
Anytime Anyspace AND/OR Best-first Search for Bounding Marginal MAP

Qi Lou
University of California, Irvine

Irvine, CA 92697, USA
qlou@ics.uci.edu

Rina Dechter
University of California, Irvine

Irvine, CA 92697, USA
dechter@ics.uci.edu

Alexander Ihler
University of California, Irvine

Irvine, CA 92697, USA
ihler@ics.uci.edu

Abstract

Marginal MAP is a key task in Bayesian inference and
decision-making. It is known to be very difficult in general,
particularly because the evaluation of each MAP assignment
requires solving an internal summation problem. In this paper,
we propose a best-first search algorithm that provides anytime
upper bounds for marginal MAP in graphical models. It folds
the computation of external maximization and internal summa-
tion into an AND/OR tree search framework, and solves them
simultaneously using a unified best-first search algorithm. The
algorithm avoids some unnecessary computation of summa-
tion sub-problems associated with MAP assignments, and thus
yields significant time savings. Furthermore, our algorithm
is able to operate within limited memory. Empirical evalua-
tion on three challenging benchmarks demonstrates that our
unified best-first search algorithm using pre-compiled varia-
tional heuristics often provides tighter anytime upper bounds
compared to those state-of-the-art baselines.

Introduction
Probabilistic graphical models, including Bayesian networks
and Markov random fields, provide a framework for repre-
senting and reasoning with probabilistic and deterministic
information (Dechter 2013; Dechter, Geffner, and Halpern
2010; Darwiche 2009). Typical inference queries in graphical
models include maximum a posteriori (MAP) that aims to
find an assignment of MAP variables (a.k.a., MAX variables)
with the highest value, the partition function that is the nor-
malizing constant ensuring a proper probability measure over
all variables, and marginal MAP (MMAP) that generalizes
the aforementioned two tasks by maximizing over a subset
of variables with the remaining variables marginalized.

MMAP arises in many scenarios such as latent variable
models (Ping, Liu, and Ihler 2014) and decision-making
tasks (Kiselev and Poupart 2014). MMAP has complexity
NPPP (Park 2002), commonly believed to be harder than ei-
ther max inference (NP-complete (Darwiche 2009)) or sum
inference (#P-hard (Valiant 1979)), and is even intractable
for tree-structured models (Park 2002). The hardness of
MMAP is partly due to the fact that max and sum opera-
tors do not commute.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Some early works (Park and Darwiche 2003; Yuan and
Hansen 2009) solve MMAP exactly based on depth-first
branch and bound. Marinescu, Dechter, and Ihler (2014) out-
performs the predecessors by using AND/OR search spaces
and high-quality variational heuristics. Later, a best-first
search variant of Marinescu, Dechter, and Ihler (2014) was
proposed and shown empirically superior to the depth-first
one given enough memory (Marinescu, Dechter, and Ihler
2015). Because best-first search is memory-intensive, a recur-
sive best-first search algorithm (Marinescu, Dechter, and Ihler
2015) that operates within limited memory was proposed.

However, because of the inherent difficulty of MMAP,
searching for exact solutions is generally unpromising. Re-
cent works on MMAP often focus on approximate schemes.
Among the approximate schemes, those with determinis-
tic or probabilistic guarantees are of particular interest be-
cause they quantify the bounds on the approximation er-
rors. Also, we often favor those approaches with anytime
behavior because they allow users to trade computational
resources with solution quality. Approximate elimination
methods (Liu and Ihler 2011; Dechter and Rish 2003) and
closely related variational bounds (Liu and Ihler 2013;
Wainwright and Jordan 2008) provide deterministic guar-
antees. However, these bounds are not anytime; their qual-
ity often depends on the memory available, and does not
improve without additional amount of memory. Although
recent work (Ping, Liu, and Ihler 2015) in the same class
has anytime behavior, it is not guaranteed to find optimal so-
lutions unless given enough memory. Some Monte Carlo
methods such as one based on random hashing (Xue et
al. 2016) provide probabilistic bounds only, while some
may not even have this property, e.g., those based on
Markov chain Monte Carlo (Yuan, Lu, and Druzdzel 2004;
Doucet, Godsill, and Robert 2002). Another algorithm that
provides anytime deterministic bounds for MMAP is based
on factor set elimination (Mauá and de Campos 2012), but the
factor sets it maintains tend to grow very large and thus limit
its practical use to problems with relatively small induced
widths (Marinescu et al. 2017).

Recent search-based algorithms improve upon their ex-
act predecessors (Marinescu, Dechter, and Ihler 2015; 2014;
Otten and Dechter 2012) by introducing weighted heuristics
in best-first search (Lee et al. 2016) or by combining best-
first search with depth-first search (Marinescu et al. 2017)

to gain the anytime property, and are the state-of-the-art cur-
rently. However, those algorithms (Marinescu et al. 2017;
Marinescu, Dechter, and Ihler 2015; 2014; Lee et al. 2016)
treat the max- and sum- inference separately, and require
solving a number of conditional summation problems exactly
which is generally intractable.

Although this strategy works reasonably at anytime im-
provement of lower bounds, it is often slow to improve the
associated upper bound. Moreover, it is not always necessary
to fully solve an internal summation problem to prove a con-
figuration’s sub-optimality. In this paper, we focus our solver
on quickly reducing its MMAP upper bound via best-first
search, with computation of the internal summation prob-
lems integrated in a best-first way as well. When the search
encounters an internal summation problem, instead of fully
solving it immediately we gradually instantiate its summation
variables, which acts to reduce the upper bound of the current
candidate MAP (sub-) configuration. This “pure” best-first
behavior can potentially solve fewer summation problems to
certify the optimal MAP configuration.

