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Abstract—The recent work of Sommer, Feder and Shalvi theory point of view we provide a cleaner and more standard
presented a new family of codes called low density lattice derivation of the LDLC update rules, from the graphical
codes (LDLC) that can be decoded efficiently and approach the 5465 perspective. From the practical side we propose to
capacity of the AWGN channel. A linear time iterative decoding th iderable bodyv of h that exists in the NBP
scheme which is based on a message-passing formulation on a'se .e considerable bo y 0 resegrp al exists in the
factor graph is given. domain to allow construction of efficient decoders.

In the current work we report our theoretical findings We further propose a new family of LDLC codes as well
regarding_ the relation between the LDLC decoqler an_d belief as a new LDLC decoder based on the NBP algorithm .
propagation. We show that the LDLC decoder is an instance gy, ytjlizing sparse generator matrices rather than the sparse
of non-parametric belief propagation and further connect it to ity check tri d in th iginal LDLC K
the Gaussian belief propagation algorithm. Our new results parity chec _ma rces use_ _'n € origina WOrK,
enable borrowing knowledge from the non-parametric and W€ Can obtain a more eff|C|ent.encodelr and decoder.. We
Gaussian belief propagation domains into the LDLC domain. introduce the theoretical foundations which are the basis of
Specifically, we give more general convergence conditions for our new decoder and give preliminary experimental results

convergence of the LDLC decoder (under the same assumptionsyhjch show our decoder has comparable performance to the
of the original LDLC convergence analysis). We discuss how LDLC decoder

to extend the LDLC decoder from Latin square to full rank, . . .
non-square matrices. We propose an efficient construction of Th‘? structure of this paper is as follows. Section I
sparse generator matrix and its matching decoder. We report overviews LDLC codes, belief propagation on factor graph

preliminary experimental results which show our decoder has and the LDLC decoder algorithm. Section IIl rederive the
comparable symbol to error rate compared to the original original LDLC algorithm using standard graphical models
LDLC decoder. . o .
terminology, and shows it is an instance of the NBP algo-

rithm. Section IV presents a new family of LDLC codes as
well as our novel decoder. We further discuss the relation to

Lattice codes provide a continuous-alphabet encoding pte GaBP algorithm. In Section V we discuss convergence
cedure, in which integer-valued information bits are corand give more general sufficient conditions for convergence,
verted to positions in Euclidean space. Motivated by thénder the same assumptions used in the original LDLC
success of low-density parity check (LDPC) codes [1], recework. Section VI brings preliminary experimental results
work by Sommeret al. [2] presented low density lattice of evaluating our NBP decoder vs. the LDLC decoder. We
codes (LDLC). Like LDPC codes, a LDLC code has a sparg@enclude in Section VII.
decoding matrix which can be decoded efficiently using an
iterative message-passing algorithm defined over a factor Il. BACKGROUND
graph. In the original paper, the lattice codes were limited, Lattices and low-density lattice codes

to Latin squares, and some theoretical results were proven, . _dimensional lattice\ is defined by a generator matrix

for this special case. , , . G of sizen x n. The lattice consists of the discrete set of
The non-parametric belief propagation (NBP) aIgonthrBoime = (21,22, ..., zn) € R" with 2 = Gb, whereb € Z"

is an efficient method for approximated inference on coRs ya set of all p’oséibrlle integer vectors. ’

tinuous graphical models. The NBP algorithm was originally A low-density lattice code (LDLC) is a lattice with a non-

introduced in [3], but has recently been rediscovered indepeg?ﬁgmar generator matri&, for which H = G~ is sparse.

dently in several domains, among them compressive sensjng’ -, \venient to assumé thdt(H) = 1/det(G) = 1. An

[4], [5] and IOW. c_Jensity lattice dec_oding [2], demonstratin%yd) regular LDLC code has al matrix with constant row

very good empirical performance in these systems. and column degreé. In a latin square LDLC, the values of

In this work, we investigate the theoretical relations b&pe 4 non-zero coefficients in each row and each column are
tween the LDLC decoder and belief propagation, and shQWme permutation of the valués, hs, - - - , hy
) b b .

it is an instance of the NBP algorithm. This understanding We assume a linear channel with additive white Gaussian
has both theoretical and practical consequences. From tlmese (AWGN). For a vector of integer-valued information

I. INTRODUCTION



the transmitted codeword is = Gb, whereG is the LDLC tributions. If s refers to factorf;;, we have
encoding matrix, and the received observationy is = + w i1 -
wherew is a vector of i.i.d. AWGN with diagonal covariance M, (z:) =N (Biy;, aaj)

