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Abstract

The popularity of particle filtering for infer-
ence in Markov chain models defined over
random variables with very large or contin-
uous domains makes it natural to consider
sample–based versions of belief propagation
(BP) for more general (tree–structured or
loopy) graphs. Already, several such al-
gorithms have been proposed in the litera-
ture. However, many questions remain open
about the behavior of particle–based BP al-
gorithms, and little theory has been devel-
oped to analyze their performance. In this
paper, we describe a generic particle belief
propagation (PBP) algorithm which is closely
related to previously proposed methods. We
prove that this algorithm is consistent, ap-
proaching the true BP messages as the num-
ber of samples grows large. We then use
concentration bounds to analyze the finite-
sample behavior and give a convergence rate
for the algorithm on tree–structured graphs.
Our convergence rate is O(1/

√
n) where n is

the number of samples, independent of the
domain size of the variables.

1 Introduction

Graphical models provide a powerful framework for
representing structure in distributions over many ran-
dom variables. This structure can then be used to
efficiently compute or approximate many quantities
of interest such as the posterior modes, means, or
marginals of the distribution, often using “message-
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passing” algorithms such as belief propagation (Pearl,
1988). Traditionally, most such work has focused on
systems of many variables, each of which has a rela-
tively small state space (number of possible values),
or particularly nice parametric forms (such as jointly
Gaussian distributions). For systems with continuous-
valued variables, or discrete-valued variables with very
large domains, one possibility is to reduce the effec-
tive state space through gating, or discarding low-
probability states (Freeman et al., 2000; Coughlan and
Ferreira, 2002), or through random sampling (Arulam-
palam et al., 2002; Koller et al., 1999; Sudderth et al.,
2003; Isard, 2003; Neal et al., 2003). The best-known
example of the latter technique is particle filtering, de-
fined on Markov chains, in which each distribution is
represented using a finite collection of samples, or par-
ticles. It is therefore only natural to consider general-
izations of particle filtering applicable to more general
graphs (“particle” belief propagation); several varia-
tions have thus far been proposed, corresponding to
different choices for certain fundamental questions.

As an example, consider the question of how to rep-
resent the messages computed during inference using
particles. Broadly speaking, one might consider two
possible approaches: to draw a set of particles for
each message in the graph (Arulampalam et al., 2002;
Sudderth et al., 2003; Isard, 2003), or to create a set
of particles for each variable, for example by drawing
samples from the estimated posterior marginal (Koller
et al., 1999). This decision is closely related to the
choice of proposal distribution in particle filtering;
indeed, choosing better proposal distributions from
which to draw the samples, or moving the samples via
Markov chain Monte Carlo (MCMC) to match subse-
quent observations, comprises a large part of modern
work on particle filters (Thrun et al., 2000; van der
Merwe et al., 2001; Doucet et al., 2001; Khan et al.,
2005).

Either method can be made asymptotically consistent,
i.e., will produce the correct answer in the limit as the
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number of samples becomes infinite. However, consis-
tency is a very weak condition—fundamentally, we are
interested in the behavior of particle belief propagation
for relatively small numbers of particles, ensuring com-
putational efficiency. So far, little theory describes the
finite sample behavior of these algorithms.

In this work, we give a convergence rate for the ac-
curacy of a relatively generic PBP algorithm, most
closely related to that described in Koller et al. (1999).
Our convergence rate is O(1/

√
n) where n is the num-

ber of particles independent of the domain size of the
nodes of the graphical model. The convergence rate is
reminiscent, and has a similar proof, to convergence
rates for learning algorithms derived from Chernoff
bounds applied to IID samples.

