
A Low Density Lattice Decoder
via Non-parametric Belief Propagation

Danny Bickson
IBM Haifa Research Lab

Mount Carmel, Haifa 31905, Israel
Email: danny.bickson@gmail.com

Alexander T. Ihler
Bren School of Information

and Computer Science
University of California, Irvine

Email: ihler@ics.uci.edu

Harel Avissar and Danny Dolev
School of Computer Science and Engineering

Hebrew University of Jerusalem
Jerusalem 91904, Israel

Email: {harela01,dolev}@cs.huji.ac.il

Abstract—The recent work of Sommer, Feder and Shalvi
presented a new family of codes called low density lattice
codes (LDLC) that can be decoded efficiently and approach the
capacity of the AWGN channel. A linear time iterative decoding
scheme which is based on a message-passing formulation on a
factor graph is given.

In the current work we report our theoretical findings
regarding the relation between the LDLC decoder and belief
propagation. We show that the LDLC decoder is an instance
of non-parametric belief propagation and further connect it to
the Gaussian belief propagation algorithm. Our new results
enable borrowing knowledge from the non-parametric and
Gaussian belief propagation domains into the LDLC domain.
Specifically, we give more general convergence conditions for
convergence of the LDLC decoder (under the same assumptions
of the original LDLC convergence analysis). We discuss how
to extend the LDLC decoder from Latin square to full rank,
non-square matrices. We propose an efficient construction of
sparse generator matrix and its matching decoder. We report
preliminary experimental results which show our decoder has
comparable symbol to error rate compared to the original
LDLC decoder.

I. I NTRODUCTION

Lattice codes provide a continuous-alphabet encoding pro-
cedure, in which integer-valued information bits are con-
verted to positions in Euclidean space. Motivated by the
success of low-density parity check (LDPC) codes [1], recent
work by Sommeret al. [2] presented low density lattice
codes (LDLC). Like LDPC codes, a LDLC code has a sparse
decoding matrix which can be decoded efficiently using an
iterative message-passing algorithm defined over a factor
graph. In the original paper, the lattice codes were limited
to Latin squares, and some theoretical results were proven
for this special case.

The non-parametric belief propagation (NBP) algorithm
is an efficient method for approximated inference on con-
tinuous graphical models. The NBP algorithm was originally
introduced in [3], but has recently been rediscovered indepen-
dently in several domains, among them compressive sensing
[4], [5] and low density lattice decoding [2], demonstrating
very good empirical performance in these systems.

In this work, we investigate the theoretical relations be-
tween the LDLC decoder and belief propagation, and show
it is an instance of the NBP algorithm. This understanding
has both theoretical and practical consequences. From the

theory point of view we provide a cleaner and more standard
derivation of the LDLC update rules, from the graphical
models perspective. From the practical side we propose to
use the considerable body of research that exists in the NBP
domain to allow construction of efficient decoders.

We further propose a new family of LDLC codes as well
as a new LDLC decoder based on the NBP algorithm .
By utilizing sparse generator matrices rather than the sparse
parity check matrices used in the original LDLC work,
we can obtain a more efficient encoder and decoder. We
introduce the theoretical foundations which are the basis of
our new decoder and give preliminary experimental results
which show our decoder has comparable performance to the
LDLC decoder.

The structure of this paper is as follows. Section II
overviews LDLC codes, belief propagation on factor graph
and the LDLC decoder algorithm. Section III rederive the
original LDLC algorithm using standard graphical models
terminology, and shows it is an instance of the NBP algo-
rithm. Section IV presents a new family of LDLC codes as
well as our novel decoder. We further discuss the relation to
the GaBP algorithm. In Section V we discuss convergence
and give more general sufficient conditions for convergence,
under the same assumptions used in the original LDLC
work. Section VI brings preliminary experimental results
of evaluating our NBP decoder vs. the LDLC decoder. We
conclude in Section VII.

II. BACKGROUND

A. Lattices and low-density lattice codes

An n-dimensional latticeΛ is defined by a generator matrix
G of size n × n. The lattice consists of the discrete set of
pointsx = (x1, x2, ..., xn) ∈ Rn with x = Gb, whereb ∈ Zn

is the set of all possible integer vectors.
A low-density lattice code (LDLC) is a lattice with a non-

singular generator matrixG, for whichH = G−1 is sparse.
It is convenient to assume thatdet(H) = 1/det(G) = 1. An
(n, d) regular LDLC code has anH matrix with constant row
and column degreed. In a latin square LDLC, the values of
thed non-zero coefficients in each row and each column are
some permutation of the valuesh1, h2, ∙ ∙ ∙ , hd.

We assume a linear channel with additive white Gaussian
noise (AWGN). For a vector of integer-valued informationb

the transmitted codeword isx = Gb, whereG is the LDLC
encoding matrix, and the received observation isy = x+ w
wherew is a vector of i.i.d. AWGN with diagonal covariance
σ2I. The decoding problem is then to estimateb given the
observation vectory; for the AWGN channel, the MMSE
estimator is

b∗ = arg min
b∈Zn

||y −Gb||2 . (1)

B. Factor graphs and belief propagation

Factor graphs provide a convenient mechanism for repre-
senting structure among random variables. Suppose a func-
tion or distributionp(x) defined on a large set of variables
x = [x1, . . . , xn] factors into a collection of smaller functions
p(x) =

∏
s fs(xs), where eachxs is a vector composed of a

smaller subset of thexi. We represent this factorization as a
bipartite graph with “factor nodes”fs and “variable nodes”
xi, where the neighborsΓs of fs are the variables inxs, and
the neighbors ofxi are the factor nodes which havexi as an
argument (fs such thatxi in xs). For compactness, we use
subscriptss, t to indicate factor nodes andi, j to indicate
variable nodes, and will usex and xs to indicate sets of
variables, typically formed into a vector whose entries are
the variablesxi which are in the set.