! . \ . .
o“I. The decoding problem is then to estimatgiven the = T+ . =Ry (3
observation vectoy; for the AWGN channel, the MMSE g = k;\.ak“ Bing = hi ke;\ﬂ’”’ ®)
estimator is o Y o

) _ , M (x5) = N7 (Bij, i)

b" = arg min [ly — Gb||*. @) @iy = —Jhagl, Bij = —Jian ;B - (4)

) ) From thea and 8 values we can compute the estimated
B. Factor graphs and belief propagation marginal distributions, which are Gaussian with mean=

, _ _ Ki(hi+>cr Brs) and variance; = (Ji+> ", cp. i)™t
Factor graphs provide a convenient mechanism for repig-s ynown that it GaBP converges, it results in the ex-

senting structure among random variables. Suppose a fuﬁﬁf MAP estimatez*, although the variance estimatés

tion or distributionp(z) defined on a large set of Variable%omputed by GaBP are only approximations to the correct

x = [z1,...,x,] factors into a collection of smaller fu”Ct'onsvariances [8].

p(z) =1, fs(zs), where eactr, is a vector composed of a 5y Nonparametric belief propagationin more general
smaller subset of the;. We represent this factorization as & ontinuous-valued systems, the messages do not have a sim-
bipartite graph V\.'ith “factor nodesf, and “yariabl_e nodes” ple closed form and must be approximated. Nonparametric
e Wh_ere the neighborB, of f, are the varlfables e, and belief propagation, or NBP, extends the popular class of par-
the neighbors of; are the. factor nodes which have as an ticle filtering algorithms, which assume variables are related
argum(_ant £ such tham in ). For compgc.tnes.s, we useoy a Markov chain, to general graphs. In NBP, messages are
supscrlptSS,t to |nd|cat§ factor nodes ar'an. to indicate represented by collections of weighted samples, smoothed by
variable nodes, and will use and z, to indicate sets of , . <sian shape—in other words, Gaussian mixtures.
variables, typically formed into a vector whose entries are NBP follows the same message update structure of (2). No-

the variablesr; which are in the set. éz;bly, when the factors are all either Gaussian or mixtures of

The belief propagation (BP) or sum-product algorithm [6 - - - : :
is a popular technique for estimating the marginal probabi aussians, the messages will remain mixtures of Gaussians

ties of each of the variables. BP follows a message-passing®S Well, since the product or marginalization of any mixture
formulation, in which at each iteratiom, every variable of Gaussians is also a mixture of Gaussians [3]. However, the

passes a message (denofd.) to its neighboring factors, product ofd Gaussian mixtures, each witN components,
are given by the general form, product creates an exponential increase in the size of the
mixture. For this reason, one must approximate the mixture

M (@) = filws) [[ Mi), in some way. NBP typically relies on a stochastic sampling
teTi\s process to preserve only high-likelihood components, and a
M (@) = / fo@s) T Mi(ay)de. . (2) humber of sampling algorithms have been designed to ensure
e JETs\i that this process is as efficient as possible [9]-[11]. One

may also apply various deterministic algorithms to reduce the
number of Gaussian mixture components [12]; for example,

Here we have included a “local factorf;(z;) for each . : ;
variable, to better parallel our development in the sequtlarll. [13], [14], an O(N) greedy algorithm (whereV is the

. - number of components before reduction) is used to trade off
When the variables; take on only a finite number of values, . . . . . .
i eﬁresentanon size with approximation error under various
the messages may be represented as vectors; the resuftle sures
algorithm has proven effective in many coding applications '
including low-density parity check (LDPC) codes [7]. InC. LDLC decoder
keeping with our focus on continuous-alphabet codes, how-The LDLC decoding algorithm is also described as a
ever, we will focus on implementations for continuous-valueshessage-passing algorithm defined on a factor graph [6],
random variables. whose factors represent the information and constraints on
) ) , . ... x arising from our knowledge ofy and the fact thab is

1) Gaussian Belief Propagationwhen the joint distri- integer-valued. Here, we rewrite the LDLC decoder update
bution p(z) is Gaussianp(z) o exp{—3z” Jz + h'z}, the rules in the more standard graphical models notation. The
BP messages may also be compactly represented in the séator graph used is a bipartite graph with variables nodes
form. Here we use the “information form” of the Gaussiad®:}» representing each element of the vectorand factor
distribution, A'(z; 1,2) = AN~1(h,J) where J — ¥ nodes{f;, gs} corresponding to functions
and h = Ju. In this case, the distribution’s factors can 1 HxeZ

tten | irwi i filai) = N(@isyi,0%) gs(xs) = :

always be written in a pairwise form, so that each function /\* HIH o ) s\bs 0 otherwise '
involves at most two variables;, x;, with f;;(z;,z;) =
exp{—Ji;z;z;}, j # i, and f;(z;) = exp{— 3 Juz? + h;z; }. where H, is the s*" row of the decoding matrix{. Each