2 Definitions and Notation

Let G be an undirected graph consisting of nodes V =
{1, . . . , k} and edges E, and let Γs denote the set of
neighbors of node s in G, i.e., the set of nodes t such
that {s, t} is an edge of G. In a probabilistic graphical
model, each node s ∈ V is associated with a random
variable Xs taking on values in some domain, Xs. We
assume that each node s and edge {s, t} are associated
with potential functions Ψs and Ψs,t respectively, and
given these potential functions we define a probability
distribution on assignments of values to nodes as

P (~x) =
1

Z

(
∏

s

Ψs(~xs)

)


∏

{s,t}∈E

Ψs,t(~xs, ~xt)


 (1)

Here ~x is an assignment of values to all k variables,
~xs is the value assigned to Xs by ~x, and Z is a scalar
chosen to normalize the distribution P (also called the
partition function). We consider the problem of com-
puting marginal probabilities, defined by

Ps(xs) =
∑

~x:~xs=xs

P (~x). (2)

Equation (1) defines a pairwise Markov random field
model. Our results are also directly applicable to
more general graphical model formulations such as
Bayes’ nets (Pearl, 1988) and factor graphs (Kschis-
chang et al., 2001), but for notational convenience we
restrict our development to the pairwise form (1).

3 Review of Belief Propagation

In the case where G is a tree and the sets Xs are small,
the marginal probabilities can be computed efficiently
by belief propagation (Pearl, 1988). This is done by
computing messages mt→s each of which is a function

on the state space of the target node, Xs. These mes-
sages are defined recursively as

mt→s(xs) =
∑

xt∈Xt

Ψt,s(xt, xs)Ψt(xt)
∏

u∈Γt\s

mu→t(xt)

(3)
When G is a tree this recursion is well founded (loop-
free) and Equation (3) uniquely determines the mes-
sages. We define the unnormalized belief function as

Bs(xs) = Ψs(xs)
∏

t∈Γs

mt→s(xs). (4)

When G is a tree the belief function is proportional
to the marginal probability Ps defined by (2). It is
sometimes useful to define the “pre-message” Mt→s as

Mt→s(xt) = Ψt(xt)
∏

u∈Γt\s

mu→t(xt) (5)

for xt ∈ Xt. Note that the pre-message Mt→s defines
a weighting on the state space of the source node Xt,
while the message mt→s defines a weighting on the
state space of the destination, Xs. We can then re-
express (3)–(4) as

mt→s(xs) =
∑

xt∈Xt

Ψt,s(xt, xs)Mt→s(xt)

Bt(xt) = Mt→s(xt)ms→t(xt)

Although we develop our results for tree–structured
graphs, it is common to apply belief propagation to
graphs with cycles as well (“loopy” belief propaga-
tion). In this case the belief functions (4) will in gen-
eral not equal the true marginals, but often provide
good approximations in practice. We discuss the ap-
plication of our results to particle-based versions of
loopy BP at the end of Section 5.

For reasons of numerical stability, it is common to nor-
malize each message mt→s so that it has unit sum.
However, such normalization of messages has no other
effect on the (normalized) belief functions (4). Thus
for conceptual simplicity in developing and analyzing
particle belief propagation we avoid any explicit nor-
malization of the messages; such normalization can be
included in the algorithms in practice.

Additionally, for reasons of computational efficiency it
is common to use the alternative expression

mt→s(xs) =
∑

Ψt,s(xt, xs)
Bt(xt)

ms→t(xt)
(6)

when computing the messages. By storing and updat-
ing the belief values Bt(xt) incrementally as incom-
ing messages are re-computed, one can significantly
reduce the number of operations required. Although
our development of particle belief propagation uses the
update form (3), this alternative formulation can be
applied to improve its efficiency as well.
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4 Particle Belief Propagation

We now consider the case where |Xs| is too large to
enumerate in practice and define a generic particle
(sample) based BP algorithm (PBP). This algorithm
essentially corresponds to a non-iterative version of the
method described in Koller et al. (1999).