The belief propagation (BP) or sum-product algorithm [6]
is a popular technique for estimating the marginal probabili-
ties of each of the variablesxi. BP follows a message-passing
formulation, in which at each iterationτ , every variable
passes a message (denotedMτ

is) to its neighboring factors,
and factors to their neighboring variables. These messages
are given by the general form,

Mτ+1
is (xi) = fi(xi)

∏

t∈Γi\s

Mτ
ti(xi) ,

Mτ+1
si (xi) =

∫

xs\xi

fs(xs)
∏

j∈Γs\i

Mτ
js(xj)dxs . (2)

Here we have included a “local factor”fi(xi) for each
variable, to better parallel our development in the sequel.
When the variablesxi take on only a finite number of values,
the messages may be represented as vectors; the resulting
algorithm has proven effective in many coding applications
including low-density parity check (LDPC) codes [7]. In
keeping with our focus on continuous-alphabet codes, how-
ever, we will focus on implementations for continuous-valued
random variables.

1) Gaussian Belief Propagation:When the joint distri-
bution p(x) is Gaussian,p(x) ∝ exp{− 12x

TJx+ hTx}, the
BP messages may also be compactly represented in the same
form. Here we use the “information form” of the Gaussian
distribution, N (x;μ,Σ) = N−1(h, J) where J = Σ−1

and h = Jμ. In this case, the distribution’s factors can
always be written in a pairwise form, so that each function
involves at most two variablesxi, xj , with fij(xi, xj) =
exp{−Jijxixj}, j 6= i, andfi(xi) = exp{− 12Jiix

2
i + hixi}.

Gaussian BP (GaBP) then has messages that are also
conveniently represented as information-form Gaussian dis-

tributions. If s refers to factorfij , we have

Mτ+1
is (xi) = N

−1(βi\j , αi\j) ,

αi\j = Jii +
∑

k∈Γi\j

αki , βi\j = hi +
∑

k∈Γi\j

βki , (3)

Mτ+1
sj (xj) = N

−1(βij , αij) ,

αij = −J
2
ijα

−1
i\j , βij = −Jijα

−1
i\jβi\j . (4)

From theα and β values we can compute the estimated
marginal distributions, which are Gaussian with meanμ̂i =
K̂i(hi+

∑
k∈Γi

βki) and variancêKi = (Jii+
∑
k∈Γi

αki)
−1.

It is known that if GaBP converges, it results in the ex-
act MAP estimatex∗, although the variance estimateŝKi

computed by GaBP are only approximations to the correct
variances [8].

2) Nonparametric belief propagation:In more general
continuous-valued systems, the messages do not have a sim-
ple closed form and must be approximated. Nonparametric
belief propagation, or NBP, extends the popular class of par-
ticle filtering algorithms, which assume variables are related
by a Markov chain, to general graphs. In NBP, messages are
represented by collections of weighted samples, smoothed by
a Gaussian shape–in other words, Gaussian mixtures.

NBP follows the same message update structure of (2). No-
tably, when the factors are all either Gaussian or mixtures of
Gaussians, the messages will remain mixtures of Gaussians
as well, since the product or marginalization of any mixture
of Gaussians is also a mixture of Gaussians [3]. However, the
product ofd Gaussian mixtures, each withN components,
produces a mixture ofNd components; thus every message
product creates an exponential increase in the size of the
mixture. For this reason, one must approximate the mixture
in some way. NBP typically relies on a stochastic sampling
process to preserve only high-likelihood components, and a
number of sampling algorithms have been designed to ensure
that this process is as efficient as possible [9]–[11]. One
may also apply various deterministic algorithms to reduce the
number of Gaussian mixture components [12]; for example,
in [13], [14], anO(N) greedy algorithm (whereN is the
number of components before reduction) is used to trade off
representation size with approximation error under various
measures.

C. LDLC decoder
The LDLC decoding algorithm is also described as a

message-passing algorithm defined on a factor graph [6],
whose factors represent the information and constraints on
x arising from our knowledge ofy and the fact thatb is
integer-valued. Here, we rewrite the LDLC decoder update
rules in the more standard graphical models notation. The
factor graph used is a bipartite graph with variables nodes
{xi}, representing each element of the vectorx, and factor
nodes{fi, gs} corresponding to functions

fi(xi) = N (xi; yi, σ
2) , gs(xs) =

{
1 Hsx ∈ Z
0 otherwise

,

whereHs is the sth row of the decoding matrixH. Each
variable nodexi is connected to those factors for which it is
an argument; sinceH is sparse,Hs has few non-zero entries,

making the resulting factor graph sparse as well. Notice
that unlike the construction of [2], this formulation does not
require thatH be square, and it may have arbitrary entries,
rather than being restricted to a Latin square construction.
Sparsity is preferred, both for computational efficiency and
because belief propagation is typically more well behaved
on sparse systems with sufficiently long cycles [6]. We can
now directly derive the belief propagation update equations as
Gaussian mixture distributions, corresponding to an instance
of the NBP algorithm. We suppress the iteration numberτ
to reduce clutter.

Variable to factor messages.Suppose that our factor to
variable messagesMsi(xi) are each described by a Gaussian
mixture distribution, which we will write in both the moment
and information form:

Msi(xi) =
∑

l

wlsiN (xi ; m
l
si, ν

l
si) =

∑

l

wlsiN
−1(xi ; β

l
si, α

l
si) .

(5)
Then, the variable to factor messageMis(xs) is given by

Mis(xs) =
∑

l

wlisN (xs ; m
l
is, ν

l
is) =

∑

l

wlisN
−1(xs ; β

l
is, α

l
is) ,

(6)
wherel refers to a vector of indices[ls] for each neighbors,

αlis = σ
−2 +

∑

t∈Γi\s

αltti , βlit = yiσ
−2 +

∑

t∈Γi\s

βlsti , (7)

wlit =
N (x∗; yi, σ2)

∏
wlssiN

−1(x∗;βlssi , α
ls
si)

N−1(x∗;βlit, α
l
it)

.