Gaussian BP (GaBP) then has messages that are amfable noder; is connected to those factors for which it is
conveniently represented as information-form Gaussian d&a argument; sincél is sparseH; has few non-zero entries,



making the resulting factor graph sparse as well. Notide increasing at each iteration and must eventually approxi-
that unlike the construction of [2], this formulation does natate the messages using some finite number of components.
require thatH be square, and it may have arbitrary entrie§o date the work on LDLC decoders has focused on de-
rather than being restricted to a Latin square constructiderministic approximations [2], [15]-[17], often greedy in
Sparsity is preferred, both for computational efficiency anshture. However, the existing literature on NBP contains a
because belief propagation is typically more well behavedrge number of deterministic and stochastic approximation
on sparse systems with sufficiently long cycles [6]. We caalgorithms [9]-[13]. These algorithms can use spatial data
now directly derive the belief propagation update equations stsuctures such as KD-Trees to improve efficiency and avoid
Gaussian mixture distributions, corresponding to an instanite pitfalls that come with greedy optimization.

of the NBP algorithm. We suppress the iteration number Estimating the codeword3he original codeword: can be
to reduce clutter. estimated using its belief, an approximation to its marginal

Variable to factor messageSuppose that our factor to distribution given the constraints and observations:
variable message¥/;;(x;) are each described by a Gaussian N fofon .
mixture distribution, which we will write in both the moment Bi(w:) = fi(w:) [] Mai(a:).
and information form:

(10)
sel’;
The value of eachr; can then be estimated as either the
_ l . l' l' _ l' —1 . l_ l' T .
MSZ(:EI) - zl:wsi-/\/‘(xzy msul/sz) - Xl:wszN (mzy /65170551) * mean or mode of the be“ef, egr;; = arg maXBi(xi),
(5) and the integer-valued information vector estimated*as:
Then, the variable to factor messadg;(z;) is given by round(Hz*).

Mis(xs) = > wisN (x5 mig,vis) = > wicN~ (5 Bis, ais) [1l. A PAIRWISE CONSTRUCTION OF THELDLC
L ! ©) DECODER
wherel refers to a vector of indiceg;] for each neighbos, Before introducing our novel lattice code construction, we

3 7 demonstrate that the LDLC decoder can be equivalently con-
. =072+ E alt, B =yo 2+ E Bl (7) . o ; . .
vir Pt =Yi ti structed using airwise graphical model. This construction

e e will have important consequences when relating the LDLC
wh, = N2 i, 0 )sti-/\lf Ex By Asi) decoder to Gaussian belief propagation (Section 1V-B) and
N5 B, i) understanding convergence properties (Section V).

The moment parameters are then givenly = (al,)~? Theorem 1:The LDLC decoder algorithm is an instance
1 1,1 p_l . 9 0 — \Fat) 0 of the NBP algorithm executed on the following pairwise
m;, = Bi(ay) . The valuez™ is any arbitrarily chosen graphical model. Denote the number LDLC variable nodes as

point, often taken to be the mean!, for numerical reasons. n, and the number of check nodes/gs We construct a new

Factor to variable message&ssume that the incoming graphical model withn + &k variables, X = (z1,- - ,Tp1k)
messages are of the form (6), and note that the facts follows. To match the LDLC notation we use the index
gs() can be rewritten in a summation forngs(z;) = lettersi,j,.. to denote variables, ..., n and the letters, ¢, ...

> . 0(Hsz = bs), which includes all possible integer valueso denote new variables + 1, ...,n + k which will take the

bs. If we condition on the value of both the integerand the place of the check node factors in the original formulation.
indices of the incoming messages, again formed into a vecite further define the self and edge potentials:

1 = [};] with an element for each variabje we can see that -
gs enforces the linear equalitif;;x; = bs— > Hg;x;. Using . 2 A .
standard Gaussian identities in the mom%:nt pérémeterizationwz(mz) Ny o®), wa(@) & D, Nlesibs0),
and summing over all possible € Z andl, we obtain

M (z;) = Zzwlz/\/(%, mlsivl/;i) =
1

p Proof: The proof is constructed by substituting the edge
Zzwi#\/*l(wi; Bl ® and self potentials (15) into the belief propagation update
1

bg=—o00

Vi s(Ti, Ts) S exp(—x; Hisxs) . (11)

rules. Since we are using a pairwise graphical model, we do

not have two update rules from variable to factors and from

where factors to variables. However, to recover the LDLC update

= HA(Y Hfsv;i% rules, we make the artificial distinction_ between the variable
and factor nodes, where the nodeswill be shown to be

bs

JET\i ' X
T oy 1 1 related to the variable nodes in the LDLC decoder, and the
mai = Hyi™ (=bs + EFZ\,H]Sij)’ Wi = ,61;[\,%’ ©) nodesz, will be shown to be related to the factor nodes in
e e the LDLC decoder. _

and the information parameters are givenddy = (v!,)~! a) LDLC variable to factor nodesWe start with the

andBl. = ml, (v ) integral-product rule computed in thg nodes:
S S S *
Notice that (8) matches the initial assumption of a Gaus- /