4.1 Particle Belief Propagation Algorithm

PBP samples a set of particles x
(1)
s , . . ., x

(n)
s with

x
(i)
s ∈ Xs at each node s of the network1, drawn from

a sampling distribution (or weighting) Ws(xs) > 0
(corresponding to the proposal distribution in parti-
cle filtering). The selection of an appropriate sam-
pling distribution is discussed in detail in section 6.
First we note that (3) can be written as the following
importance-sampling corrected expectation.

mt→s(xs) =

Ext∼Wt


Ψs,t(xs, xt)

Ψt(xt)

Wt(xt)

∏

u∈Γt\s

mu→t(xt)


 (7)

Given a sample x
(1)
t , . . ., x

(n)
t of points drawn from Wt

we can estimate mt→s(x
(i)
s ) as

m̂
(i)
t→s =

1

n

n∑

j=1

Ψt,s(x
(j)
t , x(i)

s )
Ψt(x

(j)
t )

Wt(x
(j)
t )

∏

u∈Γt\s

m̂
(j)
u→t

(8)
Equation (8) represents a finite sample estimate for
(7). Alternatively, (8) defines a belief propagation al-
gorithm where messages are defined on particles rather
than the entire set Xs. As in classical belief propa-
gation, for tree structured graphs and fixed particle
locations there is a unique set of messages satisfying
(8). Equation (8) can also be applied for loopy graphs
(again observing that message normalization can be
conceptually ignored). In this simple version, the sam-

ple values x
(i)
s and weights Ws(x

(i)
s ) remain unchanged

as messages are updated.

4.2 Consistency of Particle BP

We now show that equation (8) is consistent—it agrees
with (3) in the limit as n → ∞. For any finite collec-

tion of samples, define the particle domain X̂s and the

1It is also possible to sample a set of particles {x
(i)
st } for

each pre-message Ms→t in the network from potentially
different distributions Wst(xs), for which our analysis re-
mains essentially unchanged. However, for notational sim-
plicity and to be able to apply the more computationally
efficient message expression described in Section 3, we use
a single distribution and sample set for each node.

count cs(x) for x ∈ X̂s as

X̂s = {xs ∈ Xs : ∃i x(i)
s = xs}

cs(xs) = |{i : x(i)
s = xs}|

Equation (8) has the property that if x
(i)
s = x

(i′)
s then

m
(i)
t→s = m

(i′)
t→s; thus we can rewrite (8) as

m̂t→s(xs) =
1

n

∑

xt∈ bXt

ct(xt)

Wt(xt)
Ψt,s(xt, xs)Ψt(xt)

·
∏

u∈Γt\s

m̂u→t(xt) (9)

for xs ∈ X̂s. Since we have assumed Wt(xt) > 0, in

the limit of an infinite sample X̂t becomes all of Xt

and the ratio (ct(xt)/n) converges to Wt(xt). So for
sufficiently large samples the estimate (9) approaches
the true message (3).

4.3 Connections to Non-parametric BP

Another popular technique for approximating be-
lief propagation using sample-based messages is non-
parametric belief propagation, or NBP (Sudderth et al.,
2003). In NBP, each message is represented using a
collection of samples, which are smoothed by a Gaus-
sian kernel to ensure a well-defined product. Sam-
ples are drawn from the product of the incoming mes-
sages (the pre-message) and are propagated stochas-
tically through Ψs,t to produce samples representing
the new message from s to t. These samples are again
smoothed to ensure a well-defined product, and the
process is repeated.

The algorithm’s most computationally expensive step
is sampling from the product of messages; thus, the
alternative expression (6) suggests an alternative ap-
proach in which one draws a single set of samples from
the product of all messages (the belief) and weights
these samples by the inverse of each incoming mes-
sage (Ihler et al., 2005a); we refer to this procedure as
belief-based sampling for NBP. The default approach,
in which samples are drawn for each pre-message, we
refer to as message-based sampling.

