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Abstract

Many real-world problems, such as Markov Logic Networks
(MLNs) with evidence, can be represented as a highly sym-
metric graphical model perturbed by additional potentials. In
these models, variational inference approaches that exploit
exact model symmetries are often forced to ground the en-
tire problem, while methods that exploit approximate symme-
tries (such as by constructing an over-symmetric approximate
model) offer no guarantees on solution quality. In this paper,
we present a method based on a lifted variant of the general-
ized dual decomposition (GenDD) for marginal MAP infer-
ence which provides a principled way to exploit symmetric
sub-structures in a graphical model. We develop a coarse-to-
fine inference procedure that provides any-time upper bounds
on the objective. The upper bound property of GenDD pro-
vides a principled way to guide the refinement process, pro-
viding good any-time performance and eventually arriving at
the ground optimal solution.

Introduction
A central task in many application domains (Wainwright and
Jordan 2008) is computing likelihoods and marginal prob-
abilities over distributions defined by a graphical model.
These tasks are, in general, intractable, and this has moti-
vated the development of many approximate inference tech-
niques. Of significant theoretical and practical interest are
variational techniques which formulate the inference prob-
lem as a constrained optimization problem. Within this class,
methods that provide upper bounds on the partition function
and give rise to convex optimization problems are particu-
larly attractive since convergence can be guaranteed and the
quality of two bounds can be easily compared. This class
contains the tree-reweighted bounds (Wainwright, Jaakkola,
and Willsky 2005) and primal variants such as GenDD
(Ping, Liu, and Ihler 2015), which we study here.

Recently, there has been a growing interest in the de-
velopment of lifted inference techniques, both exact (Bui,
Huynh, and de Salvo Braz 2012; Poole 2003) and ap-
proximate (Bui, Huynh, and Riedel 2012; Mladenov, Ah-
madi, and Kersting 2012; Mladenov and Kersting 2015;
Bui, Huynh, and Sontag 2014; Mladenov, Globerson, and
Kersting 2014), which exploit model symmetries. Most of
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these works take a well established variational approxima-
tion and identify exact problem symmetries either algorith-
mically (e.g., redundant message computations of loopy be-
lief propagation (LBP) (Singla and Domingos 2008; Kerst-
ing, Ahmadi, and Natarajan 2009)) or via graph theoretic no-
tions of symmetry (Bui, Huynh, and Riedel 2012; Mladenov,
Ahmadi, and Kersting 2012; Mladenov and Kersting 2015;
Bui, Huynh, and Sontag 2014; Mladenov, Globerson, and
Kersting 2014).

These methods, however, often have significant trouble
dealing with models possessing highly symmetric substruc-
tures, but few exact symmetries. Some works (Venugopal
and Gogate 2014; Van den Broeck and Darwiche 2013) ad-
dress this by generating a symmetric approximation to an
MLN (Richardson and Domingos 2006) with evidence, but
offer no guarantees on the quality of the approximation.
(Broeck and Niepert 2014) correct this “biasedness” prob-
lem by using an over-symmetric approximation to construct
a proposal distribution for a Metropolis-Hastings chain,
which guarantees convergence to the true marginals, but
gives no guarantees on mixing time. Other works approx-
imate lifted BP by grouping messages with similar values
(Kersting et al. 2010) or satisfying a desired structural prop-
erty (Singla, Nath, and Domingos 2014). (Singla, Nath, and
Domingos 2014) analyzes errors the approximation induces
on the true BP messages, but like BP, offers no guarantees
on solution quality or convergence.

Similar in spirit to our work is (Habeeb et al. 2017) which
sequentially solves a set of relaxed MAP inference problems
for computer vision tasks. Their method operates in a coarse
to fine manner solving, at each level, a MAP problem where
groups of pixels are restricted to have the same value. This
pixel grouping is relaxed and the finer MAP problem is ini-
tialized with the solution to the coarser problem, guarantee-
ing monotonic improvement of the solution.

Our paper provides a framework for exploiting approxi-
mate model symmetries, based on a lifted variant of GenDD
(Ping, Liu, and Ihler 2015). In contrast to works that create
an over-symmetric model approximation, our method im-
poses a set of over-symmetric restrictions on the variational
cost-shifting updates (messages) associated with the GenDD
problem. Guided by a measure of solution quality, these con-
straints are gradually relaxed, producing a sequence of prob-
lems of increasing accuracy, but increasing cost. Our experi-



mental results show the superiority of the objective based re-
finement criteria, and good anytime performance compared
to methods that exploit exact symmetries.