. ) : : ) . M (xs) = iy Ts)Pi(Ti Myi(x;)dx;

sian mixture given in (5). At each iteration, the exact (@) V(@ )i )telr__[\s u(@)de

messages remain mixtures of Gaussians, and the algorithm
!teSIf corresponds to an instance of NBP. As in any NBPlOur construction extends the square parity check matrix assumption to
implementation, we also see that the number of componentis general case.



The product of a mixture of Gaussiang] My;(z;) is itself LDLC Factors to variable nodesWe start again with
i ) tel;\s . the BP integral-product rule and handle the variables
a mixture of Gaussians, where each component in the outgdinputed at the factor nodes.
mixture is the product of a single Gaussians selected from
each input mixtureMy; (z;). Mi(z:) I/Ws(u’vnws)%(fﬂs) 11 Mjs(x)) das.
Lemma 2 (Gaussian product){18, Claim 10], [2, Claim bt JETs\i
2] Givenp GaussiangV'(my,v1),- - - ,N'(m,,v,) their prod-

uct is proportional to a Gaussia¥ (1, v) with Note that the product [T M7, (z;) , is a mixture of Gaus-
- P P P P . JETL\i . .
51 _ L S = Jv)o = T sians, where thé-th component is computed by selecting
! ;Uz ;a " (;m [ ;ﬁv a single Gaussian from each messay€, from the set
Proof: Is given in [18, Claim10]. m J €T\ and applying the product lemma (Lemma 2). We

Using the Gaussian product lemma fhenixture component geét
in the message from variable nodeo factor nodes is a
single Gaussian given by

[ (e el —tall 3 i+

M3 () :/wis(zi,xs)(wi(wi) I1 M;-(w'i))dwi = kers\i
z; tel;\s
/wis(zi,%)(wi(wi)exp{*%ff?( > o) + @ > B3 )} dx; = +2s( Z Hksmgs) })dms (12)
o tel;\s teD; \s kel \1
/¢is($i»xs)(exp(_%z?072 + ziyi0 %) . . . .
2 We continue by computing the product with the self potential
exp{—1al( >0 al) i Y BiE)})de: = () to get
tel; \s tel;\s
is (25, x5) (exp{—1z2 (0% + l‘;+ii72+ lf dz; . > )
g[w (21,22 (exp{~ 422 (0 te%j\:xt) @i(yio te%j\sﬁt )})de = [ontonon (S exp(vo) xpl ba (At
zg bs=—o00 keTs\4
We got a formulation which is equivalent to LDLC variable +z.(Y Hiemyl,) Y dae =
nodes update rule given in (7). Now we use the following kels\e
lemma for computing the integral: > 12 2 1
. . . . . = is (@i, Ts) (exp(bszs) exp{— 5 Hy vl )+
Lemma 3 (Gaussian integral)Given a (one dimensional) bs;xlw (o4, 20) (2xp(bes) wp{~ o IEEFZ\ o)
Gaussian ¢;(z;) o«  N(z;m,v), the integral tao (Y Hpemyl) V) de, =
i s(xi, x5)pi(x;)dx;, where is a (two dimensional o e\
x{d)hS( 7 s)¢z< z) 7 ( ) _ Z /U)is(sz‘,ms)(eXp{—%Ii(ZHisv;'fs)+
Gaussiany; s(zi,zs) = exp(— z;H;sx5) is proportional to Pe=T 0 kEla\d
a (one dimensional) Gaussiai—!(H,;sm, H:v). zo(be +> Hiamyl)})das =
Proof: kETs\i
/1/113(1131,1173)¢1(:B1)d$1 = Z /wis(l’i’Is)(&Xp{*%Ii(ZH,iSULiS)+
z; bs=oog keTg\i
* /eXp (=aiHisws)oxp{—g (@ —m)*fo}dr: = +ao(=bs + S Hypomli) ) de .
kels\i

:Jﬂ/ exp ((—%w?/v) + (m/v — Hisxs)mi)dwi

v 5. 5 Finally we use Lemma 3 to compute the integral and get
o exp((m/v = Hiszs)™ /(=)

