, security monitoring, and crisis response. For example,

sensors. This model provides robust predictions aiven tvpical se Juring a disaster crisis, information about the number of people and
g pro P 9 ypical SeNp o jocations is critical to first responders for allocation and deploy-
sor noise as well as missing and corrupted data from malfunctionin

sensors. We experimentally validate the model by comparing it to gnent of resources.
: n y y parng The paper proceeds as follows. We describe the data and a sim-

baseline method using real data from a network of optical countin%le baseline model in Section 2. In Section 3, we first review the

sensors in a campus building. o .
P 9 probabilistic model for a single stream of count data, then show how
Index Terms— sensor networks, occupancy models, graphicalindividual sensor streams can be linked to form a multiple-sensor

models, Bayesian inference probabilistic model for building occupancy. Inference for the oc-
cupancy model follows in Section 4. Experimental evaluations to
1. INTRODUCTION demonstrate the effectiveness of the model are described in Sec-

tion 5, followed by conclusions in Section 6.
As sensors capable of monitoring daily human activity become in-

creasingly affordable and ubiquitous, there is a corresponding need 5 |NEERRING OCCUPANCY EFROM SENSOR DATA
for algorithms capable of making sense of the resulting sensor obser-

vations across a wide variety of appli.cations. One important SUbda%onsider a trivial approach to occupancy estimation based on as-
of such data are “count data,” in which the observed signals consig{,ming that we have perfect information from a set of sensors about
of integer counts of the number of occurrences over time of a partic,e numper of people entering and exiting at each door in a building,
ular type of human activity. Examples include magnetic loop couny g 1 noise in the counts and complete coverage of all doors. Oc-
ters for monitoring fr_eeway traffic [1], optical trllere_s (or “peqple cupancy at time is then simply the occupancy at time- 1, plus the
counters”) for counting the number of people passing & particulag,m (across sensors) of the counts of people who have entered since
point [2], and pre-processed video or optical motion detectors fof;ma — 1, minus the sum of counts of people who have exited.

monitoring a specific area [3]. . Fig. 1 shows the result of estimating the building occupancy over
Sensors that ret_:ord count data often contain strong patterns rg-g ey period using this trivial method. This graph is derived us-
flecting the underlying rhythms of human activity. This periodic, j, qata from optical “people counter” sensors that report aggregate
predictable activity is referred to as “usual activity” in this paper. .j nts every 30 minutes at 6 doors for a particular building (CallT2
What makes these measur“ement”stregms comple)_<, however, are "8 the UCI campus). We immediately see from Fig. 1 that the sim-
dpm bursts of unusual or event” activity, appearing as “”!Jsua.”we approach produces very poor results, with a systematic negative
h'g.h _measurements (which can accompany a special seminar Nt@nd in the estimate of the number of people in the building.
building or a bgsebgll game in a stadl'um), or unusually low mea- This problem arises because the sensors are imperfect, with noise
suremen_ts (which might occur ona holiday). . corresponding to both under- and over-counting. The sensors used
In this paper, we extend earlier work on modeling count data}n Fig. 1 are pairs of optical sensors that register a count when an

atasingle sensor [2] to a mL_JItl_-sensor anwonment. A propab”'sn%ptical beam is interrupted. They are spaced in such a way as to de-
model for each sensor, consisting of an inhomogeneous Poisson pr;

S N - . frmine whether a person is exiting or entering the building. “Non-
cess for representing “usual” human activity and a hidden Marko‘human objects” can cause over-counts such as the one captured in

process for representing bursts of unusual behavior. We descrik?ﬁe left panel of Fig. 2. More commonly, people entering in groups

how several such models can be coupled together to solve the OCCi the same time can cause under-counting such as is captured in the

pancy problem for a building, namely, to infer an accurate estimatﬁght panel of Fig. 2.

This material is based upon work supported by the National Sci !N -addition, a sensor can fail outright. One of the largest discrep-
ence Foundation under award numbers ITR-0331707, [1S-G8Baad 11IS-  ancies in Fig. 1 occurs at the beginning of week 5 and is partly due
0431085. to a malfunction that occurred in a sensor at a door that is used more
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Fig. 3. Graphical model for a single stream of count measurements.