Background
A Markov random field (MRF) over n discrete random vari-
ables X = [X1 . . . Xn] taking values x = [x1 . . . xn] ∈
(X 1 × . . .×Xn) has probability density function

p(X = x; θ) = exp
[ ∑
α∈F

θα(xα)− Φ(θ)
]
,

Φ(θ) = log
∑
x∈Xn

exp
[ ∑
α∈F

θα(xα)
]

whereF represents the set of cliques of the distribution, with
α ∈ F being a subset of the variables, associated with a
potential table θα. Φ(θ) is the log partition function which
normalizes the distribution. Furthermore, denote the set of
variable indices as V = {1 . . . n}.

Generalized dual decomposition
Motivated by the intractability of computing Φ(θ), (Ping,
Liu, and Ihler 2015) develops efficient upper bounds on
Φ(θ) via a decomposition based on Hölder’s inequality.
Their bound generalizes the dual decomposition bound
(Globerson and Jaakkola 2008) for the MAP problem, main-
taining two key properties: (1) it decomposes into a sum of
terms defined over cliques of the graphical model and (2)
a family of bounds can be indexed by a set of variational
parameters where finding the parameter setting yielding the
tightest bound can be formulated as a convex optimization
problem. We review their main results.

For any non-negative function f(x) and w ∈ R>0, the
power sum operator is defined as

w∑
x

f(x) =
[∑

x

f(x)1/w
]w
.

The power sum reduces to standard sum when w = 1 and
approaches maxx f(x) as w → 0+. We also define the vec-
tor power sum

∑w
x F (x) =

∑wk
xk
· · ·
∑w1

x1
F (x), where w is

a vector of k weights, x is a vector of k random variables,
and F is a non-negative function with k inputs. The set of
variational parameters δ = {δrα | α ∈ F , r ∈ N+

|α|} and
w = {wrα | α ∈ F , r ∈ N+

|α|}, where N+
i = {1 . . . i}

for any positive integer i, reparameterize the distribution to
provide a tighter bound. The bound of (Ping, Liu, and Ihler
2015) can be written as

Φ(θ) ≤
∑
v∈V

uv(δ,w) +
∑
α∈F

cα(δ,w)
def
= L(δ,w). (1)

where, letting wα = [w1
α . . . w

|α|
α ], the clique terms are

cα(δ,w) = log

wα∑
xα

exp

[
θα(xα)−

|α|∑
r=1

δrα(xαr )

]
(2)

Figure 1: Position explicit factor graph associated with α1 =
(x1, x2), α2 = (x2, x3). Factor cells (αi, r) are associ-
ated with parameters (δrαi , w

r
αi) and unary terms are sums

of neighboring cost shifting variables: δ0
1 = δ1

α1 , δ0
2 =

δ2
α1 + δ1

α2 , δ0
3 = δ2

α2 (similarly for the weights).

and the unary terms are

uv(δ,w) = log

w0
v∑
xv

exp(δ0
v(xv)), (3)

with δ0
v(xv) =

∑
(α,r)∈Nv δ

r
α(xv) and w∆

v = 1 −∑
(α,r)∈Nv w

r
α where Nv = {(α, r) | αr = v} are the

neighbors of v. Furthermore, we define w0
v = max(0, w∆

v )
and require wrα ≥ 0 for all (α, r).1 We also require that
the local elimination order of each clique power sum term
(2) be consistent with a global elimination order o, meaning
that for all i < j, o(αi) < o(αj). If this is violated for an α
in the input, that α and its associated potential are permuted
to obey this order.

Ground factor graphs In order to facilitate development
of our lifted inference procedure, we modify the standard
factor graph depiction of graphical models to make each
variable’s position in its participating factors explicit. To this
end, we draw a circular node associated with each variable
v and a rectangle partitioned into |α| cells associated with
each factor α. Position cell (α, r) is associated with terms
(δrα, w

r
α) (labeled with just δrα for compactness) and has an

edge with its variable neighbor v = αr, which is associated
with terms δ0

v ,w∆
v ,uv (labeled with just δ0

v). A simple exam-
ple is illustrated in figure 1.2

Exploiting symmetries
Lifted inference techniques identify a set of symmetries in
the ground variational problem that can be exploited com-
putationally. Exact lifted variational inference (Singla and
Domingos 2008; Mladenov, Globerson, and Kersting 2014;
Mladenov and Kersting 2015; Mladenov, Ahmadi, and Ker-
sting 2012) identifies a stable partition (Berkholz, Bonsma,
and Grohe 2013) of the graph as sufficient to characterize
symmetries in the solution to the ground variational prob-
lem. In this paper, we impose a set of over-symmetric con-
straints on the ground variational parameters (δ,w), induc-
ing symmetries in the objective (1) that will, in general, be