—oo

where the last transition was obtained by using the Gaussian = > exp{—tfraci2alHZ( > Hivl)
integral: bs=o0 kETS\i
o ‘e Ha( Y Hpwold) '(=be+ > Hiemyl)}da. .
/ exp (—ax® + bx)de = /7 /aexp (b°/4a). kETs\i k€T \i
- ) , It is easy to verify this formulation is identical to the LDLC
exp ((m/v — Hisws)"/(=2)) = exp{—5(v(m/v — Hisz:)")} = update ruleg9). |
= exp{—} (Hv)2% + (Hism)zs — 3o(m/v)*}
o exp{—L(HZv)2? + (Hism)zs} . IV. USING SPARSEGENERATORMATRICES

) n We propose a new family of LDLC codes where the
Using the results of Lemma 3 we get that the sent messaﬁmerator matrixG is sparse, in contrast to the original
between variable node to a factor node is a mixture ; .

Gaussians, where each Gaussian compohéstgiven by LC codes where the parity check matré{ is sparse.
. = T Table | outlines the properties of our proposed decoder. Our

Mis(@s) = N7 (@s; Hismag, Higvig) decoder is designed to be more efficient than the original
Note that in the LDLC terminology the integral operationDLC decoder, since as we will soon show, both encoding,
as defined in Lemma 3 is called stretching. In the LDLG@hitialization and final operations are more efficient in the
algorithm, the stretching is computed by the factor node &8P decoder. We are currently in the process of fully
it receives the message from the variable node. In NBP, thealuating our decoder performance relative to the LDLC
integral operation is computed at the variable nodes. decoder. Initial results are reported in Section VI.



, [ Algorithm [ LDLC ] NBP |

el | Initialization operation| G = H~ ! None

ol | Initialization cost O(n3) -
Encodingoperation Gb Gb

H ] Encodingcost O(n2) O(nd), d<n

v 1 Post runoperation Hzx None

Bl 1 Post runcost O(nd) -

0.8 1

06l 1 TABLE |

oal | COMPARISON OFLDLC DECODER VS NBP DECODER

0.2 1

E 05 o o5 1 15

1 2

[ Algorithm [ LDLC decoder | NBRiecoder |
Updaterules Two One
Fig. 1. The approximating functiog?¢!**(x) for the binary case. :g:isti;])r':sds: r?\;ptti?: De?i?gmmaﬂ En;‘;?]iggr&lngf
Graphicalmodel Factorgraph Pairwisepotentials
RelatedOperations Stretch/Un_stretch Intgal
A. The NBP decoder perico(Ziri]t\:DleL:tteI:%r;ion S;ggﬁg
We use an undirected bipartite graph, with variables nodes TABLE Il
{b:}, representing each element of the vedtoand observa- INHERET DIFFERENCES BETWEEN.DLC AND NBP DECODERS

tion nodes{z; } for each element of the observation vecjor
We define the self potentials; (z;) and(bs) as follows:

1 bs€Z
0 otherwise

Pi(zi) o N(zi39i,07),  s(bs) = { , (13)  O(n?) since even ifH is sparse( is typically dense. After
_ convergence, the LDLC decoder multiplies by the mafiix
and the edge potentials: and rounds the result to gét This operation cost®(nd)
Gios(2i,b5) 2 exp(—2iGishs) . whered is_ the average numbe_r of non-zero e_ntriesH_inIn
contrast, in the NBP decoddr,is computed directly in the
Each variable nodé, is connected to the observation nodegariable nodes.
as defined by the encoding matriX. Since G is sparse, Besides of efficiency, there are several inherent differences

the resulting bipartite graph sparse as well. As with LDPGetween the two algorithms. Summary of the differences

o!ecoders [7], the belief propagation or sum-product alg@s given in Table Il. We use a standard formulation of
rithm [6], [19] provides a powerful approximate decoding8P using pairwise potentials form, which means there is a
scheme. single update rule, and not two update rules from left to

For computing the MAP ‘assignment of the transmittedynt and right to left. We have shown that the convolution

vectorb using non-parametric belief propagation we perfor L
the foIIowinggreIaer)tion, which is onepofrihg main novpel COanperatlon in the LDLC decoder relates to product step of the

tributions of this paper. Recall that in the original problém, BP algorithm. The stretch/unstrech operations in the LDLC
are only allowed to be integers. We relax the functioiiz;) decoder are implemented using the integral step of the BP

from a delta function to a mixture of Gaussians centerefigorithm. The periodic extension operation in the LDLC

around integers. decoder is incorporated into our decoder algorithm using the
d};ela:c(bs) o ZN(’L,U) ) self pOtentialS.
ez B. The relation of the NBP decoder to GaBP