A key difference between NBP and PBP is that in NBP
the incoming messages to each node do not share their
collection of samples. In other words, in NBP node s
draws the samples it will use to represent its message
to t, while in PBP node s uses t’s samples to repre-
sent its outgoing message. This difference sidesteps the
need to smooth the sample set when taking products.
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5 Finite Sample Analysis

Fundamentally, we are interested in particle-based ap-
proximations to belief propagation for their finite–
sample behavior, i.e., we hope that a relatively small
collection of samples will give rise to an accurate esti-
mate of the beliefs. To analyze particle belief propa-
gation’s performance for finite numbers of samples, we
apply a concentration bound on the estimated mes-
sages and beliefs. We use the shorthand x ∈ y(1 ± ǫ)
to abbreviate the upper and lower bounds y(1 − ǫ) ≤
x ≤ y(1 + ǫ).

We begin by stating a variant of Bernstein’s inequality.
Consider n IID random variables {xi} with mean x
and satisfying (with probability 1), 0 ≤ xi ≤ R x.
Then, with probability at least (1− δ) over the choice
of values x1, . . . , xn we have that

1

n

n∑

i=1

xi ∈ x (1 ± ǫ(R,n, δ)) (10)

where

ǫ(R,n, δ) =

√
R

n

(
η +

√
η2 + 2 ln(2/δ)

)
(11)

and

η =
ln(2/δ)

3

√
R

n

Equation (11) can be derived by applying Bernstein’s
inequality to upper and lower intervals of size x|ǫ|
and observing that the variance of each xi is bounded
by Rx2. To ensure that ǫ ≪ 1 (the range of pri-
mary interest) we require n ≫ R, in which case
ǫ ≈

√
2 ln(2/δ)R/n.

We now consider the following form of (7).

mt→s(xs) = Ext∼Wt

[
Ψs,t(xs, xt)

Mt→s(xt)

Wt(xt)

]
(12)

Given that we intend to apply (10) to (12), it is natural
to define the constant

RW = max
s,t∈E

max
xs∈Xs, xt∈Xt

Ψs,t(xs, xt)Mt→s(xt)

Wt(xt)mt→s(xs)

so that

Ψs,t(xs, xt)
Mt→s(xt)

Wt(xt)
≤ RWmt→s(xs)

= RW Ext∼Wt

[
Ψs,t(xs, xt)

Mt→s(xt)

Wt(xt)

]

Note that the constant RW depends on the choice of
sampling distributions Ws; we discuss this relationship
further in Section 6.

We can now state our first main result.

Theorem 1. For a tree with k nodes, if we sample n
particles at each node with n > k2RW ln(kn/δ), and
compute the message values defined by (8), then with
probability at least 1 − δ over the choice of particles
we have that the following holds simultaneously for all

nodes s and all particles x
(i)
s .

B̂s(x
(i)
s ) = Ψs(x

(i)
s )

∏

t∈Γs

m̂
(i)
t→s ∈

Bs(x
(i)
s )
(
1 ±O

(
k
√
n−1RW ln(kn/δ)

))
(13)

Proof. Let ǫ(R,n, δ) be as defined in (11). We apply a
union bound over all 2(k−1) messages and n particles
evaluated by each message to (10)–(11). Then, with
probability at least (1− δ) over the choice of particles
at neighbors t, the following holds simultaneously for

all directed edges (t→ s) and particles x
(i)
s :

1

n

n∑

j=1

Ψs,t(x
(i)
s , x

(j)
t )

Mt→s(x
(j)
t )

Wt(x
(j)
t )

∈

mt→s(x
(i)
s )

(
1 ± ǫ

(
RW , n,

δ

2(k − 1)n

))
(14)

Now for each directed edge (t→ s) we define kts to be
the number of nodes connected to t (including t itself)
by a path that does not go through s. Given (14), we
prove the following upper and lower bounds:

m̂
(i)
t→s ≥ mt→s(x

(i)
s )

(
1 − ktsǫ

(
RW , n,

δ

2(k − 1)n

))

(15)

m̂
(i)
t→s ≤ mt→s(x

(i)
s ) exp

(
ktsǫ

(
RW , n,

δ

2(k − 1)n

))

(16)

The proof of (15)–(16) proceeds by induction on kts.