1In (Ping, Liu, and Ihler 2015), w0
v is a free variable with re-

strictions w0
v ≥ 0 and w0

v +
∑

(α,r)∈Nv w
r
α = 1. In our formula-

tion, this sum is always larger than or equal to 1 (providing a valid
bound), with equality holding at the optimum.

2(Mladenov and Kersting 2015) used a similar representation
where each position cell is its own node, connected to its factor
node. For compactness, we prefer the notation presented here.



coarser than those implied by a stable partition, yielding
looser but computationally cheaper bounds.

Parameter and objective symmetries
Consider a disjoint partition PF = {F1 . . .FF } of the
ground factors F (Fi ∩ Fj = ∅ for i 6= j, ∪fFf = F)
where all factors in the same partition are required to have
the same potential function. That is, for each f there exists
a representative factor θ̄f (with associated scope size r̄f and
domains X̄ rf for r ∈ N+

r̄f ) such that for all α ∈ Ff , θα = θ̄f
(and |α| = r̄f and Xαr = X̄ rf for r ∈ N+

r̄r ).
In this paper, we consider over-symmetric constraints on

the variational parameters which forces terms associated
with factors in the same partition to be identical. That is,
we consider parameters in the set

S(PF ) =

{
(δ,w) | (∃ δ̄,w̄) ∀Ff∈PF , α∈Ff , r∈N+

|α|
δrα(x̄rf )=δ̄rf (x̄rf ), wrα=w̄rf

}
where δ̄ = {δ̄rf | Ff ∈ PF , r ∈ N+

r̄f } and w̄ = {w̄rf |
Ff ∈ PF , r ∈ N+

r̄f } are restricted sets of parameters. For
any (δ,w) ∈ S(PF ), we identify symmetries in the clique
terms (2) as cα(δ,w) = c̄f (δ̄, w̄) for all α ∈ Ff where

c̄f (δ̄, w̄)
def
= log

w̄f∑
x̄

exp

[
θ̄f (x̄)−

r̄f∑
r=1

δ̄rf (x̄rf )

]
(4)

and w̄f = [w̄1
f . . . w̄

r̄f
f ] and x̄ = [x̄1

f . . . x̄
r̄f
f ].

To recognize the symmetries induced in the aggregated
cost shifting δ0

v , w0
v (and hence uv (3)) terms, first let

N
(f,r)
v = {α | α ∈ Ff , (α, r) ∈ Nv} represent the neigh-

bors of v which contribute δrα(x̄rf ) = δ̄rf (x̄rf ) to the sum.

There are M (f,r)
v = |N (f,r)

v | such neighbors. Furthermore,
define a disjoint partition PV = {V1 . . .VK} of V where
all variables in the same partition have the same domain
(Xv = X̄k for all v ∈ Vk) and the same neighbor counts
given PF . That is, there exist representative counts M̄ (f,r)

k

such that for M (f,r)
v = M̄

(f,r)
k for all v ∈ Vk and all (f, r).

Now, for all v ∈ Vk we have

δ0
v(x̄k) = δ̄0

k(x̄k)
def
=

∑
(f,r)∈N̄k

M̄
(f,r)
k · δ̄rf (x̄k) (5)

for all values x̄k and N̄k = {(f, r) | M̄ (f,r)
k > 0} (and

similarly, w∆
v = w̄∆

k
def
= 1−

∑
(f,r)∈N̄k M̄

(f,r)
k · w̄rf ). These

symmetries imply that uv(δ,w) = ūk(δ̄, w̄) for all v ∈ Vk.
Our objective can now be evaluated over the smaller set

of representative parameters (δ̄, w̄), with symmetries fully
specified by P = (PF ,PV). We say that such P is valid and
we have L(δ,w) = L̄(δ̄, w̄) where

L̄(δ̄, w̄)
def
=

∑
Ff∈PF

|Ff | · c̄f (δ̄, w̄) +
∑
Vk∈PV

|Vk| · ūk(δ̄, w̄).