Our contributions. This paper presents an anytime anys-
pace AND/OR best-first search algorithm to improve deter-
ministic upper bounds for MMAP. Our algorithm unifies max-
and sum- inference within a specifically designed priority sys-
tem that aims to reduce upper bound of the optimal solution(s)
as quickly as possible, which generalizes the recent best-first
search algorithm of Lou, Dechter, and Ihler (2017) for the
pure summation task. Our approach avoids some unneces-
sary exact evaluation of conditional summation problems,
yielding significant computational benefits in many cases,
as demonstrated by empirical results on three challenging
benchmarks compared to existing state-of-the-art baselines
on anytime upper bounds.

Background
Let X = (X1, . . . , XN) be a vector of random variables,
where each Xi takes values in a discrete domain Xi; we
use lower case letters, e.g. xi ∈ Xi, to indicate a value of
Xi. A graphical model over X consists of a set of factors
F = {fα(Xα) | α ∈ I}, where each factor fα is defined on
a subset Xα = {Xi | i ∈ α} of X , called its scope.

We associate an undirected graph G = (V,E), or primal
graph, with F , where each node i ∈ V corresponds to a vari-
able Xi and we connect two nodes, (i, j) ∈ E, iff {i, j} ⊆ α
for some α. Then,

f(x) =
∏
α∈I

fα(xα)

defines an unnormalized probability measure over X .
Let XM be a subset of X called MAX variables, and XS =

X \XM SUM variables. The marginal MAP task seeks an
assignment x?M of XM with the largest marginal probability:

x?M = argmax
xM

∑
xS

f(x)

If XM is an empty set, the marginal MAP task reduces to
computing the partition function; if XS is empty, it becomes
the standard MAP inference task.

AND/OR Search Spaces
An AND/OR search space is a generalization of the standard
(“OR”) search space, that enables us to exploit conditional
independence structure during search (Dechter and Mateescu
2007). The AND/OR search space for a graphical model
is defined relative to a pseudo tree that captures problem
decomposition along a fixed search order.

Definition 1 (pseudo tree). A pseudo tree of a primal graph
G = (V,E) is a directed tree T = (V,E′) sharing the same
set of nodes as G. The tree edges E′ form a subset of E, and
each edge (i, j) ∈ E \E′ are required to be a “back edge”,
i.e., the path from the root of T to j passes through i (denoted
i ≤ j).

If a tree node of a pseudo tree corresponds to a MAX
variable in the associated graphical model of the pseudo tree,
we call it MAX node, otherwise we call it SUM node. A
pseudo tree is called valid for an MMAP task if there is
no MAX variable that is descendant of some SUM variable.
Thus, all MAX variables of a valid pseudo tree form a subtree
(assuming a dummy MAX root) that contains the root. We
only consider valid pseudo trees throughout this paper.

Example. Fig. 1(a) shows the primal graph of a pairwise
model. Variables A, B, C are MAX variables, and the rest
SUM. Fig. 1(b) shows one valid pseudo tree of the model.

Guided by a pseudo tree, we can construct an AND/OR
search tree consisting of alternating levels of OR and AND
nodes for a graphical model. Each OR node s is associated
with a variable, which we lightly abuse notation to denote
Xs; the children of s, ch(s), are AND nodes corresponding
to the possible values of Xs. If an OR node is associated with
some MAX variable, it is called OR-MAX node. Notions of
OR-SUM, AND-MAX, AND-SUM nodes are defined analo-
gously. The root ∅ of the AND/OR search tree corresponds to
the root of the pseudo tree. Let pa(c) = s indicate the parent
of c in the AND/OR tree, and an(c) = {n | n ≤ c} indicate
the ancestors of c (including itself) in the tree.

In an AND/OR tree, any AND node c corresponds to a
partial configuration x≤c of X , defined by its assignment
and that of its ancestors: x≤c = x≤p ∪ {Xs = xc}, where
s = pa(c), p = pa(s). For completeness, we also define x≤s
for any OR node s, which is the same as that of its AND
parent, i.e., x≤s = x≤pa(s).

Definition 2 (partial solution tree & partial MAP solution
tree). A partial solution tree T of an AND/OR search tree
T is a subtree satisfying three conditions: (1) T contains the
root of T ; (2) if an OR node is in T , at most one of its children
is in T ; (3) if an AND node is in T , all of its children or none
of its children are in T . Moreover, T is called a partial MAP
solution tree if T satisfies one additional condition: (4) if
an OR-SUM node is in T , this node must have OR-MAX
sibling(s). T contains all its siblings and meanwhile T does
not contain any of its children.