If kts = 1, so that t is a leaf node, then M̂t→s =

ψt = Mt→s and thus the outgoing message m̂
(i)
t→s is

equal to the left-hand side of (14). In this case (15) is
immediate and (16) follows from the fact that 1 + ǫ ≤
exp(ǫ).

For the inductive step we assume that (15) and (16)
hold for the messages coming into t from all nodes
other than s. This means that these incoming mes-
sages can be written as the true messages multiplied
by correction factors bounded by (15) and (16). Ap-
plying (14) along with the fact that (1−dǫ) ≤ (1− ǫ)d

and exp(ǫ)d = exp(dǫ), we prove the inductive step.

By invoking (15)–(16) on all incoming messages to s,
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and using a similar argument, we have that

B̂(i)
s ≥ Bs(x

k
s)

(
1 − (k − 1)ǫ

(
RW , n,

δ

2(k − 1)n

))

B̂(i)
s ≤ Bs(x

k
s) exp

(
(k − 1)ǫ

(
RW , n,

δ

2(k − 1)n

))

Finally, if we require n > k2RW ln(kn/δ) we have
ǫ(RW , n, δ/(2(k − 1)n)) ≤ O(1/k), which in turn im-
plies that exp(kǫ) ≤ (1 +O(kǫ)).

Theorem 1 argues that with high probability, the mes-
sages in particle belief propagation will be accurate at
the particle locations themselves. Alternatively how-
ever, we need not restrict the domain of our estimated
messages and beliefs at node s to the sampled val-

ues {x(i)
s }. The potential functions Ψ define functions

valid at any xs ∈ Xs given samples at the neighboring
nodes:

m̃t→s(xs) =
1

n

n∑

j=1

Ψt,s(x
(j)
t , xs)

Ψt(x
(j)
t )

Wt(x
(j)
t )

∏

u∈Γt\s

m̂
(j)
u→t

B̃s(xs) = Ψs(xs)
∏

t∈Γs

m̃t→s(xs) (17)

P̃s(xs) =
1

Z
B̃s(xs)

Note that here we have used the true normalizing con-
stant Z (i.e., the normalizing constant for Bs(xs)) in

defining P̃s(xs).

We can now state our second main result.

Theorem 2. Under the same conditions as Theo-
rem 1, with probability at least 1 − δ′ over the choice
of the particles we have for all nodes s that.

∣∣∣
∣∣∣Ps − P̃s

∣∣∣
∣∣∣
1
≤ O

(√
k3RW ln(knRW /δ′)

n

)
(18)

Proof. The proof of Theorem 1 can be modified to

show that if one fixes s and x
(i)
s arbitrarily before draw-

ing any samples, and then draws samples at all nodes
other than s, then with probability at least 1− δ over
the draw of the sample at the other nodes we have the
bound (13). Now consider a given ǫ > 0. By setting
δ = exp(−Ω(nǫ2/(RW k2 ln(kn))) into (13), we can set
the width of the confidence interval to ǫ, yielding the
following (where the probability PS is over the draw
of the samples at nodes other than s): ∀xs ∈ Xs,

PS

[
B̃s(xs) 6∈ Bs(xs) (1 ± ǫ)

]
≤

exp

(
−Ω

(
nǫ2

RW k2 ln kn

))

We can then convert this probability bound into one
on the two distributions’ L1 distance; intuitively, if the
two functions substantially disagree only on a set of
small measure, they must also be close in an L1 sense.
We begin by dividing the beliefs by Z to make the true
belief a probability distribution, so that ∀xs ∈ Xs,

PS

[
P̃s(xs) 6∈ Ps(xs) (1 ± ǫ)

]
≤

exp

(
−Ω

(
nǫ2

RW k2 ln kn

))

Taking the expected value of both sides with respect
to xs, we have

Exs∼Ps

[
PS

[
P̃s(xs) 6∈ Ps(xs) (1 ± ǫ)

]]
≤

exp

(
−Ω

(
nǫ2

RW k2 ln kn

))

Noting that, for binary z, P [z] = E[z], these two ex-
pectations commute and we can rewrite this as

ES

[
Pxs∼Ps

[
P̃s(xs) 6∈ Ps(xs) (1 ± ǫ)

]]
≤

exp

(
−Ω

(
nǫ2

RW k2 ln kn

))

and applying Markov’s inequality, we obtain

PS

[
Pxs∼Ps

[
P̃s(xs) 6∈ Ps(xs) (1 ± ǫ)

]
≥ γ

]
≤

1

γ
exp

(
−Ω

(
nǫ2

RW k2 ln kn

))
.