(6)

Lifted factor graphs Associated with any valid partition
P is a lifted graph which compactly illustrates the symme-
tries in the variational parameters and problem terms (1).
A lifted factor graph has a super-node associated with each
Vk and a super-factor with r̄f position cells associated with
each Ff . Position cell (f, r) is associated with δ̄rf , w̄

r
f (la-

beled with just δ̄rf ) and has a super-edge labeled M̄
(f,r)
k

with super-node k if M̄ (f,r)
k > 0. The term N̄k defined af-

ter (5) can be seen as the neighborhood of k in the lifted
graph. We similarly define the neighborhood of (f, r) as
N̄ (f,r) = {k | M̄ (f,r)

k > 0}.
Example 1. Consider a model with factor graph depicted in
figure 2a (with elimination order o = (R1, R2, T1, T2)) and
clique symmetries θα2 = θα3 = θα4 = θα5 = θ̄. Associated
with the graph is the partition PF = {Fg,Fy} where Fg =
{α1} (green), Fy = {α2, α3, α4, α5} (yellow) and PV =
{Vp,Vr,Vb} where Vp = {R1} (purple), Vr = {R2} (red),
and Vb = {T1, T2} (blue).3

The top half of the middle panel indicates the over-
symmetric parameter constrains specified by PF . The bot-
tom half of that panel indicates the induced symmetries in
the unary terms. For example, by examining the neighbor-
hood ofR1 in the factor graph, we see that δ0

R1
= δ1

α2+δ1
α3+

δ1
α1 . Via the parameter symmetries δ1

α2 = δ1
α3 = δ̄1

y and
δ1
α1 = δ̄1

g , we see that this is equivalent to δ0
R1

= 2 · δ̄1
y + δ̄1

g .

Gradient symmetries
Just as the over-symmetric parameter constraints induce
symmetries in the ground objective function, they also in-
duce (a different set of) symmetries in the gradient of the
ground objective. These gradient symmetries will be used to
derive the gradient of the lifted problem, to identify exact
symmetries in the ground problem, and to guide our coarse-
to-fine inference procedure.

First, notice that the parameter symmetries imply not only
symmetries in the values of the clique (4) and unary (5)
terms, but also in their gradients. That is, for any (δ,w) ∈
S(PF ), we have

∂cα
∂δrα(x̄rf )

=
∂c̄f

∂δ̄rf (x̄rf )
and

∂uv
∂δ0
v(x̄k)

=
∂ūk

∂δ̄0
k(x̄k)

for any α ∈ Ff , v ∈ Vk, and for all values of x̄rf and x̄k.

Now, consider the set E(f,r)
k = ∪v∈VkN

(f,r)
v of ground

factors α ∈ Ff whose rth position cell (α, r) has neighbor
v = αr ∈ Vk. For any α ∈ E(f,r)

k , the parameter δrα appears
only in clique term cα in position r (multiplied by -1) and
unary term uv (multiplied by +1). We can therefore identify
symmetries in the objective gradient as

∂L

∂δrα(x̄k)
=

∂ūv
∂δ̄0
v(x̄k)

− ∂c̄f
∂δ̄rα(x̄k)

=
∂ūk

∂δ̄0
k(x̄k)

− ∂c̄f
∂δ̄rf (x̄k)

def
= ḡ

(f,r)
k;δ (x̄k) (7)

3The main text used integers to index factor and variable parti-
tions; here we use letters, representing figure colors, for clarity.



(a) Valid, non-stable P , specifies over-symmetric constraints on the variational parameters of the ground problem.

(b) Stable P , specifies symmetries in variational parameters that yield an exact solution to the ground problem.

Figure 2: (a) valid, non-stable partition imposes over-symmetric constraints, yielding a looser bound. (b) Stable partition which
characterizes exact symmetries of ground problem. More details in examples 1 and 2 of the text.

for all values of x̄k (and similarly for the w gradients).

Lifted gradients and ground optimality The gradients of
the lifted objective (6) can be written using the gradient sym-
metries of the ground problem. Specifying the lifted gradi-
ents in this way allows us to identify partitions whose sym-
metric parameter constraints specify an exact solution to the
ground problem.