The notion of a “partial solution tree” generalizes the no-
tion of a “solution tree” (e.g., Dechter and Mateescu (2007))
which we call a “full solution tree” later on to avoid ambigu-
ity. Any partial solution tree T defines a partial configuration

A B

CD

E

F

G

(a)

A

B

C F

GD E

(b)

A

B B

0 1

0 1 0 1

F

0 1

G

0 1

G

0 1

F

0 1

G

0 1

G

0 1

C

0 1

E

0 1

D

0 1

E

0 1

D

0 1

C

0 1

E

0 1

D

0 1

E

0 1

D

0 1

C

0 1

E

0 1

D

0 1

E

0 1

D

0 1

C

0 1

E

0 1

D

0 1

E

0 1

D

0 1

F

0 1

G

0 1

G

0 1

F

0 1

G

0 1

G

0 1

(c)

Figure 1: (a) A primal graph of a graphical model over 7
variables (A, B, C are MAX variables and D, E, F, G are
SUM variables) with unary and pairwise potential functions.
(b) A valid pseudo tree for the primal graph. (c) AND/OR
search tree guided by the pseudo tree. One full solution tree
is marked red. One partial solution tree that is also a partial
MAP solution tree is marked blue.

xT of X , where xT = ∪n∈Tx≤n. If xT is a complete assign-
ment of X , we call T a full solution tree. A full solution tree
corresponds to a complete configuration of all the variables
and vice versa. We let T denote the set of all full solution
trees. The associated configuration xTM of a partial MAP
solution tree TM is a partial assignment of XM. If xTM is a
complete assignment XM, we call it a full MAP solution tree.
We let TM denote the set of all full MAP solution trees.

We also associate a weight wc with each AND node, de-
fined to be the product of all factors fα that are instantiated
at c but not before:

wc =
∏
α∈Ic

fα(xα), Ic = {α | Xpa(c) ∈ Xα ⊆ Xan(c)}

For completeness, we define ws = 1 for any OR node s. It
is then easy to see that the product of weights on a path to
the root, gc =

∏
a≤c wa (termed the cost of the path), equals

the value of the factors whose scope is fully instantiated by
xc. We extend this cost notion to any partial solution tree
T by defining gT as the product of all factors being fully
instantiated by xT . Particularly, the cost of any full solution
tree equals the value of its complete configuration.
Example. A full solution tree is marked red in the AND/OR
search tree shown in Fig. 1(c). According to the definition, a
solution tree corresponds to one full instantiation of all the
variables. Its cost is defined as product of weights of all its
AND nodes, and equals the value of this configuration in the
graphical model. A partial solution tree that happens to be a
partial MAP solution tree is marked blue in Fig. 1(c).

We associate a value vn to any node n, which represents
the inference task’s value of the search space below node n,
and can be defined in a bottom-up recursion. First, if n is an
AND node that corresponds to a leaf node of the pseudo tree,
we define vn = 1; and for the rest, we have

AND node n: vn =
∏

s∈ch(n)

vs

OR node n: vn =


max
s∈ch(n)

wsvs, if MAX node n∑
s∈ch(n)

wsvs, if SUM node n

(1)

These definitions extend those of Eq. (1)-(2) in Lou, Dechter,
and Ihler (2017), to the mixed MAX/SUM elimination of the
MMAP task. The value v∅ at the root is the optimum of the
MMAP task, i.e., v∅ = maxxM

∑
xS
f(x).

For each node n, we denote Vn as the task value of the
model conditioned on x≤n, expressed explicitly as:

Vn = gn vn
∏

s∈branch(n)

vs (2)

where branch(n) is defined as the set of all OR nodes that
are siblings of some node ≤ n. In general, for any partial
solution tree T , let VT denote the optimum of the MMAP
task for the model conditioned on xT , we have

VT = gT
∏

n∈leaf(T)

vn (3)

where leaf(T) is the set of all leaf nodes of T . Let TM
n

be the optimal full MAP solution that contains or extends
to n, i.e., TM

n = argmax{TM∈TM|TM∪{n}⊂T,T∈T} VTM . The
following proposition reveals the fact that Vn is the total sum
of conditioned task values over those full solution trees that
contain both TM

n and n:
Proposition 1.

Vn =
∑

{T∈T|TM
n ∪{n}⊂T}

VT (4)

Those quantities and their relation will help us approach the
priority defined in our algorithm in the sequel.

Unified Best-first Search
In this section, we will present our main algorithm by first
introducing the double-priority system which leads to a sim-
plified version that is A*-like, and then generalizing it to an
SMA*-like version (Russell 1992) to operate with limited
memory. If the MMAP task corresponds to a pure summation,
our algorithm will reduce to that of (Lou, Dechter, and Ihler
2017) using “upper” priority.

Beginning with only the root ∅, we expand the search tree
respecting the pseudo tree structure. As a best-first scheme,
we assign a priority to each frontier node on the search tree,
then expand the top priority frontier node in each iteration.
More precisely, we maintain an explicit AND/OR search tree
of visited nodes, denotedQ, whose frontier nodes are denoted
OPEN. Without loss of generality, we assume OPEN only

contains AND nodes. Other nodes of Q are called internal
nodes. For an internal node n, OPEN(n) denotes the set of
descendants of n that are in OPEN. A frontier AND node of
Q is solved if it corresponds to a leaf node in the pseudo tree.
An internal node of Q is solved if all its children are solved.
For an internal OR-MAX node, it suffices to conclude that it
is solved if its “best” child argmaxs∈ch(n) wsvs is solved.

For each node n in the AND/OR search tree, we make un
an upper bound of vn, initialized via pre-compiled heuristic
h+n s.t. vn ≤ h+n , and subsequently tightened during search.
Given the currently expanded tree Q, we update un using
information propagated from the frontier, analogous to (1):

AND node n: un =
∏

s∈ch(n)

us

OR node n: un =


max
s∈ch(n)

wsus, if MAX node n∑
s∈ch(n)

wsus, if SUM node n

(5)

These values depend implicitly on the search tree Q. Thus,
the dynamically updated bounds U = u∅ at the root serve as
an anytime bound on the optimum of the MMAP task.