Fig. 1. An estimate of building occupancy assuming the measurefiere Ve ,fepfege”ts the true number“of COl,J,nts gt_ttr,nBt anoisy
values have no errors, so occupancy at tireguals that at time—1, observation,N; the counts due to “usual” activity (modeled by

H E
plus all incoming counts and minus all outgoing counts. Biases anEO'ShSO:CA ralie)‘t) and N;* any counts due to an event (modulated
miscounts can cause large systematic errors over a period of time. y the Markov process;).

this paper are spaced at half-hour intervals (the sensor report time),
and a count such a¥; corresponds to an aggregate count over the
half-hour prior tot.

Modeling a single sensor. We first describe a probabilistic model
for a single sensor (whose graph is shown in Fig. 3); we then extend
the model to multi-sensor data. Nod& represents an observed

) count at timet for a particular sensor, a noisy version of the true
Fig. 2. The left panel shows an example of a double count at th?unobserved) couny, for that sensor:

loading dock entrance of the building; the right panel shows an ex-
ample of a missed count at the front door. By=N,+ 712 -1V (2)

The number of undercount®8? and overcount¥¢ are modeled us-

frequently used for incoming traffic than outgoing traffic. Like many N9 Separate binomial distribution®’ ~ Bin(B;, vo) andT{’ ~
systems, malfunctions for this type of sensor result in erroneous vapin(2Ve, vu ), subject to the constraint in Equation (1). This allows
ues, often zero, rather than any kind of explicit error signal. th_e the expected number of u_ndercounts and overcounts to increase
One approach to counter the effects of the measurement noid¥th the number of people using a door. In our experiments, we set
is to simply enforce two constraints on the trivial estimation method’® = 1/70 and vy - 1/20 based on empirical observations of
above: (1) that occupancy can never be negative, and (2) tHat ea®Ver and undercounting. .
every morning the building population should be zero. While in- 'The true count for a sensal;, is modeled as the sum of tWO. .
corporation of these types of constraints can improve the estima&{(}eo's‘son processes, where the two processes reflect usual activity

quality, the results of this approach (which we refer to as the bas QrUthat Sg'“sor and bursts of abnormal_a_ctlvl}ty_ (‘eventsy); =
line method) are still quite inaccurate (see Section 5). Ny~ + N;”.The component for usual activit);”, is modeled as a

In the next section we outline a probabilistic model for the prob_non-homogenous Poisson process. The event compongris an

lem of estimating occupancy. This approach allows us to mode"f‘dqitio.nal Poisson contribution goyerneq by a Markqv Process,
sensor noise in a systematic manner, combine uncertain informatidgd'catlng whether or not_ an eventis takmg place at time, takes
from multiple sensors, leverage our prior beliefs about occupancya{ ree values correspond!ng to an event with fewer people th_an nor-
particular times of the day, use statistical learning techniques to Iealjffl1al (: = —1, e.g., a holiday), no event( = 0), or an event with

the parameters of our model from historical data, and systematicall ore people than normat{ = 1, e.g., @ non-recurring large meet-

infer a probability distribution for occupancy over time conditioned g in the building). P(N¢"|2) is Poisson W'tbt] an unknown rate
on observed sensor data. parameter for; = —1 andz: = 1, and forcesV;” = 0 for z; = 0.

The non-homogenous Poisson procag$ depends on a time-
varying rate parametex, = \d;n:, where the three components
3. MODELING MULTI-SENSOR COUNT DATA correspond to the average rake an adjustment for the day of week,
&+, and an adjustment for the time of day,(e.qg., [4]).
We use the framework of directed graphical models to capture re- For the event process, the Markov chainzoallows event per-
lationships among different variables and parameters of interest. Isistence, which can lead to significantly better event detection per-
this section we outline the structure of the model and in the followformance compared to simpler threshold methods [2]. The transi-
ing section we describe the inference process. Nodes in the graphid&n matrix A defining the conditional distributioR (z;|z:—1) is also
model represent random variables and probabilistic relationships ateeated as a random variable in the graphical model. Except where
encoded as conditional distributions of child nodes given the valuestated, all prior distributions were chosen as in [2].
of their parent variables. The model contains unobserved (latent)
variables representing quantities of interest (such as the true occlrferring occupancy from multiple sensors. Each door to a build-
pancy at time) and parameters (such as Poisson rates); we are inteing has separate data streams for the entrance (“in”) counts and the
ested in reasoning about both conditioned on the observed evideneit (“out”) counts. The true (unobserved) count for all of the in
i.e., the counts measured at sensors. Unless stated otherwise cosansors at time is represented bg/, and similarlyS? for the out
variables such ad; take non-negative integer values. The subscriptsensors. S{ and S° are deterministic sums of the true coult
t refers to a discrete time index, which for the count data used irfior each in and out sensor, respectively. The occupancy atttime