Now by taking ǫ to be O
(
k
√
RW ln(kn/(γδ′))/n

)
, we

can set the right hand side to be δ′. Then with prob-
ability at least 1 − δ′ over the choice of the sample
points at nodes other than s we have,

Pxs∼Ps

[
P̃s(xs) 6∈ Ps(xs)

(
1 ±O

(
k

√
RW

n
ln
kn

γδ′

))]

≤ γ.

Because the constant RW bounds the ratio of a mes-
sage sample to its expected value (the true message),
the product of incoming messages (of which there are

at most k) is also bounded, so that P̃s(xs)/Ps(xs) ≤
(RW )k.

∣∣∣
∣∣∣Ps − P̃s

∣∣∣
∣∣∣
1

= Exs∼Ps

[∣∣∣∣∣1 − P̃s

Ps

∣∣∣∣∣

]

≤ (1 − γ)O

(
k

√
RW

n
ln
kn

γδ′

)
+ γ(RW )k.
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Setting γ = 1/(n(RW )k) now gives the result for the
single node s. To get the result simultaneously for all
s we take a union bound over all k nodes (δ′ → δ′/k),
which does not change to order of the bound.

Although Theorems 1 and 2 are formulated for tree-
structured graphs, they can also be applied (in a lim-
ited way) to loopy belief propagation. Loopy BP is an-
alyzed in terms of its Bethe tree, a tree-structured “un-
rolling” of the graph to a depth equal to the number of
iterations of loopy BP (Ihler et al., 2005b). This tree
is then analyzed in the same way as before; although
the random samples are correlated among nodes of the
Bethe tree, the union bound still applies and the end
result is unchanged. However, the potentially expo-
nential growth of the number of nodes k in the Bethe
tree causes additional complications, since our bounds
depend polynomially on k.

6 Selecting Sampling Distributions

and Resampling

The preceding section’s analysis of finite sample accu-
racy is sensitive to the parameter RW , which is itself
sensitive to the choice of the sampling distributions
Ws. Unfortunately, it appears difficult to optimize RW

over the choice of the sampling distributions Ws (or
even compute its value) a priori. On the other hand,
the following observations seem worth noting:

RW = max
s,t,xs,xt

Ms→t(xt)Ψt,s(xt, xs)

Wt(xt)mt→s(xs)

= max
s,t,xs,xt

Ps,t(xs, xt)

Wt(xt)Ps(xs)

= max
s,t,xs,xt

Ps,t(xt|xs)

Wt(xt)
(19)

So we want Wt to simultaneously match all possible
conditional distributions on xt given the value of a
single neighboring node. The form of (19) suggests
that, although not necessarily optimal in the sense of
minimizing RW , a good choice may be to sample from
the marginal distribution: Wt(xt) = Pt(xt). This idea
was originally proposed in Koller et al. (1999), based
on an intuitive description of the issues.

Unfortunately, the true marginal Pt(xt) is unavailable
for sampling—indeed, this is the very quantity we are
trying to compute. However, at any stage of BP we can
use our current marginal estimate to construct a new
sampling distribution for node t and draw a new set of

particles {x(i)
t }. This leads to an iterative algorithm

which continues to improve its estimates as the sam-
pling distributions become more accurately targeted.
Unfortunately, such an iterative resampling process is
significantly more difficult to analyze.