Priority
Our goal is to drive down the global upper boundU as quickly
as possible. Intuitively, this can be achieved by expanding the
frontier node that affects U most at each iteration. Following
this intuition, we will first show how to make connection
between a frontier node n and the global upper bound U ,
which is bridged by the current “best” partial MAP solution
tree inQ that contains or extends to n; we will then establish
a double-priority system that marks the most “influential”
frontier node as the top priority one.

Analogously to Vn and VT (see (2), (3)), we define Un for
any node n ∈ Q and UT for any partial solution tree T ⊂ Q:

Un = gn un
∏

s∈branch(n)

us, UT = gT
∏

n∈leaf(T)

un (6)

These two quantities are upper bounds of Vn and VT respec-
tively. Note that Un and UT depend on the search tree Q
while Vn and VT do not. The relation between Un and UT is
also analogous to that of Vn and VT stated in (4):

Un =
∑

{T∈TQ|TM
Q(n)∪{n}⊂T}

UT (7)

where TQ = {T ∩ Q | T ∈ T} is the set of the partial solu-
tion trees formed by projections of all full solution trees onQ,
TM
Q = {TM ∩Q | TM ∈ TM} is the set of partial MAP solu-

tion trees formed by projections of all full MAP solution trees
on Q, and TM

Q (n) = argmax{TM∈TM
Q|TM∪{n}⊂T,T∈TQ} UTM

is the partial MAP solution tree in TM
Q with the highest upper

bound among those in TM
Q that contain or extend to n.

In lieu of (7), we can derive the following proposition that
implies Un quantifies the contribution n to the upper bound
of TM

Q (n):

Proposition 2.

UTM
Q(n) = Un +

∑
{T∈TQ|TM

Q(n)⊂T,n/∈T}

UT (8)

Moreover, it is intuitively clear that the global upper bound U
is determined by the current most “promising” partial MAP
solution tree, TM

Q = argmaxTM∈TM
Q
UTM :

Proposition 3.

U = max
TM∈TM

Q

UTM (9)

From Proposition 2 and 3, we see that among all the fron-
tier nodes, only those contained in or reachable by TM

Q even-
tually contribute to U , which is very different from the pure
summation case where all the frontier nodes contribute to the
global bound (Lou, Dechter, and Ihler 2017). This group of
frontier nodes, denoted OPEN(TM

Q), can be expressed explic-
itly as:

OPEN(TM
Q)={n∈OPEN | TM

Q ∪ {n} ⊂ T, T ∈ TQ} (10)

It is obvious that TM
Q = TM

Q (n) for any n ∈ OPEN(TM
Q).

Thus, to quickly decrease U , we should expand n? =
argmaxn∈OPEN(TM

Q) Un, the node that contributes most to U .
Double-priority system. The above discussion also sug-

gests a double-priority system that helps to identify n? in
each iteration. For any n ∈ OPEN, a primary priority defined
to be UTM

Q(n) indicates the potential of TM
Q (n) to be the one

that sets U ; a secondary priority given by Un quantifies the
contribution of n to UTM

Q(n). Note that these two priorities
are equal for any MAX node.

However, tracking the highest priority node can be diffi-
cult in AND/OR search. In particular, both the primary and
secondary priorities are non-static: after expanding a node
in OPEN, the priority of other nodes in OPEN may change
their values and relative orders. A similar effect occurs in
the pure summation case (Lou, Dechter, and Ihler 2017).
The double-priority system does preserve some local order
invariance:
Proposition 4. For any internal node n ∈ Q, expansion of
any node in OPEN\OPEN(n) will not change the relative or-
der of nodes in OPEN(n) for either the primary or secondary
priority.
The above local order-preserving property allows us to de-
sign an implicit priority queue for nodes in OPEN. To be
more specific, first, for any s ∈ OPEN, we define U?s = us;
then, for each internal node n, we maintain several quantities
during search:

c? =


argmax
c∈ch(n)

U?c /uc, if AND node n

argmax
c∈ch(n)

(wcuc, wcU
?
c), if OR-MAX node n

argmax
c∈ch(n)

wcU
?
c , if OR-SUM node n

(11)

U?n =

{
U?c?un/uc? , if AND node n
wc?U

?
c? , if OR node n

(12)

Algorithm 1 Anytime UBFS for MMAP
1: Initialize Q ← {∅} with the root ∅.
2: while termination conditions not met
3: EXPANDBEST(∅) // find best frontier, from root
4: end while
5: function EXPANDBEST(n)
6: if n 6∈ OPEN // not frontier; recurse down:
7: EXPANDBEST(c?)
8: else // expand frontier node:
9: Generate children of n; U?c = uc = h+c .

10: Mark any leaves as SOLVED.
11: end if
12: Update un via (5).
13: Find c? and update U?n via (11)-(12).
14: if all children c ∈ ch(n) are SOLVED
15: or n is an OR-MAX node and c? is SOLVED
16: Remove ch(n) from Q; add n to SOLVED.
17: end if
18: end function

In the above, “argmax” over pairs “(,)” means that we com-
pute the argmax over the first component and use the second
component to break ties; this reflects the primary and sec-
ondary priority structure. It is still possible for two frontier
nodes to have the same priority: if those two nodes have the
same node type, e.g., both are MAX nodes, we break ties
randomly for simplicity; if they have different node types, we
favor the MAX node over the SUM node because we prefer
to reach a full MAP solution tree as early as possible.