The variance parametercontrols the approximation quality, In this section we show that simplified version of the NBP
asv — 0 the approximation quality is higher. Figure 2 plotslecoder coincides with the GaBP algorithm. The simplified
an example relaxation af;(b,) in the binary case. We haveversion is obtained, when instead of using our proposed
defined the self and edge potentials which are the input t@@ussian mixture prior, we initialize the NBP algorithm with
to the NBP algorithm. Now it is possible to run the NBFRa prior composed of a single Gaussian.
algorithm using (2) and get an approximate MAP solution Theorem 4:By initializing v¢s(bs) ~ N(0,1) to be a
to (1). The derivation of the NBP decoder update rules {single) Gaussian the NBP decoder update rules are identical
similar to the one done for the LDLC decoder, thus omittedo update rules of the GaBP algorithm.
However, there are several important differences that should-emma 5:By initializing ¢ (z) to be a (single) Gaussian
be addressed. We start by analyzing the algorithm efficientlye messages of the NBP decoder are single Gaussians.
We assume that the input to our decoder is the sparse Proof: Assume both the self potentials (bs), ;(2;) are
matrix GG, there is no need in computing the encoding matrixitialized to a single Gaussian, every message of the NBP
G = H~! as done in the LDLC decoder. Naively thisdecoder algorithm will remain a Gaussian. This is because
initialization takesO(n?) cost. The encoding in our schemehe product (3) of single Gaussians is a single Gaussian,
is done as in LDLC by computing the multiplicatiab. the integral and (4) of single Gaussians produce a single
However, sinceG is sparse in our case, encoding cost iSaussian asvell. ]
O(nd) whered << n is the average number of non-zerodNow we are able to prove Theorem 4:
entries on each row. Encoding in the LDLC method is done in



Proof: We start writing the update rules of the variabl&aussian prior assumption éris not accurate enough. In the

(2 = N2 0. 02 i i . : ;
Idgrngﬁzaia%(?é:ryﬁﬁ?a)é Now we substitute, using the productyyiyre prior composed of mixtures centered around Integers.
' Overall, the NBP decoder algorithm can be thought of as an

Mg (bs) = /wi,s(zi,bs)(wi(zi) [T Mue)dz: = extension of the GaBP algorithm with more accurate priors.
z; teT;\s
o 0.02
/wi7s(zi,bs)(exp(—%z?gfz_i_yizig*Q) H exp(—%z?ati +zi5ti))dzi vomsl :ﬁ;EPpsz:)r
z; tEl;\s

0.016

/wi,s(ziybs)(exp(_%zf(‘772+ ST i) tzi(c Pyt Y Bri))da = ool
2 tel;\s tel;\s
0.012F

x exp ( — %Z?G?s(072 + Z ) T+

teEl;\s
2;Gis(0 7% + Z ) o 2y + Z gﬁ)) 0.008}
teli\s tET;\s 0.006
Now we get GaBP update rules by substitutidg = vl J J
0_2’ Jis £ Gisy hs = 0'_2yi : -

3 2 -1 0 1 2 3 4
ais = —Jiop s = —Ju(Ju+ Y au)
teT;\s Fig. 2. Comparing GaBP prior to the prior we use in the NBP decoder for
_ B the bipolar caséb € {—1,1}).
Bis = *Jisai\lsﬁi\s = —Jis (ai\t(hi + Z ﬁtz)) .
teTo\s V. CONVERGENCE ANALYSIS
We continue expanding The behavior of the belief propagation algorithm has been
extensively studied in the literature, resulting in sufficient

M,i(z) = /dfis(zi,bs)(ws(bs) H M]:s(bs))dbs conditions for convergence in the discrete case [21] and in
b

kET \i jointly Gaussian models [22]. However, little is known about
o ) o the behavior of BP in more general continuous systems.
Similarly using tlhe2 initializations The original LDLC paper [2] gives some characterization
Vs(bs) = exp{—3b5}, is(2i,bs) = exp(—2iGisbs). of its convergence properties under several simplifying as-
o ol 152 ol Lp2ar, ‘ _ sumptions. Relaxing some of these assumptions and using
IZM’S(ZMS)(G . 2bs}kelljé;:\ie (= §¥ers + bufhs) ) dbs our pairwise factor formulation, we show that the conditions
o ol 1p2 - ‘ o for GaBP convergence can also be applied to yield new
b[ws(z“bb‘)(e ot 2b5(1+ke§\i o) +b5(kerzs\i6k5)})dbb convergence properties for the LDLC decoder.
exp{— 302G 1+ 3 i)t +5.Gi (14 > i) NS Bre)} The most important assumption made in the LDLC con-
kED\i kel \i KET,\i vergence analysis [2] is that the system converges to a set
Now we get GaBP update rules by substitutifig 2 1, of “consistent” Gaussians; speqifical!y, that at all itgrati@ns
Ja 2 G b 20 beyond some numpef), only qsmglemtggerbs contributes
to the Gaussian mixture. Notionally, this corresponds to the
asi = —Jaagy; = —Ju(Ji + Z ais) ™ idea that the decoded information values themselves are well
keTs\i resolved, and the convergence being analyzed is with respect
Bsi = —JsianiBevi = —Joi (a;\li(h,- + Z Brs)) - to the transmitted bitsc;. Under this (potentially strong)
kETs\i m assumption, sufficient conditions are given for the decoder’s