of O; givenA, Z, and the observed couni;. We first note that
p(Nt|A, Z, Bt) o< p(Bt|N¢)p(Ne|A, Z)

by applying Bayes’ rule and noting th&; is conditionally indepen-
dent givenlV;.. We can then compute the distribution of the variables
S; and A, via successive convolutidn If we define the evidence
@D E: to be the set of all observatior3; at any of the sensors, this
In Doors Out Doors convolution process gives us the distributig\: | E:, A, Z).
The updated posterior of occupancy at titrie then
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P(Ot|Er:t) o<
Fig. 4. Linking the individual streams. (a) The sum node cor- _ B
responding to the total building incoming (entry) flov® repre- Z 0(0r = Or1 = A)m(O)p(Or—1 | Erie—1)p(Ae | Er)
sents the hidden parameters and variables specific to the individual®* ="

stream, indicated by the dotted line in Fig. 3. (b) Graphical model

; o . : whered(k) = 1 for £ = 0 and0 otherwise (reflecting the determin-
for multiple-sensor building occupancy; total in and out traff¢,( ... X . a
S9) modulates occupand;. istic relationship betwee®;, O;_,, andA;), and wherer;(O;) =

Geom(Oy;.9) whent = 3AM. We proceed forward in time to

the maximum (or current) time = T', then sampler,Or_1, ...

backward to time = 1. GivenO, andO;_1, A, is deterministic;

denotedO;, and is given by the sum @; ., andA; = S/ — S, the sum nodes; are sampled conditioned on their differende,

which is the true (unobserved) change in occupancy over time-periognd the true countd’; conditioned on their tota$; .

take on countably infinitely many possible values (e.g., nonnegativgtream, the sampling for the stream parametersnd the stream

integers) and for which no closed form exists for the conditional diswyent procesg proceed as in [2]. Unlike [2], however, here the true

tributions of interest, we use heuristics to reduce the range of valuggunt valueN, can change between iterations as the constraints of

under consideration. the occupancy model are enforced and as the belief about the true
We also include a geometric prior (with parameter set to .9 incounts of the other sensor streams change.

the results in this paper) an, for ¢t = 3AM, encouraging the model

to leave few or no people in the building overnight. This helps to

offset any systematic bias in the measurement noise which if unac- 5. EXPERIMENTS AND RESULTS
counted for could lead to ever-increasing or decreasing estimates of ) . o )
the number of people in the building (see Fig. 1). The data used in our experiments come from a campus building with

six doors with optical people counters measuring the flow of peo-

ple in both the entrance and exit directions. Nine weeks of mea-

4. INFERENCE surements (6/11 to 8/12/2006) for each of the twelve streams were
' used for learning the model. All of the inference experiments in this
. _ . . . . section were run off-line, although on-line inference is a relatively
Given the probabilistic model described in the previous section, W%traightforward extension of the techniques described in this paper.

now turn our attention to the inference problem, i.e., computing the In each of the experiments. the occupancy model is compared
conditional probability of quantities of interest (such as the 0CCUL . cimple baseline Fr)nethod vx;here o gccuyanc constrainE[)s are
pancyO; as a function of time) given both the observed measure- P pancy

ments B; (at all doors across all times of interest) and the priors.en;grged; (8_) gﬁgu(%?noccycﬁag;lgt ?sergi?e?tg/zr%%;zu?st)sz ?hat at
These quantities (the variables and parameters of the model) afe” 3AT\/I_We ’haveO —0 pancy y '
learned by inferring their posterior distributions using Markov chain” t=