The moment parameters are then given byνlit = (α
l
it)
−1,

mlit = βlit(α
l
it)
−1. The valuex∗ is any arbitrarily chosen

point, often taken to be the meanmlit for numerical reasons.
Factor to variable messages.Assume that the incoming

messages are of the form (6), and note that the factor
gs(∙) can be rewritten in a summation form,gs(xs) =∑
bs
δ(Hsx = bs), which includes all possible integer values

bs. If we condition on the value of both the integerbs and the
indices of the incoming messages, again formed into a vector
l = [lj] with an element for each variablej, we can see that
gs enforces the linear equalityHsixi = bs−

∑
Hsjxj . Using

standard Gaussian identities in the moment parameterization
and summing over all possiblebs ∈ Z and l, we obtain

Msi(xi) =
∑

bs

∑

l

wlsiN (xi ; m
l
si, ν

l
si) =

∑

bs

∑

l

wlsiN
−1(xi ; β

l
si, α

l
si) , (8)

where

νlsi = H
−2
si (

∑

j∈Γs\i

H2jsν
lj
js) ,

mlsi = H
−1
si (−bs +

∑

j∈Γs\i

Hjsm
lj
js) , wlsi =

∏

j∈Γs\i

w
lj
js , (9)

and the information parameters are given byαlsi = (ν
l
si)
−1

andβlsi = m
l
si(ν

l
si)
−1.

Notice that (8) matches the initial assumption of a Gaus-
sian mixture given in (5). At each iteration, the exact
messages remain mixtures of Gaussians, and the algorithm
iteslf corresponds to an instance of NBP. As in any NBP
implementation, we also see that the number of components

is increasing at each iteration and must eventually approxi-
mate the messages using some finite number of components.
To date the work on LDLC decoders has focused on de-
terministic approximations [2], [15]–[17], often greedy in
nature. However, the existing literature on NBP contains a
large number of deterministic and stochastic approximation
algorithms [9]–[13]. These algorithms can use spatial data
structures such as KD-Trees to improve efficiency and avoid
the pitfalls that come with greedy optimization.

Estimating the codewords.The original codewordx can be
estimated using its belief, an approximation to its marginal
distribution given the constraints and observations:

Bi(xi) = fi(xi)
∏

s∈Γi

Msi(xi) . (10)

The value of eachxi can then be estimated as either the
mean or mode of the belief, e.g.,x∗i = argmaxBi(xi),
and the integer-valued information vector estimated asb∗ =
round(Hx∗).

III. A PAIRWISE CONSTRUCTION OF THELDLC
DECODER

Before introducing our novel lattice code construction, we
demonstrate that the LDLC decoder can be equivalently con-
structed using apairwisegraphical model. This construction
will have important consequences when relating the LDLC
decoder to Gaussian belief propagation (Section IV-B) and
understanding convergence properties (Section V).

Theorem 1:The LDLC decoder algorithm is an instance
of the NBP algorithm executed on the following pairwise
graphical model. Denote the number LDLC variable nodes as
n and the number of check nodes ask1. We construct a new
graphical model withn + k variables,X = (x1, ∙ ∙ ∙ , xn+k)
as follows. To match the LDLC notation we use the index
lettersi, j, .. to denote variables1, ..., n and the letterss, t, ...
to denote new variablesn+ 1, ..., n+ k which will take the
place of the check node factors in the original formulation.
We further define the self and edge potentials:

ψi(xi) ∝ N (xi; yi, σ
2) , ψs(xs) ,

∞∑

bs=−∞

N (xs; bs, 0) ,

ψi,s(xi, xs) , exp(−xiHisxs) . (11)

Proof: The proof is constructed by substituting the edge
and self potentials (15) into the belief propagation update
rules. Since we are using a pairwise graphical model, we do
not have two update rules from variable to factors and from
factors to variables. However, to recover the LDLC update
rules, we make the artificial distinction between the variable
and factor nodes, where the nodesxi will be shown to be
related to the variable nodes in the LDLC decoder, and the
nodesxs will be shown to be related to the factor nodes in
the LDLC decoder.

a) LDLC variable to factor nodes:We start with the
integral-product rule computed in thexi nodes:

Mis(xs) =

∫

xi

ψ(xi, xs)ψi(xi)
∏

t∈Γi\s

Mti(xi)dxi

1Our construction extends the square parity check matrix assumption to
the general case.

The product of a mixture of Gaussians
∏

t∈Γi\s
Mti(xi) is itself

a mixture of Gaussians, where each component in the output
mixture is the product of a single Gaussians selected from
each input mixtureMti(xi).

Lemma 2 (Gaussian product):[18, Claim 10], [2, Claim
2] Givenp GaussiansN (m1, v1), ∙ ∙ ∙ ,N (mp, vp) their prod-
uct is proportional to a GaussianN (m̄, v̄) with

v̄−1 =

p∑

i=1

1

vi
=

p∑

i=1

αi m̄ = (

p∑

i=1

mi/vi)v̄ =

p∑

i=1

βiv̄

Proof: Is given in [18, Claim10].
Using the Gaussian product lemma thels mixture component
in the message from variable nodei to factor nodes is a
single Gaussian given by

M
ls
is (xs) =

∫

xi

ψis(xi, xs)
(
ψi(xi)

∏

t∈Γi\s

M
τ
ti(xi)

)
dxi =

∫

xi

ψis(xi, xs)
(
ψi(xi) exp{− 12x

2
i (
∑

t∈Γi\s

α
ls
ti) + xi(

∑

t∈Γi\s

β
ls
ti)}

)
dxi =

∫

xi

ψis(xi, xs)
(
exp(− 12x

2
iσ
−2
+ xiyiσ

−2
)∙

∙exp{− 12x
2
i (
∑

t∈Γi\s

α
ls
ti) + xi(

∑

t∈Γi\s

β
ls
ti)}

)
dxi =

∫

xi

ψis(xi, xs)
(
exp{− 12x

2
i (σ

−2
+
∑

t∈Γi\s

α
ls
ti) + xi(yiσ

−2
+
∑

t∈Γi\s

β
ls
ti) }

)
dxi .