The overall algorithm is present in Alg. 1. Note that the
current best partial MAP configuration xTM

Q
serves as an

anytime approximate, and can be extended into a full MAP
configuration in some greedy way if required.
Proposition 5. In each iteration, Alg. 1 finds a top-priority
frontier node to expand.

See Appendix for proof.
Proposition 6. The time complexity of each node expansion
and update in Alg. 1 is bounded by O(h(b+ d)) where h is
the pseudo tree height, b is the max branching factor of the
pseudo tree, and d is the max variable domain size.

Memory-limited UBFS
As memory usage can quickly become a major bottleneck
for a best-first search algorithm, we apply a variant of
SMA* (Russell 1992) similar to that in Lou, Dechter, and
Ihler (2017), so that near the memory limit, we continue ex-
panding nodes in a best-first way, but remove low-priority
nodes from Q, in such a way that they will be re-generated
once the high-priority subtrees are tightened or solved. We
simply modify our updates in two ways: (1) at each node n,
we also track the lowest-priority removable descendant of
n; and (2) we force (un, U

?
n) to be updated monotonically,

to avoid worsening the bounds or overestimating the prior-
ity when subtrees are removed and later re-generated. The
resulting memory-limited best-first algorithm is shown in
Alg. 2.

Algorithm 2 Memory-limited anytime UBFS for MMAP
1: Initialize Q ← {∅} with the root ∅.
2: while termination conditions not met
3: if memory OK: n←EXPANDBEST(∅)
4: else n←REMOVEWORST(∅)
5: end if
6: end while
7: function REMOVEWORST(n)
8: if ch(n) ⊂ OPEN // worst removable node
9: Remove ch(n) from Q; mark n in OPEN.

10: else // or recurse toward worst
11: REMOVEWORST(c−)
12: end if
13: Update c−, u−n and U−n via (13)-(15).
14: end function
15: function EXPANDBEST(n)
16: // As in Alg. 1, except:
17: Ensure (un, U

?
n) updated monotonically

18: Update c−, u−n and U−n via (13)-(15).
19: end function

For convenience, we define a node as removable if its
children are all in OPEN, and “remove” it by deleting its
children and re-adding it to OPEN; this simplifies tracking
and re-expanding removed nodes. To do so, we introduce two
quantities u−n and U−n that are defined for internal nodes of
Q. For each n that is removable, we set U−n = U?n , u−n = un
if n is a MAX node and u−n = U?n if n is a SUM node. The
bottom-up recursion is as follows:

c−=


argmin
c∈rm(n)

(u−c /uc, U
−
c /uc), if AND node n

argmin
c∈rm(n)

(wcu
−
c , wcU

−
c), if OR node n

(13)

u−n=


un, if AND-MAX n & OR-SUM c−

u−c−un/uc− , if AND-MAX n & OR-MAX c−

wc−u
−
c− , if OR node n

(14)

U−n =

{
U−c−un/uc− , if AND node n
wc−U

−
c− , if OR node n

(15)

where rm(n) = ch(n)\OPEN, i.e., the children of n not in
OPEN. Then, to remove a node, we search downward along
the worst children c−, and remove n when its children are all
in OPEN.

Empirical Evaluation
We evaluate the anytime performance of our proposed algo-
rithm (Alg. 2, called UBFS) against three baselines which can
provide anytime bounds on three benchmarks. The baselines
include AAOBF (Marinescu et al. 2017), a state-of-the-art
search algorithm, XOR MMAP (Xue et al. 2016), a recent
random hashing based approach, and AFSE (Mauá and de
Campos 2012), a factor-set elimination scheme. AAOBF
and AFSE can provide anytime deterministic bounds, while
XOR MMAP provides anytime stochastic bounds. Generally,

Table 1: Statistics of the three evaluated benchmark sets. “avg.
induced width” and “avg. pseudotree depth” are computed
given 50% of variables randomly selected as MAX variables.

grid promedas protein
instances 100 100 50

avg. # variables 764.48 1063.84 99.96
avg. # of factors 764.48 1076.84 355.84

avg. max domain size 2.00 2.00 77.94
avg. max scope 3.00 3.00 2.00

avg. induced width 190.59 136.72 35.28
avg. pseudotree depth 218.23 170.50 43.72

the baselines are chosen to cover recent anytime bounding
schemes from different categories.

The benchmark set includes three problem domains:
grid networks (grid), medical diagnosis expert systems
(promedas), and protein, made from the “small” pro-
tein side-chains of Yanover and Weiss (2002). grid is a
subset of the grid dataset used in Marinescu et al. (2017) with
“small” instances (# variables less than 324) excluded because
they can be solved exactly during heuristic construction and
so are less interesting. promedas is the same dataset as
that used in Marinescu et al. (2017). We tested two settings
of MAX variables. In the first setting, 50% of the variables
are randomly selected as MAX variables, which is the same
setting used in Marinescu et al. (2017). To compare those al-
gorithms on instances with relatively hard internal summation
problems, we decrease the percentage of MAX variables to
10% for the second setting. The statistics of the benchmarks
in Table 1 show these instances are very challenging.