In Koller et al. (1999), the sampling distributions were
constructed using a density estimation step (fitting
mixtures of Gaussians). However, the fact that the be-

lief estimate B̃t(xt) can be computed at any value of xt

allows us to use another approach, which has also been
applied to particle filters with success (Doucet et al.,
2001; Khan et al., 2005). By running a short MCMC
simulation such as the Metropolis-Hastings algorithm,
we can draw samples directly from B̃t without it need-
ing to be explicitly constructed or fitted. We simply
apply the definition (17) to evaluate the acceptance
probability of each step.

This approach manages to avoid any distributional
assumptions or biases inherent in density estimation
methods. One disadvantage, however, is that it can
be difficult to assess convergence during MCMC sam-
pling, and the MCMC chain is run at each iteration of
BP and each node. On the other hand, many imple-
mentations of NBP also use MCMC steps at each iter-
ation to draw samples from the message product (e.g.,
Sudderth et al., 2003), and thus have similar cost and
convergence assessment issues.

7 Comparison to Previous Results

Our results describe the consistency and accuracy of
particle-based representations of belief propagation.
Considerable work has gone into analyzing particle
representations on Markov chains (particle filtering);
see for example Del Moral (2004) for details. Like our
results, the convergence behavior of particle filters is
also O(1/

√
n), but becomes independent of the num-

ber of nodes k as k → ∞.

Fundamentally, these results are based on the mixing
properties of the conditional distributions. For exam-
ple, Del Moral (2004) applies Dobrushin’s contraction
coefficient, which bounds the reduction in the total
variation norm between two probability measures. The
total variation is a natural distance for comparing dis-
tributions, essentially equivalent to the L1 norm (by
Scheffé’s theorem). These norms are also well-behaved
with respect to sampling and are thus well-suited to
analysis of particle filters and density estimation.

Unfortunately, these measures are less well-suited to
dealing with the product operation of BP. In work an-
alyzing the properties of BP, the norm of choice is
Hilbert’s projective measure, to which generalizations
of Birkhoff’s contraction coefficient are applied (Ihler
et al., 2005b; Mooij and Kappen, 2007). Our results
are stated in terms of multiplicative error, which is
equivalent to the projective norm up to first-order; see
e.g. Ihler et al. (2005b), Lemma 3.

Using the projective norm complicates the precise
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(a) (b)

Figure 1: “Sawtooth” example from the stereo dataset
of Scharstein and Szeliski (2002). (a) Left-hand image;
(b) ground truth disparity (depth) map.

statement of the bound, but does not change its qual-
itative form: rather than a simple additive recursion
outlined in Theorem 1, the projective norm would fol-
low the recursion outlined in Ihler et al. (2005b) Sec.
5.4. For Markov chains, and assuming some degree of
mixing as measured by Ihler et al. (2005b) Eq. (7), the
errors decrease at an exponential rate so that there ex-
ists a constant range k0(ǫ) beyond which errors can be
ignored without affecting the order of the bounds, and
for k ≥ k0(ǫ) renders the bounds independent of k.

8 Experimental Results

To see how our theoretical results carry over into a
practical setting, we evaluate the performance of par-
ticle BP on the problem of reconstructing depth (or
equivalently pixel disparity) from stereo image pairs.
Belief propagation was applied to the stereo vision
problem in Sun et al. (2003), and since then a num-
ber of more sophisticated models have also used BP
for inference (e.g., Sun et al., 2005; Klaus et al., 2006;
Yang et al., 2006). These methods are quite success-
ful; BP-based methods currently comprise half of the
best ten algorithms2 for stereo disparity estimation.
We use the original model of Sun et al. (2003) and the
“Sawtooth” image from Scharstein and Szeliski (2002)
for our comparisons, shown in Figure 1.

Our experiments are not designed to showcase an
application requiring particle BP, since there are al-
ready many such applications described in the litera-
ture (e.g., Coughlan and Ferreira, 2002; Sigal et al.,
2004; Sudderth et al., 2004; Ihler et al., 2005a). In-
stead, our purpose is to assess the accuracy of particle
BP compared to its deterministic counterpart. In the
stereo model each xs is univariate, allowing us to also
create a high-quality discretized solution. We com-
pare this solution to the estimated beliefs found via
PBP and NBP with different sampling methods.