We got a formulation which is equivalent to LDLC variable
nodes update rule given in (7). Now we use the following
lemma for computing the integral:

Lemma 3 (Gaussian integral):Given a (one dimensional)
Gaussian φi(xi) ∝ N (xi;m, v), the integral∫

xi

ψi,s(xi, xs)φi(xi)dxi, where is a (two dimensional)

Gaussianψi,s(xi, xs) , exp(− xiHisxs) is proportional to
a (one dimensional) GaussianN−1(Hism,H

2
isv).

Proof: ∫

xi

ψij(xi, xj)φi(xi)dxi

∝
∫

xi

exp (−xiHisxs)exp{− 12 (xi −m)
2/v}dxi =

=

∫

xi

exp
(
(− 1
2
x2i /v) + (m/v −Hisxs)xi

)
dxi

∝ exp ((m/v −Hisxs)
2/(− 2

v
)) ,

where the last transition was obtained by using the Gaussian
integral:

∞∫

−∞

exp (−ax2 + bx)dx =
√
π/a exp (b2/4a).

exp ((m/v −Hisxs)
2/(− 2

v
)) = exp{− 1

2
(v(m/v −Hisxs)

2)} =

= exp{− 1
2
(H2isv)x

2
s + (Hism)xs −

1
2
v(m/v)2}

∝ exp{− 1
2
(H2isv)x

2
s + (Hism)xs} .

Using the results of Lemma 3 we get that the sent message
between variable node to a factor node is a mixture of
Gaussians, where each Gaussian componentk is given by

M l
is(xs) = N

−1(xs;Hism
ls
is, H

2
isv
ls
is) .

Note that in the LDLC terminology the integral operation
as defined in Lemma 3 is called stretching. In the LDLC
algorithm, the stretching is computed by the factor node as
it receives the message from the variable node. In NBP, the
integral operation is computed at the variable nodes.

LDLC Factors to variable nodes:We start again with
the BP integral-product rule and handle thexs variables
computed at the factor nodes.

Msi(xi) =

∫

xs

ψis(xi, xs)ψs(xs)
∏

j∈Γs\i

Mjs(xj) dxs.

Note that the product
∏

j∈Γs\i
Mτ
js(xj) , is a mixture of Gaus-

sians, where thek-th component is computed by selecting
a single Gaussian from each messageMτ

js from the set
j ∈ Γs \ i and applying the product lemma (Lemma 2). We
get

∫

xs

ψis(xi, xs)
(
ψs(xs) exp{− 12x

2
s(
∑

k∈Γs\i

H2ksv
li
ks)+

+xs(
∑

k∈Γs\i

Hksm
li
ks) }

)
dxs (12)

We continue by computing the product with the self potential
ψs(xs) to get

=

∫

xs

ψis(xi, xs)
(∞∑

bs=−∞

exp(bsxs) exp{− 12x
2
s(
∑

k∈Γs\i

H
2
ksv

li
ks)+

+xs(
∑

k∈Γs\i

Hksm
li
ks
) }
)
dxs =

=
∞∑

bs=−∞

∫

xs

ψis(xi, xs)
(
exp(bsxs) exp{− 12x

2
s(
∑

k∈Γs\i

H
2
ksv

li
ks)+

+xs(
∑

k∈Γs\i

Hksm
li
ks) }

)
dxs =

=
∞∑

bs=−∞

∫

xs

ψis(xi, xs)
(
exp{− 12x

2
s(
∑

k∈Γs\i

H
2
ksv

li
ks)+

xs(bs +
∑

k∈Γs\i

Hksm
li
ks)}

)
dxs =

=

−∞∑

bs=∞

∫

xs

ψis(xi, xs)
(
exp{− 12x

2
s(
∑

k∈Γs\i

H
2
ksv

li
ks)+

+xs(−bs +
∑

k∈Γs\i

Hksm
li
ks) }

)
dxs .

Finally we use Lemma 3 to compute the integral and get

=

−∞∑

bs=∞

exp{−tfrac12x2sH
2
si(
∑

k∈Γs\i

H
2
ksv

li
ks)

−1
+

+xsHsi(
∑

k∈Γs\i

H
2
ksv

li
ks)

−1
(−bs +

∑

k∈Γs\i

Hksm
li
ks) }dxs .

It is easy to verify this formulation is identical to the LDLC
update rules(9).

IV. U SING SPARSEGENERATORMATRICES

We propose a new family of LDLC codes where the
generator matrixG is sparse, in contrast to the original
LDLC codes where the parity check matrixH is sparse.
Table I outlines the properties of our proposed decoder. Our
decoder is designed to be more efficient than the original
LDLC decoder, since as we will soon show, both encoding,
initialization and final operations are more efficient in the
NBP decoder. We are currently in the process of fully
evaluating our decoder performance relative to the LDLC
decoder. Initial results are reported in Section VI.

-1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 1. The approximating functiongrelaxs (x) for the binary case.

A. The NBP decoder
We use an undirected bipartite graph, with variables nodes
{bi}, representing each element of the vectorb, and observa-
tion nodes{zi} for each element of the observation vectory.
We define the self potentialsψi(zi) andψs(bs) as follows:

ψi(zi) ∝ N (zi; yi, σ
2) , ψs(bs) =

{
1 bs ∈ Z
0 otherwise

, (13)

and the edge potentials:

ψi,s(zi, bs) , exp(−ziGisbs) .