The time budget is set to 1 hour for all experiments. We
allot 4GB memory to all algorithms, with 1GB extra mem-
ory to AAOBF for caching. For our experiments, we use
the weighted mini-bucket (Liu and Ihler 2011) heuristics,
whose memory usage is roughly controlled by an ibound
parameter. For a given memory budget, we first compute the
largest ibound that fits in memory, then use the remaining
memory for search. Since AAOBF also uses weighted mini-
bucket heuristics, the same ibound is shared during heuristic
construction between our proposed algorithm and AAOBF.
Implementations of all methods are in C/C++ by the original
authors except AFSE, implemented by the authors of Mari-
nescu et al. (2017). The step size used by AFSE to control the
partitioning of the factor sets is set to 1 since litte difference
in performance was observed for larger values (Marinescu
et al. 2017). For XOR MMAP, we adopt parameter values
suggested by its authors. Unfortunately, XOR MMAP failed
to produce valid bounds on many of our instances in the al-
lotted time, perhaps because it maintains multiple copies of
the problem instance and must solve internal NP-hard parity
constraint problems. Despite its good solutions and bounds
on small instances (Xue et al. 2016), it does not appear to
scale well to our harder benchmarks.

Individual Results
Our algorithm is designed to improve upper bounds in an
anytime fashion. Fig. 2 shows the methods’ anytime behavior

Table 2: Number of instances with non-trivial bounds at three
times (1 min, 10 min, and 1 hour resp.) for each benchmark.
50% MAX variables. The highest for each setting is bolded.

grid promedas protein
instances 100 100 50

Timestamp: 1min/10min/1hr
UBFS 100/100/100 100/100/100 46/50/50

AAOBF 98/100/100 100/100/100 23/31/34
AFSE 0/0/0 25/27/27 7/7/7

on individual instances from each benchmark. The lower
bounds from UBFS in those plots, corresponding to the best
solutions found so far by UBFS at the respective timestamps,
are computed offline and are intended only for reference, to
give a sense of the quality of the anytime MAP configurations
predicted by UBFS.

From Fig. 2, we observe that only UBFS and AAOBFS are
able to provide valid (upper) bounds on all the 6 instances.
AFSE runs out of memory on all but one instance before pro-
viding any bounds, which was fairly typical; for comparison,
UBFS and AAOBF are able to solve this instance optimally.
We commonly observed that when AFSE is able to produce
bounds, UBFS and AAOBF usually produce better bounds or
even find optimal solutions. XOR MMAP failed to provide
any solutions or bounds for these instances.

When UBFS reaches the memory limit, it keeps improving
the upper bounds and optimally solves some of the prob-
lems (e.g., Fig. 2(b),2(d),2(e)). As expected, memory is a
bottleneck and UBFS usually reaches the 4GB limit (vertical
lines in the plots) within a few minutes of search, but con-
tinues to improve its bound by pruning low-priority nodes.
In contrast, AAOBF terminates when memory is used up
(e.g., Fig. 2(a)). Note that UBFS typically runs into the mem-
ory limit faster than AAOBF; in Fig. 2(a) UBFS uses up its
memory in 100 seconds, while AAOBF reaches the limit
after 1000 seconds. This is because UBFS is a pure best-first
scheme, while AAOBF is a hybrid scheme that solves in-
ternal summation problems using depth-first search; if the
DFS step is slow (hard summation problems), the best-first
portion of the search will proceed slowly. Fig. 2(f) shows an
example where this summation is so slow that AAOBF fails
to provide any bounds beyond its inital heuristic upper bound;
in contrast, UBFS quickly finds a much higher-quality upper
bound (albeit without a corresponding online lower bound).

Collective Results
We evaluate some statistics across algorithms to compare
their performance on the benchmarks. Since XOR MMAP
generally fails to provide bounds, we exclude it in the sequel.

Responsiveness. Responsiveness characterizes how fast
an algorithm produces non-trivial bounds. For UBFS and
AAOBF, we require them to produce bounds other than
the initial heuristic bound. From Table 2, we can see that
UBFS responds quickly on almost all the instances within 1
minute, except for 4 protein instances that require more
time to process. AAOBF is responsive on most grid and
promedas instances, but performs worse on a number of

10
1

10
2

10
3

10
4−70

−60

−50

−40

−30

bo
un

ds
 (

in
 lo

g)

time (sec)

UBFS reaches memory limit

UBFS

AAOBF

AFSE

(a) grid/75-26-5

10
0

10
2

10
4−100

−80

−60

−40

−20

0

bo
un

ds
 (

in
 lo

g)

time (sec)

UBFS reaches memory limit

UBFS

AAOBF

AFSE

(b) promedas/or chain 50.fg

10
0

10
2

10
4−300

−250

−200

−150

−100

−50

bo
un

ds
 (

in
 lo

g)

time (sec)

UBFS

AAOBF

AFSE

(c) protein/1noa

10
0

10
2

10
4−40

−35

−30

−25

−20

bo
un

ds
 (

in
 lo

g)

time (sec)

(d) grid/75-20-5

10
0

10
2

10
4−150

−100

−50

0

bo
un

ds
 (

in
 lo

g)

time (sec)

(e) promedas/or chain 4.fg

10
−2

10
0

10
2

10
4−45

−40

−35

−30

bo
un

ds
 (

in
 lo

g)

time (sec)

(f) protein/1r69

Figure 2: Anytime bounds for two instances per benchmark, with 50% MAX variables. AFSE is missing if it ran out of memory
before producing bounds; XOR MMAP failed to produce bounds on these instances. UBFS lower bounds are computed offline
and shown only for reference. Black dotted lines mark UBFS reaching the 4GB memory limit; time budget 1 hour.