Tying together the results, in the case of a single Gaussig@nvergence. The authors also assume Hhatonsists of a
self potential, the NBP decoder is initialized using thkatin square in which each row and column contain some

following inverse covariance matrix: permutation of the scalar valuég > ... > hg, Up to an
arbitrary sign.
JE IT . G ) Four conditions are given which should all hold to ensure
G diag(oc~%) conver .
gence:

We have shown that a simpler version of the NBP decoder,e LDLC-I: det(H) = det(G) = 1.

when the self potentials are initialized to be single Gaussians, | pLc-|I: o < 1, wherea 2 Z?ZZQ hi

boils down to GaBP algorithm. It is known [20] that the LDLC-III: The spectral radius olto(F) <1 whereF is
GaBP algorithm solves the following least square problem an x n matrix defined by:

minyegn |G — y|| assuming a Gaussian prior énp(b) ~

N(0,1), we get the MMSE solution* = (GTG)~'GTy. %ok if k # 1 and there exist a row of H
Note the relation to (1). The difference is that we relax the  F; ;, = for which |H,;| = hy andH,, # 0
LDLC decoder assumption thate 7™, with b € R™. 0 otherwise

Getting back to the NBP decoder, Figure 2 compares the ; 3
two different priors used, in the NBP decoder and in the « LDLC-IV: The spectral radius op(H) < 1 whereH is
GaBP algorithm, for the bipolar case. It is clear that the derived from H by permuting the rows such that the



elements will be placed on the diagonal, dividing each by the information matrix HHT, Vi s (T4, Ts) £

row by the appropriate diagonal elementi; or —hy), exp(x;{HHT};sz,) and the self potentials of the;
and then nullifying the diagonal. nodes arep;(z;) £ exp{—3z?0~2? + z;{Hy};}. The
Using our new results we are now able to provide new  Proof of the correctness of the above construction is
convergence conditions for the LDLC decoder. given in [23]. The benefit of this preconditioning is
Corollary 6: The convergence of the LDLC decoder de-  that the main diagonal off H” is surely non zero.
pends on the properties of the following matrix: If either [GaBP-1,I1] holds onHH™ then “consistent
Gaussians” convergence to the correct solution. How-
J& ( OT ) H 9 ) (14) ever, the matrixd HT may not be sparse anymore, thus
H™  diag(1/07) we pay in decoder efficiency.

b Proof:hln JgfgreT 1 ‘r’]"e haVISlBSPhQW.U ‘l'%‘” gqUi_VﬁeEC@verall, we have given two sufficient conditions for conver-
foellt(\;vv(\?i?]g Lo?entials algorithm to Initialized with t egence, under the “consistent Gaussian” assumption for the
| o means and variances of the LDLC decoder. Our conditions
$i(mi) o N(zisyi,0%),  vs(zs) = > N '(zs;bs,0), are more general because of two reasons. First, we present
bs=—o0 a single sufficient condition instead of four that have to
Vi,s (i, 2s) £ exp(ziHisxs) . (15) hold concurrently in the original LDLC work. Second, our
We have further discussed the relation between the self gor v < 3¢ C€ ana_ly5|s does not assume Latin squares, not
. - ) . even square matrices and does not assume nothing about the
tential s (z) and the periodic extension operation. We havé ~ : o
4 ; . . . sparsity of H. This extends the applicability of the LDLC
also shown in Theorem 4 thatdf,(x;) is asingle Gaussian
. . u . o . decoder to other types of codes. Note that our convergence
(equivalent to the assumption of “consistent” behavior), the . : .
A ; - analysis relates to the mean and variances of the Gaussian
distribution is jointly Gaussian and rather than NBP (with . - .
: . . : mixture messages. A remaining open problem is the conver-
Gaussian mixture messages), we obtain GaBP (with Gaussian . . ) )
: . gnce of the amplitudes — the relative heights of the different
messages). Convergence of the GaBP algorithm is depenagent . .
: ; . consistent Gaussians.
on the inverse covariance mattixand not on the shift vector
h. VI. EXPERIMENTAL RESULTS
Now we are able to construct the appropriate inverse

covariance matrixJ based on the pairwise factors given irbf

Theorem 1. The matrix/ is a2 x 2 block matrix, where and not restricted to the LDLC domain. Specifically, recent

the check variables, are assigned the upper rows and thﬁ/ork by Baronet al. [5] had extensively tested our NBP

original variables are assigned the lower rows. The entries ¢ lementation in the context of the related compressive
be read out from the quadratic terms of the potentials aéjensing domain. Our Matlab code is available on the web
with the only non-zero entries corresponding to the pairsh