Each variable nodebs is connected to the observation nodes
as defined by the encoding matrixG. SinceG is sparse,
the resulting bipartite graph sparse as well. As with LDPC
decoders [7], the belief propagation or sum-product algo-
rithm [6], [19] provides a powerful approximate decoding
scheme.

For computing the MAP assignment of the transmitted
vectorb using non-parametric belief propagation we perform
the following relaxation, which is one of the main novel con-
tributions of this paper. Recall that in the original problem,b
are only allowed to be integers. We relax the functionψs(xs)
from a delta function to a mixture of Gaussians centered
around integers.

ψrelaxs (bs) ∝
∑

i∈Z

N (i, v) .

The variance parameterv controls the approximation quality,
asv → 0 the approximation quality is higher. Figure 2 plots
an example relaxation ofψi(bs) in the binary case. We have
defined the self and edge potentials which are the input the
to the NBP algorithm. Now it is possible to run the NBP
algorithm using (2) and get an approximate MAP solution
to (1). The derivation of the NBP decoder update rules is
similar to the one done for the LDLC decoder, thus omitted.
However, there are several important differences that should
be addressed. We start by analyzing the algorithm efficiency.

We assume that the input to our decoder is the sparse
matrixG, there is no need in computing the encoding matrix
G = H−1 as done in the LDLC decoder. Naively this
initialization takesO(n3) cost. The encoding in our scheme
is done as in LDLC by computing the multiplicationGb.
However, sinceG is sparse in our case, encoding cost is
O(nd) whered << n is the average number of non-zeros
entries on each row. Encoding in the LDLC method is done in

Algorithm LDLC NBP

Initialization operation G = H−1 None
Initialization cost O(n3) -

Encodingoperation Gb Gb
Encodingcost O(n2) O(nd), d� n

Post runoperation Hx None
Post runcost O(nd) -

TABLE I
COMPARISON OFLDLC DECODER VS. NBP DECODER

Algorithm LDLC decoder NBPdecoder

Updaterules Two One
Sparsityassumption Decoding mat.H Encoding mat.G
Algorithm derivation Custom StandardNBP

Graphicalmodel Factorgraph Pairwisepotentials
RelatedOperations Stretch/Unstretch Integral

Convolution product
periodic extension product

TABLE II
INHERET DIFFERENCES BETWEENLDLC AND NBP DECODERS

O(n2) since even ifH is sparse,G is typically dense. After
convergence, the LDLC decoder multiplies by the matrixH
and rounds the result to getb. This operation costsO(nd)
whered is the average number of non-zero entries inH. In
contrast, in the NBP decoder,b is computed directly in the
variable nodes.

Besides of efficiency, there are several inherent differences
between the two algorithms. Summary of the differences
is given in Table II. We use a standard formulation of
BP using pairwise potentials form, which means there is a
single update rule, and not two update rules from left to
right and right to left. We have shown that the convolution
operation in the LDLC decoder relates to product step of the
BP algorithm. The stretch/unstrech operations in the LDLC
decoder are implemented using the integral step of the BP
algorithm. The periodic extension operation in the LDLC
decoder is incorporated into our decoder algorithm using the
self potentials.
B. The relation of the NBP decoder to GaBP

In this section we show that simplified version of the NBP
decoder coincides with the GaBP algorithm. The simplified
version is obtained, when instead of using our proposed
Gaussian mixture prior, we initialize the NBP algorithm with
a prior composed of a single Gaussian.

Theorem 4:By initializing ψs(bs) ∼ N (0, 1) to be a
(single) Gaussian the NBP decoder update rules are identical
to update rules of the GaBP algorithm.

Lemma 5:By initializing ψs(xs) to be a (single) Gaussian
the messages of the NBP decoder are single Gaussians.

Proof: Assume both the self potentialsψs(bs), ψi(zi) are
initialized to a single Gaussian, every message of the NBP
decoder algorithm will remain a Gaussian. This is because
the product (3) of single Gaussians is a single Gaussian,
the integral and (4) of single Gaussians produce a single
Gaussian aswell.
Now we are able to prove Theorem 4:

Proof: We start writing the update rules of the variable
nodes. We initialize the self potentials of the variable nodes
ψi(zi) = N (zi; yi, σ2) , Now we substitute, using the product
lemma and Lemma 3.

Mis(bs) =

∫

zi

ψi,s(zi, bs)
(
ψi(zi)

∏

t∈Γi\s

Mti(zi)
)
dzi =

∫

zi

ψi,s(zi, bs)
(
exp(− 12 z

2
i σ
−2
+yiziσ

−2
)
∏

t∈Γi\s

exp(− 12 z
2
iαti+ziβti)

)
dzi

∫

zi

ψi,s(zi, bs)
(
exp(− 12 z

2
i (σ

−2
+
∑

t∈Γi\s

αti)+zi(σ
−2
yi+

∑

t∈Γi\s

βti)
)
dzi =

∝ exp
(
− 1
2 z
2
iG

2
is(σ

−2
+

∑

t∈Γi\s

αti)
−1
+

ziGis(σ
−2 +

∑

t∈Γi\s

αti)
−1(σ−2yi +

∑

t∈Γi\s

βti)
)

Now we get GaBP update rules by substitutingJii ,
σ−2, Jis , Gis, hs , σ−2yi :

αis = −J
2
isα

−1
i\s = −J

2
is(Jii +

∑

t∈Γi\s

αti)
−1,

βis = −Jisα
−1
i\sβi\s = −Jis

(
α−1i\s(hi +

∑

t∈Γi\s

βti)
)
.