2See http://vision.middlebury.edu/stereo/eval/.
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Figure 2: Log-log plot of the median L1 error be-
tween the estimated beliefs B̃s(xs) and the true beliefs
Bs(xs) as a function of the number of samples n used
in the particle representation. We show PBP under
three sampling distributions Ws: the local potentials
Ψs, the current belief estimates B̃s(xs) at each itera-
tion, and the true beliefs Bs(xs). All three decrease at
a rate of n−1/2. Also shown is NBP using message- and
belief-based sampling; both have slightly higher error
and appear to decrease at a slower rate corresponding
to NBP’s smoothing parameter.

Figure 2 shows a log-log plot of the median L1 error
between the true beliefs Bs(xs) at each pixel and the

estimated beliefs B̃s(xs) found via PBP and NBP us-
ing various sampling distributions. For PBP, we show
three sampling distributions: drawing samples from
the local potentials, Ws(xs) = ψs(xs); drawing sam-
ples from the true beliefs, Ws(xs) = Bs(x); and re-
sampling at each iteration according to the currently
estimated beliefs, Ws(xs) = B̃s(xs) as described in
Section 6. Note that the second option (sampling from
the true beliefs) is not possible in general. Moreover,
in our experiments, its performance is nearly identi-
cal to that of sampling from the estimated beliefs at
each iteration. Sampling from the local potentials per-
formed slightly less well. In all three cases, the errors
decrease at a rate of 1/

√
n.

We also compare to two versions of NBP: sampling
from the messages (message-based sampling), and
sampling from the beliefs and reweighting to form mes-
sages (belief-based sampling). To enable a fair com-

parison with PBP, for NBP we evaluate B̃s(xs) as in
(17) using samples drawn from the pre-message prod-

uct M̂ at the neighbors of node s. Both message- and
belief-based sampling performed nearly identically on
this problem. We note two things about NBP’s per-
formance: first, that the error is slightly higher than
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that for PBP with belief-based sampling; and second,
that the rate of decrease appears slower than 1/

√
n.

Both of these effects are likely due to the kernel-based
smoothing performed on the samples when messages
are constructed in NBP. This step is necessary to make
NBP’s message products well-defined, but biases the
estimated messages to be smoother than the true mes-
sages. The Gaussian kernel’s variance (smoothing pa-
rameter) used in our experiments decreases at a rate
of n−2/5, which visually matches the rate observed
in NBP’s L1 error in Figure 2. Thus, avoiding the
smoothing step required by NBP appears to provide a
measureable improvement.

9 Summary and Conclusions

In this paper we have described a generic algorithm
for sample–based or particle belief propagation in sys-
tems of variables with large or continuous domains,
and showed that the algorithm is consistent, i.e., ap-
proaches the true values of the message and belief
functions as the number of samples grow large. We
then demonstrated a convergence rate, showing that
the beliefs obtained are accurate both at the particle
locations themselves, and in an L1 sense, at a rate of
O(1/

√
n) where n is the number of particles. Finally,

we illustrated the algorithm on a stereo vision data
set, showing that the algorithm’s behavior in practice
corresponds to the theory and comparing its perfor-
mance across different sampling distributions and to
two sampling approaches for NBP.

The relationship of the quantity RW to the conver-
gence rate highlights the importance of selecting a
good sampling distribution (as in any Monte Carlo es-
timation process). Although it is difficult to select
the optimal sampling distributions a priori, the form
of (19) indicates that the quality of the sampling dis-
tribution can be evaluated as the inference process pro-
gresses, and that a new sampling distribution could be
selected using the current marginal estimates for guid-
ance. Although such “adaptive” choices for the sam-
pling distribution are much more difficult to analyze,
the form of RW seems to support the notion of sam-
pling from the current marginal estimates themselves;
in our experiments this technique performed just as
well as sampling from the true marginal distributions.
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