Table 3: Number of instances that an algorithm achieves the
best upper bounds at each timestamp (1 min, 10 min, and 1
hour) for each benchmark. 50% MAX variables. The best for
each setting is bolded.

grid promedas protein
instances 100 100 50

Timestamp: 1min/10min/1hr
UBFS 85/84/89 83/86/87 46/50/50

AAOBF 33/46/44 47/47/47 17/16/18
AFSE 0/0/0 0/0/0 5/5/5

protein instances due to their very hard internal summa-
tion problems. AFSE is not competitive and fails to produce
any bounds on the grid instances.

Bound quality. We compare anytime upper bounds among
the algorithms. Table 3 shows the number of instances for
which an algorithm achieves the tightest upper bounds at
each of three timestamp. From Table 3, we see that our algo-
rithm does best on this task across all benchmark/timestamp
settings, by a large margin. Again, the advantage is most
significant on the protein instances, and again, AAOBFS
performs better than AFSE.

Harder summation. UBFS avoids some unnecessary eval-

Table 4: Number of instances that an algorithm achieves best
upper bounds at each given timestamp (1 min, 10 min, and 1
hour) for each benchmark. 10% MAX variables. The best for
each setting is bolded.

grid promedas protein
instances 100 100 50

Timestamp: 1min/10min/1hr
UBFS 99/100/100 88/99/99 43/50/50

AAOBF 1/1/3 17/12/17 15/9/9
AFSE 0/0/0 10/8/10 7/7/7

uation of the internal summation problems, thus it is expected
to be suitable for those MMAP problems with hard internal
summation problems. To assess this setting, we decrease
the percentage of MAX variables from 50% to 10%. Table 4
shows the relative upper bound quality. By comparing Table 3
and Table 4, we can see that UBFS gains a larger advantage
when the search space of MAX variables is smaller, while
the summation tasks are relatively harder.

Conclusion
In this paper, we present an anytime anyspace AND/OR best-
first search algorithm to improve upper bounds for MMAP

problems. We cast max- and sum- inference into one best-first
search framework. The specially designed double-priority
system allows our algorithm to identify the current most
promising partial MAP solution tree and expand the frontier
node that contributes most to the upper bound of that partial
MAP solution tree, which often leads to quick reduction on
the global upper bound. Our algorithm avoids some unnec-
essary exact computation of internal conditional summation
problems and thus has a significant advantage especially on
those instances with hard internal summation problems. Em-
pirical results demonstrate that our approach with heuristics
extracted from weighted mini-bucket is superior to those
state-of-the-art baselines on various settings.

Acknowledgements
We thank all the reviewers for their helpful feedback. We
appreciate the help from William Lam, Junkyu Lee, Radu
Marinescu, Wei Ping, and Yexiang Xue.

This work is sponsored in part by NSF grants IIS-1526842,
IIS-1254071, and by the United States Air Force under Con-
tract No. FA8750-14-C-0011 and FA9453-16-C-0508.

References
Darwiche, A. 2009. Modeling and Reasoning with Bayesian
Networks. Cambridge University Press.
Dechter, R., and Mateescu, R. 2007. And/or search spaces
for graphical models. Artif. Intell. 171(2-3):73–106.
Dechter, R., and Rish, I. 2003. Mini-buckets: A gen-
eral scheme of approximating inference. Journal of ACM
50(2):107–153.
Dechter, R.; Geffner, H.; and Halpern, J. Y. 2010. Heuristics,
Probability and Causality. A Tribute to Judea Pearl. College
Publications.
Dechter, R. 2013. Reasoning with probabilistic and determin-
istic graphical models: Exact algorithms. Synthesis Lectures
on Artificial Intelligence and Machine Learning 7(3):1–191.
Doucet, A.; Godsill, S. J.; and Robert, C. P. 2002. Marginal
maximum a posteriori estimation using markov chain monte
carlo. Statistics and Computing 12(1):77–84.
Kiselev, I., and Poupart, P. 2014. Policy optimization by
marginal-map probabilistic inference in generative models.
In Proceedings of the 13th international conference on Au-
tonomous agents and multi-agent systems, 1611–1612. Inter-
national Foundation for Autonomous Agents and Multiagent
Systems.
Lee, J.; Marinescu, R.; Dechter, R.; and Ihler, A. 2016. From
exact to anytime solutions for marginal map. In Proceedings
of the 30th AAAI Conference on Artificial Intelligence, 3255–
3262.
Liu, Q., and Ihler, A. 2011. Bounding the partition func-
tion using Hölder’s inequality. In Proceedings of the 28th
International Conference on Machine Learning (ICML).
Liu, Q., and Ihler, A. 2013. Variational algorithms for
marginal map. Journal of Machine Learning Research
14(1):3165–3200.

Lou, Q.; Dechter, R.; and Ihler, A. 2017. Anytime anyspace
and/or search for bounding the partition function. In Proceed-
ings of the 31st AAAI Conference on Artificial Intelligence.

Marinescu, R.; Lee, J.; Ihler, A.; and Dechter, R. 2017. Any-
time best+ depth-first search for bounding marginal map.
In Proceedings of the 31st AAAI Conference on Artificial
Intelligence.