We continue expanding

Msi(zi) =

∫

bs

ψi,s(zi, bs)
(
ψs(bs)

∏

k∈Γs\i

Mτ
ks(bs)

)
dbs

Similarly using the initializations
ψs(bs) = exp{− 12b

2
s}, ψi,s(zi, bs) , exp(−ziGisbs).

∫

bs

ψi,s(zi, bs)
(
exp{− 12 b

2
s}

∏

k∈Γs\i

exp(− 12 b
2
sαis + bsβks)

)
dbs =

∫

bs

ψi,s(zi, bs)
(
exp{− 12 b

2
s(1 +

∑

k∈Γs\i

αis) + bs(
∑

k∈Γs\i

βks)}
)
dbs =

exp{− 12 b
2
sG

2
is(1 +

∑

k∈Γs\i

αis)
−1
+ bsGis(1 +

∑

k∈Γs\i

αis)
−1
(
∑

k∈Γs\i

βks)}

Now we get GaBP update rules by substitutingJii , 1,
Jsi , Gis, hi , 0 :

αsi = −J
2
siα

−1
s\i = −J

2
si(Jii +

∑

k∈Γs\i

αis)
−1,

βsi = −Jsiα
−1
s\iβs\i = −Jsi

(
α−1s\i(hi +

∑

k∈Γs\i

βks)
)
.

Tying together the results, in the case of a single Gaussian
self potential, the NBP decoder is initialized using the
following inverse covariance matrix:

J ,

(
I G
GT diag(σ−2)

)

We have shown that a simpler version of the NBP decoder,
when the self potentials are initialized to be single Gaussians
boils down to GaBP algorithm. It is known [20] that the
GaBP algorithm solves the following least square problem
minb∈Rn ‖Gb − y‖ assuming a Gaussian prior onb, p(b) ∼
N (0, 1), we get the MMSE solutionb∗ = (GTG)−1GT y.
Note the relation to (1). The difference is that we relax the
LDLC decoder assumption thatb ∈ Zn, with b ∈ Rn.

Getting back to the NBP decoder, Figure 2 compares the
two different priors used, in the NBP decoder and in the
GaBP algorithm, for the bipolar case. It is clear that the

Gaussian prior assumption onb is not accurate enough. In the
NBP decoder, we relax the delta function (13) to a Gaussian
mixture prior composed of mixtures centered around Integers.
Overall, the NBP decoder algorithm can be thought of as an
extension of the GaBP algorithm with more accurate priors.

-4 -3 -2 -1 0 1 2 3 4
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

GaBP prior
NBP prior

Fig. 2. Comparing GaBP prior to the prior we use in the NBP decoder for
the bipolar case(b ∈ {−1, 1}).

V. CONVERGENCE ANALYSIS

The behavior of the belief propagation algorithm has been
extensively studied in the literature, resulting in sufficient
conditions for convergence in the discrete case [21] and in
jointly Gaussian models [22]. However, little is known about
the behavior of BP in more general continuous systems.
The original LDLC paper [2] gives some characterization
of its convergence properties under several simplifying as-
sumptions. Relaxing some of these assumptions and using
our pairwise factor formulation, we show that the conditions
for GaBP convergence can also be applied to yield new
convergence properties for the LDLC decoder.

The most important assumption made in the LDLC con-
vergence analysis [2] is that the system converges to a set
of “consistent” Gaussians; specifically, that at all iterationsτ
beyond some numberτ0, only asingle integerbs contributes
to the Gaussian mixture. Notionally, this corresponds to the
idea that the decoded information values themselves are well
resolved, and the convergence being analyzed is with respect
to the transmitted bitsxi. Under this (potentially strong)
assumption, sufficient conditions are given for the decoder’s
convergence. The authors also assume thatH consists of a
Latin square in which each row and column contain some
permutation of the scalar valuesh1 ≥ . . . ≥ hd, up to an
arbitrary sign.

Four conditions are given which should all hold to ensure
convergence:
• LDLC-I: det(H) = det(G) = 1.

• LDLC-II: α ≤ 1, whereα ,
∑d
i=2 h

2
i

h21
.

• LDLC-III: The spectral radius ofρ(F) < 1 whereF is
a n× n matrix defined by:

Fk,l =






hrk
hrl

if k 6= l and there exist a rowr of H

for which |Hrl| = h1 andHrk 6= 0

0 otherwise

• LDLC-IV: The spectral radius ofρ(H̃) < 1 whereH̃ is
derived from H by permuting the rows such that theh1

elements will be placed on the diagonal, dividing each
row by the appropriate diagonal element (+h1 or −h1),
and then nullifying the diagonal.

Using our new results we are now able to provide new
convergence conditions for the LDLC decoder.

Corollary 6: The convergence of the LDLC decoder de-
pends on the properties of the following matrix:

J ,

(
0 H
HT diag(1/σ2)

)

(14)

Proof: In Theorem 1 we have shown an equivalence
between the LDLC algorithm to NBP initialized with the
following potentials:

ψi(xi) ∝ N (xi; yi, σ
2) , ψs(xs) ,

∞∑

bs=−∞

N−1(xs; bs, 0) ,

ψi,s(xi, xs) , exp(xiHisxs) . (15)

We have further discussed the relation between the self po-
tentialψs(xs) and the periodic extension operation. We have
also shown in Theorem 4 that ifψs(xs) is a singleGaussian
(equivalent to the assumption of “consistent” behavior), the
distribution is jointly Gaussian and rather than NBP (with
Gaussian mixture messages), we obtain GaBP (with Gaussian
messages). Convergence of the GaBP algorithm is dependent
on the inverse covariance matrixJ and not on the shift vector
h.