; and self potential§z;, x; oh [24].
(i, 25) p $2;, ;). We have used a code lengths of = 100,n = 1000,

. where the number of non zeros in each row and each column

Based on Corollary 6 we can characterize the convergence . . :

. g - ISd = 3. Unlike LDLC Latin squares which are formed
of the LDLC decoder, using the sufficient conditions for .
. . using a generater sequengg we have selected the non-
convergence of GaBP. Either one of the following twog : :
o L } zeros entries of the sparse encoding matixrandomly
conditions are sufficient for convergence:

out of {—1,1}. This construction further optimizes LDLC

In this section we report preliminary experimental results
our NBP-based decoder. Our implementation is general

[GaBP-I] walk-summabilinf22]) decoding, since bipolar entries avoids the integral compu-
p(I - |D~1/2]D~1/2]) < 1 where D = diag(J). tation (stretch/unstrech operation). We have used bipolar
[GaBP-ll] (diagonal dominance8]) J is diagonally gjgnaling, b ¢ {-1,11. We have calculated the maximal
dominant (i.e|Jis| >=3,; | /i, V). noise levelo2, . using Poltyrev generalized definition for
A further difficulty arises from the fact that the uppeichannel capacity using unrestricted power assumption [25].
diagonal of (14) is zero, which means that both [GaBP-l,Ifor bipolar signalingo?,,, = 4 3%/det(G)2/2re. When

fail to hold. There are three possible ways to overcome thigpplied to lattices, the generalized capacity implies that there

1) Create an approximation to the original problem bgxists a latticeG of high enough dimension that enables
setting the upper left block matrix of (14) @iag(e) transmission with arbitrary small error probability, if and
wheree > 0 is a small constant. The accuracy of thenly if o2 < o2, .. Figure 3 plots SER (symbol error rate)
approximation grows as is smaller. In case either of of the NBP decoder vs. the LDLC decoder for code length
[GaBP-L,II] holds on the fixed matrix the “consistentn = 100,n = 1000. The z-axis represent the distance from
Gaussians” converge into an approximated solution. capacity in dB as calculated using Poltyrov equation. As can

2) In case a permutation o#i (14) exists where either be seen, our novel NBP decoder has better SER: fer100
[GaBPl,11] hold for permuted matrix, then the “consis{for all noise levels. For. = 1000 we have better performance
tent Gaussians” convergence to the correct solution.for high noise level, and comparable performance up to 0.3dB

3) Use preconditioning to create a new graphicdiom LDLC for low noise levels. We are currently in the
model where the edge potentials are determinguocess of extending our implementation to support code



lengths of upn = 100, 000. Initial performance results are [3]
very promising.

(4]

LDLC vs NBP code performance
. T : .

—&—LDLC code len 100
—¥—LDLC code len 1000
—+—NBP code len 100
—*—NBP code len 1000 [{

(5]

(6]
(7]

SER

(8]

El

I I I I
25 3

1.‘5 2
Distance from capacity (dB)

[10]
Fig. 3.

VII.

We have shown that the LDLC decoder is a variant of
the NBP algorithm. This allowed us to use current resear P}]
results from the non-parametric belief propagation domain,
to extend the decoder applicability in several directiong.3]
First, we have extended algorithm applicability from Latin
squares to full column rank matrices (possibly non-square).
Second, We have extended the LDLC convergence analy$id]
by discovering simpler conditions for convergence. Third, we
have presented a new family of LDLC which are based qiy;
sparse encoding matrices.

We are currently working on an open source implement@-6
tion of the NBP based decoder, using an undirected graphi

NBP vs. LDLC decoder performance

FUTURE WORK AND OPEN PROBLEMS (11]

a
model, including a complete comparison of performance to
the LDLC decoder. Another area of future work is to examing”
the practical performance of the efficient Gaussian mixture
product sampling algorithms developed in the NBP domain
to be applied for LDLC decoder. As little is known about!8!
the convergence of the NBP algorithm, we plan to continygg;
examine its convergence in different settings. Finally, we plan
to investigate the applicability of the recent convergence iz
algorithm [26] for supporting decoding matrices where the
sufficient conditions for convergence do not hold. -
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