Marinescu, R.; Dechter, R.; and Ihler, A. 2014. And/or search
for marginal map. In UAI, 563–572.

Marinescu, R.; Dechter, R.; and Ihler, A. 2015. Pushing
forward marginal map with best-first search. In IJCAI, 696–
702.

Mauá, D., and de Campos, C. 2012. Anytime marginal
maximum a posteriori inference. In ICML.

Otten, L., and Dechter, R. 2012. Anytime and/or depth-first
search for combinatorial optimization. AI Communications
25(3):211–227.

Park, J., and Darwiche, A. 2003. Solving map exactly using
systematic search. In Proceedings of the 19th conference
on Uncertainty in Artificial Intelligence, 459–468. Morgan
Kaufmann Publishers Inc.

Park, J. 2002. Map complexity results and approximation
methods. In Proceedings of the 18th conference on Uncer-
tainty in artificial intelligence, 388–396. Morgan Kaufmann
Publishers Inc.

Ping, W.; Liu, Q.; and Ihler, A. 2014. Marginal structured
svm with hidden variables. In Proceedings of the 31st Inter-
national Conference on Machine Learning, 190–198.

Ping, W.; Liu, Q.; and Ihler, A. 2015. Decomposition bounds
for marginal map. In Advances in Neural Information Pro-
cessing Systems, 3267–3275.

Russell, S. 1992. Efficient memory-bounded search methods.
In Proceedings of the 10th European Conference on Artificial
Intelligence, ECAI ’92, 1–5.

Valiant, L. 1979. The complexity of computing the perma-
nent. Theoretical Computer Science 8(2):189 – 201.

Wainwright, M., and Jordan, M. 2008. Graphical models,
exponential families, and variational inference. Foundations
and Trends R© in Machine Learning 1(1-2):1–305.

Xue, Y.; Li, Z.; Ermon, S.; Gomes, C. P.; and Selman, B. 2016.
Solving marginal map problems with np oracles and parity
constraints. In Advances in Neural Information Processing
Systems, 1127–1135.

Yanover, C., and Weiss, Y. 2002. Approximate inference and
protein-folding. In Advances in neural information process-
ing systems, 1457–1464.

Yuan, C., and Hansen, E. A. 2009. Efficient computation
of jointree bounds for systematic map search. In Proceed-
ings of the 21st International Joint Conference on Artificial
Intelligence, 1982–1989.

Yuan, C.; Lu, T.-C.; and Druzdzel, M. J. 2004. Annealed
map. In UAI, 628–635. AUAI Press.

Appendix
Proof of Proposition 5
Proposition 5. In each iteration, Alg. 1 finds a top-priority
frontier node to expand.

We will prove the following claims from which we can
easily derive the proposition.

For any internal node n ∈ Q, we claim: First, its best child
c? found via (11) is an ancestor of a top-priority descendant
of n in OPEN.

Second,

U?ngn
∏

s∈branch(n)

us (16)

is the secondary priority value of n’ top-priority descendant
in OPEN.

We will prove the above claims via induction on the height
of nodes in Q, where the height for a node is defined as the
distance from that node to its furthest descendant in OPEN.
For example, a frontier node has height 0; a node has all its
children in OPEN has height 1.

To begin with, the first claim is vacuously true for all
frontier nodes, and the second claim is true for all frontier
nodes by definition. Then, suppose the claims hold for those
nodes of height no greater than some h ≥ 0, we will show
they also hold for nodes of height h+ 1. Now, let n ∈ Q be
a node of height h+ 1; all its children have height no greater
than h and thus the claims apply to them.

If n is an AND node, for any c1, c2 ∈ ch(n), it is easy
to see that their top-priority frontier descendants have the
same primary priority. Thus, we only have to compare the
secondary priority of their top-priority frontier descendants.
Since

U?c1gc1
∏

s∈branch(c1)

us (17)

is the secondary priority value of c1’s top-priority frontier
descendant according to (16). By applying the facts that gn =
gc1 and un =

∏
c∈ch(n) uc to the above quantity, we have

U?c1/uc1ungn
∏

s∈branch(n)

us (18)

Thus, (11) finds c? that leads to a top-priority descendant of
AND node n, which has the secondary priority

U?c?/uc?ungn
∏

s∈branch(n)

us (19)

Combining the above and (12), we know the second claim is
true for n as well.

If n is an OR-MAX node, for any c1 ∈ ch(n), it is easy to
see that

gc1uc1
∏

s∈branch(c1)

us (20)

is the primary priority value of c1’s top-priority frontier de-
scendant, which can be re-written as

wc1uc1gn
∏

s∈branch(n)

us (21)

by considering the facts that gc1 = wc1gn and branch(c1) =
branch(n). According to the second claim and gc1 = wc1gn,
the secondary priority value of c1’s top-priority frontier de-
scendant can be re-written as

wc1U
?
c1gn

∏
s∈branch(n)

us (22)

Thus, c? found via (11) leads to a top-priority descendant.
Also, the second claim holds for n in lieu of (12).

If n is an OR-SUM node, we know all its frontier descen-
dants share the same primary priority. The analysis on the
secondary priority is the same as that of the OR-MAX case.

All in all, we can see that the two claims hold for a node
of height h+1. By induction, we know these claims hold for
all internal nodes of Q, which implies Proposition 5.