Monte Carlo (MCMC li thods. In MCMC iterativel . N .
onte Carlo ( ) sampling methods. In , We revatively ﬁgnsor Noise.The examples in this section contrast the occupancy

sample each set of variables given the current sampled values of t .
other variables in the model. After a sufficient number of iteraltions,mOdeI and the baseline method for days where the measured flow

these samples converge to the true posterior distribution. of people in e“te“’.‘g or exiting the. bui!ding is_ dispropqrtionately
Gi | fthe t A f hst larger than the flow in the opposite direction. This count difference is
IVen a value otthe true coufl; for each stream, we sample caused by the normal day-to-day noise of the sensor measurements.
andz; as described in [2]. Then, given bolh andz;, we perform

a forward—backward sampling procedure [5], similar to that used fo Fig. 5(2) s_hows a day w_here using the baselin_e metho_d WOUId

to draw the total occupanay; and the trué countdy, for each lead to the belief that approximately 50 people are in the building at
s up ¢ . St 2:59 am. These 50 people are promptly forced to disappear via the
sensor. In the forward inference pass, information flows from th 4 hour constraint. By smoothing, the occupancy model provides
individual streams up to the occupancy node and is combined Wita more believable brediction for th('e day. Although we do not have
the belief about the occupancy found for the previous time slice. Th )

backward pass then samples values for each of these variables. Si rgund truth, it is especially unlikely that the building held many

the graphical model is singly—connected given fheand z;, this péople this parthular Frlda_y_nlght since the two following days are
. i . . weekend days with low activity and no large egresses.
procedure can be performed efficiently (in time linear in the number
of measureme.'nts). . 1These operations are nominaily(d?) whered is the number of possible
Let us defineA to be the set of al\; for all streams and time, values entertained for each variable, but can be ni2@tog d) via the fast
and Z similarly for z:. Now, we compute the posterior distribution Fourier transform [6].
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Fig. 7. Two days where the measurements from one entrance stream
Fig. 5. (a) A day with more building entrance measurements tharaccounting for approximately 25% of the total entrance counts were
building exit measurements; the preceding and subsequent days aeplaced by zeros.
also shown for context. (b) Two days with more building exit mea-

surements than building entrance measurements.
building occupants. Two things help the multi-sensor model recover

Reacting to Missing Data the missing information. First, the corrupted data appears unusual at
o acwal observations  errupted datal] the individual stream level, as the model expects data similar to the
sof - paseine method wih corupted data rate parameter. Second, if the corrupted data is only in one direction,
the “excess” counts from the other direction will try to balance it out.
The results for corrupted data are shown in Fig. 7. As with the
missing data experiment, the baseline method fails completely. The
occupancy model performs much better, although it does not recove
. I all of the missing information—the noise model resists deviation
° e iz eom from the observed values, but the shared information is able to offset
at least some effects of the corrupted data. This property of the occu-
fhancy model could also be used to detect a faulty sensor and provide
an early alert prediction of a malfunction. A model with an explicit
notion of sensor faults could improve performance still further.
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Fig. 6. The measurements for one building entrance stream accou
ing for approximately 50% of the total entrance counts were replace
by missing data labels.

6. CONCLUSIONS

Fig. 5(b) shows days with the opposite situation where more ) o
people are measured leaving the building than entering. The basEYen with complete sensor coverage of all doors to a building, oc-
line model ignores all the extra exit counts at the end of the daycupancy prediction is non-trivial. The probabilistic model presented
giving occupancy predictions that are likely too low. The probabilis-in this paper overcomes many of the limitations of simpler methods.
tic model, however, uses this information to adjust the occupancy agPatial information and correlations among sensors will be exam-
previous times upward, resulting in a more believable prediction. ined in future work. In the long-term, we hope to combine people

Although we do not have a ground truth for comparison, thes&0Unt sensors with other human activity sensing data such as elec-
examples indicate that the probabilistic model provides more reasoffiCity use, building schedules, and internet traffic to predict occu-
able outputs than the baseline for typical amounts of sensor noisBaNCy densities and future occupancy movements for larger areas
In the next section, we investigate robustness to sensor failure in ti&/Ch as a campus or city.
form of missing or erroneous observations.
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