Now we are able to construct the appropriate inverse
covariance matrixJ based on the pairwise factors given in
Theorem 1. The matrixJ is a 2 × 2 block matrix, where
the check variablesxs are assigned the upper rows and the
original variables are assigned the lower rows. The entries can
be read out from the quadratic terms of the potentials (15),
with the only non-zero entries corresponding to the pairs
(xi, xs) and self potentials(xi, xi).

Based on Corollary 6 we can characterize the convergence
of the LDLC decoder, using the sufficient conditions for
convergence of GaBP. Either one of the following two
conditions are sufficient for convergence:

[GaBP-I] (walk-summability[22])
ρ(I − |D−1/2JD−1/2|) < 1 whereD , diag(J).
[GaBP-II] (diagonal dominance[8]) J is diagonally
dominant (i.e.|Jii| >=

∑
j 6=i |Jij |, ∀i).

A further difficulty arises from the fact that the upper
diagonal of (14) is zero, which means that both [GaBP-I,II]
fail to hold. There are three possible ways to overcome this.

1) Create an approximation to the original problem by
setting the upper left block matrix of (14) todiag(ε)
whereε > 0 is a small constant. The accuracy of the
approximation grows asε is smaller. In case either of
[GaBP-I,II] holds on the fixed matrix the “consistent
Gaussians” converge into an approximated solution.

2) In case a permutation onJ (14) exists where either
[GaBPI,II] hold for permuted matrix, then the “consis-
tent Gaussians” convergence to the correct solution.

3) Use preconditioning to create a new graphical
model where the edge potentials are determined

by the information matrixHHT , ψi,s(xi, xs) ,
exp(xi{HHT }isxs) and the self potentials of thexi
nodes areψi(xi) , exp{− 12x

2
iσ
−2 + xi{Hy}i}. The

proof of the correctness of the above construction is
given in [23]. The benefit of this preconditioning is
that the main diagonal ofHHT is surely non zero.
If either [GaBP-I,II] holds onHHT then “consistent
Gaussians” convergence to the correct solution. How-
ever, the matrixHHT may not be sparse anymore, thus
we pay in decoder efficiency.

Overall, we have given two sufficient conditions for conver-
gence, under the “consistent Gaussian” assumption for the
means and variances of the LDLC decoder. Our conditions
are more general because of two reasons. First, we present
a single sufficient condition instead of four that have to
hold concurrently in the original LDLC work. Second, our
convergence analysis does not assume Latin squares, not
even square matrices and does not assume nothing about the
sparsity ofH. This extends the applicability of the LDLC
decoder to other types of codes. Note that our convergence
analysis relates to the mean and variances of the Gaussian
mixture messages. A remaining open problem is the conver-
gence of the amplitudes – the relative heights of the different
consistent Gaussians.

VI. EXPERIMENTAL RESULTS

In this section we report preliminary experimental results
of our NBP-based decoder. Our implementation is general
and not restricted to the LDLC domain. Specifically, recent
work by Baronet al. [5] had extensively tested our NBP
implementation in the context of the related compressive
sensing domain. Our Matlab code is available on the web
on [24].

We have used a code lengths ofn = 100, n = 1000,
where the number of non zeros in each row and each column
is d = 3. Unlike LDLC Latin squares which are formed
using a generater sequencehi, we have selected the non-
zeros entries of the sparse encoding matrixG randomly
out of {−1, 1}. This construction further optimizes LDLC
decoding, since bipolar entries avoids the integral compu-
tation (stretch/unstrech operation). We have used bipolar
signaling, b ∈ {−1, 1}. We have calculated the maximal
noise levelσ2max using Poltyrev generalized definition for
channel capacity using unrestricted power assumption [25].
For bipolar signalingσ2max = 4 n

√
det(G)2/2πe. When

applied to lattices, the generalized capacity implies that there
exists a latticeG of high enough dimensionn that enables
transmission with arbitrary small error probability, if and
only if σ2 < σ2max. Figure 3 plots SER (symbol error rate)
of the NBP decoder vs. the LDLC decoder for code length
n = 100, n = 1000. The x-axis represent the distance from
capacity in dB as calculated using Poltyrov equation. As can
be seen, our novel NBP decoder has better SER forn = 100
for all noise levels. Forn = 1000 we have better performance
for high noise level, and comparable performance up to 0.3dB
from LDLC for low noise levels. We are currently in the
process of extending our implementation to support code

lengths of upn = 100, 000. Initial performance results are
very promising.

0 0.5 1 1.5 2 2.5 3 3.5 4
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Distance from capacity (dB)

S
E

R

LDLC vs NBP code performance

LDLC code len 100
LDLC code len 1000
NBP code len 100
NBP code len 1000

Fig. 3. NBP vs. LDLC decoder performance

VII. F UTURE WORK AND OPEN PROBLEMS

We have shown that the LDLC decoder is a variant of
the NBP algorithm. This allowed us to use current research
results from the non-parametric belief propagation domain,
to extend the decoder applicability in several directions.
First, we have extended algorithm applicability from Latin
squares to full column rank matrices (possibly non-square).
Second, We have extended the LDLC convergence analysis,
by discovering simpler conditions for convergence. Third, we
have presented a new family of LDLC which are based on
sparse encoding matrices.

We are currently working on an open source implementa-
tion of the NBP based decoder, using an undirected graphical
model, including a complete comparison of performance to
the LDLC decoder. Another area of future work is to examine
the practical performance of the efficient Gaussian mixture
product sampling algorithms developed in the NBP domain
to be applied for LDLC decoder. As little is known about
the convergence of the NBP algorithm, we plan to continue
examine its convergence in different settings. Finally, we plan
to investigate the applicability of the recent convergence fix
algorithm [26] for supporting decoding matrices where the
sufficient conditions for convergence do not hold.

ACKNOWLEDGMENT

D. Bickson would like to thank N. Sommer, M. Feder and
Y. Yona from Tel Aviv University for interesting discussions
and helpful insights regarding the LDLC algorithm and
its implementation. D. Bickson was partially supported by
grants NSF IIS-0803333, NSF NeTS-NBD CNS-0721591
and DARPA IPTO FA8750-09-1-0141. Danny Dolev is In-
cumbent of the Berthold Badler Chair in Computer Science.
Danny Dolev was supported in part by the Israeli Science
Foundation (ISF) Grant number 0397373.

REFERENCES

[1] R. G. Gallager, “Low density parity check codes,”IRE Trans. Inform.
Theory, vol. 8, pp. 21–28, 1962.

[2] N. Sommer, M. Feder, and O. Shalvi, “Low-density lattice codes,” in
IEEE Transactions on Information Theory, vol. 54, no. 4, 2008, pp.
1561–1585.

[3] E. Sudderth, A. Ihler, W. Freeman, and A. Willsky, “Nonparametric
belief propagation,” inConference on Computer Vision and Pattern
Recognition (CVPR), June 2003.

[4] S. Sarvotham, D. Baron, and R. G. Baraniuk, “Compressed sensing
reconstruction via belief propagation,” Rice University, Houston, TX,
Tech. Rep. TREE0601, July 2006.

[5] D. Baron, S. Sarvotham, and R. G. Baraniuk, “Bayesian compressive
sensing via belief propagation,”IEEE Trans. Signal Processing, to
appear, 2009.

[6] F. Kschischang, B. Frey, and H. A. Loeliger, “Factor graphs and the
sum-product algorithm,” vol. 47, pp. 498–519, Feb. 2001.

[7] R. J. McEliece, D. J. C. MacKay, and J. F. Cheng, “Turbo decoding
as an instance of Pearl’s ’belief propagation’ algorithm,” vol. 16, pp.
140–152, Feb. 1998.

[8] Y. Weiss and W. T. Freeman, “Correctness of belief propagation in
Gaussian graphical models of arbitrary topology,”Neural Computation,
vol. 13, no. 10, pp. 2173–2200, 2001.

[9] A. Ihler, E. Sudderth, W. Freeman, and A. Willsky, “Efficient mul-
tiscale sampling from products of gaussian mixtures,” inNeural
Information Processing Systems (NIPS), Dec. 2003.

[10] M. Briers, A. Doucet, and S. S. Singh, “Sequential auxiliary particle
belief propagation,” inInternational Conference on Information Fu-
sion, 2005, pp. 705–711.

[11] D. Rudoy and P. J. Wolf, “Multi-scale MCMC methods for sampling
from products of Gaussian mixtures,” inIEEE International Confer-
ence on Acoustics, Speech and Signal Processing, vol. 3, 2007, pp.
III–1201–III–1204.

[12] A. T. Ihler. Kernel Density Estimation Toolbox for MATLAB [online]
http://www.ics.uci.edu/ ∼ihler/code/ .

[13] A. T. Ihler, Fisher, R. L. Moses, and A. S. Willsky, “Nonparametric
belief propagation for self-localization of sensor networks,”Selected
Areas in Communications, IEEE Journal on, vol. 23, no. 4, pp. 809–
819, 2005.

[14] A. T. Ihler, J. W. Fisher, and A. S. Willsky, “Particle filtering under
communications constraints,” inStatistical Signal Processing, 2005
IEEE/SP 13th Workshop on, 2005, pp. 89–94.

[15] B. Kurkoski and J. Dauwels, “Message-passing decoding of lattices
using Gaussian mixtures,” inIEEE Int. Symp. on Inform. Theory (ISIT),
Toronto, Canada, July 2008.

[16] Y. Yona and M. Feder, “Efficient parametric decoder of low density
lattice codes,” inIEEE International Symposium on Information Theory
(ISIT), Seoul, S. Korea, July 2009.

[17] B. M. Kurkoski, K. Yamaguchi, and K. Kobayashi, “Single-Gaussian
messages and noise thresholds for decoding low-density lattice codes,”
in IEEE International Symposium on Information Theory (ISIT), Seoul,
S. Korea, July 2009.

[18] D. Bickson, “Gaussian belief propagation: Theory and application,”
Ph.D. dissertation, The Hebrew University of Jerusalem, October 2008.

[19] J. Pearl,Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Francisco: Morgan Kaufmann, 1988.

[20] O. Shental, D. Bickson, P. H. Siegel, J. K. Wolf, and D. Dolev,
“Gaussian belief propagation solver for systems of linear equations,” in
IEEE International Symposium on Information Theory (ISIT), Toronto,
Canada, July 2008.

[21] A. T. Ihler, J. W. F. III, and A. S. Willsky, “Loopy belief propagation:
Convergence and effects of message errors,”Journal of Machine
Learning Research, vol. 6, pp. 905–936, May 2005.

[22] D. M. Malioutov, J. K. Johnson, and A. S. Willsky, “Walk-sums and
belief propagation in Gaussian graphical models,”Journal of Machine
Learning Research, vol. 7, Oct. 2006.

[23] D. Bickson, O. Shental, P. H. Siegel, J. K. Wolf, and D. Dolev,
“Gaussian belief propagation based multiuser detection,” inIEEE In-
ternational Symposium on Information Theory (ISIT), Toronto, Canada,
July 2008.

[24] Gaussian Belief Propagation implementation in matlab [online]
http://www.cs.huji.ac.il/labs/danss/p2p/gabp/ .

[25] G. Poltyrev, “On coding without restrictions for the AWGN channel,”
in IEEE Trans. Inform. Theory, vol. 40, Mar. 1994, pp. 409–417.

[26] J. K. Johnson, D. Bickson, and D. Dolev, “Fixing convergence of
Gaussian belief propagation,” inIEEE International Symposium on
Information Theory (ISIT), Seoul, South Korea, 2009.