Since, via (7), δrα(x̄rf ) = δ̄rf (x̄rf ) for all α ∈ Ff (and all
values of x̄rf ), we can write

∂L̄

∂δ̄rf (x̄rf )
=
∑
α∈Ff

∂L

∂δrα(x̄rf )
=

∑
k∈N̄(f,r)

|E(f,r)
k | · ḡ(f,r)

k;δ (x̄rf )

(8)
where |E(f,r)

k | = M̄
(f,r)
k ·|Vk| (and similarly for the w̄ gradi-

ents). In the special case where (f, r) has one lifted neighbor
N̄ (f,r) = {k}, Ff = E(f,r)

k and (8) simplifies to

∂L̄

∂δ̄rf (x̄rf )
= |Ff | ·

∂L

∂δrα(x̄rf )
,

meaning that ∂L/∂δrα(x̄rf ) = 0 when ∂L̄/∂δ̄rf (x̄rf ) = 0.
Now, if all of the gradients of the lifted problem are zero, and
its lifted graph has |N̄ (f,r)| = 1 for all (f, r), then all of the
ground gradients are also zero. This means that a solution of
the lifted problem provides a solution to the ground problem.
A partition P whose lifted graph satisfies the property that
|N̄ (f,r)| = 1 for all (f, r) is called stable.

Example 2. If we replace PF from example 1 with F =
{Fg,Fy,Fo} where Fg = {α1} (green), Fy = {α2, α3}

(yellow), Fo = {α4, α5} (orange), then the partition is sta-
ble and S(PF ) contains a solution to the ground variational
problem. This is illustrated in figure 2b.

Optimizing the lifted objective
In this paper, we use a black-box procedure to perform
global optimization utilizing the gradient of L̄. To ensure
positivity of the weights, we define the parameters η̄ =
{η̄rf | Ff ∈ PF , r ∈ N+

r̄f }, substituting w̄rf with ε+exp(η̄rf )

(and ∂L̄/∂η̄rf = (∂L̄/∂w̄rf ) · exp(η̄rf )). To ensure that
the function is differentiable, we set w̄0

k = a(w̄∆
k ) where

a(x) = ε+t·log(1+exp(x/t)).4 This enables unconstrained
optimization over the η̄ and δ̄ parameters. The gradients are
straightforward to derive from the gradients in (Ping, Liu,
and Ihler 2015) and are omitted for space.

Coarse to fine approximation
We now develop a coarse to fine procedure that inter-
leaves relaxations of the over-symmetric parameter con-
straints S(PF ) with optimization, eventually arriving at the
coarsest stable partition P and a solution to the ground prob-
lem. While optimization touches only the lifted graph, re-
laxation steps must touch a subset of the ground factors and
variables. To control this cost, we adapt the key ideas from
(Berkholz, Bonsma, and Grohe 2013), which presented an
asymptotically optimal algorithm for generating the coars-
est stable partition of a graph, to our work. This procedure is

4Any t > 0, ε > 0 bound the objective since it generates larger
unary weights: at(w∆

v ) > ε+max(0, w∆
v ) > max(0, w∆

v ).



Algorithm 1 Syntactic coarsest stable partition

1: Set PV to group variables with identical Xv
2: Set F0

f for f ∈ N+
F 0 to group factors with identical θ

3: Q← ∅;
4: for F = 1 to F 0 do
5: FF ← F0

f ; refinePV(0);
6: end for
7: while Q 6= ∅ do
8: Choose any (f, r) ∈ Q, set Q← Q \ (f, r)

9: Choose a k ∈ N̄ (f,r) where |E(f,r)
k | ≤ 1

2 |Ff |
10: F ← F + 1;

11: FF ← E(f,r)
k ; Ff ← Ff \ FF ;

12: refinePV(f);
13: end while

used as a pre-processing step in works on exact lifted varia-
tional inference such as (Mladenov, Globerson, and Kersting
2014).

Syntactic coarsest stable partition
Throughout our description, we maintain a valid partition
and its associated lifted graph. Recall from the subsection
on lifted gradients (and Figure 2b) that a valid partition is
stable if and only if each position cell in its lifted graph has
exactly one neighbor. Algorithm 1 maintains the set Q =
{(f, r) | |N̄ (f,r)| ≥ 2} of position cells that violate this
property. The algorithm iteratively selects an (f, r) ∈ Q and
one of its neighbors k ∈ N̄ (f,r). Ground factors in Ff are
then split into two groups (line 11), based on whether their
rth position neighbor is a variable in Vk (recall from the
section on gradient symmetries that this is E(f,r)

k ), or not.
In the appendix, we define the function refinePV that up-

dates the partition PV to be consistent with the new neigh-
bor counts Mf

v and MF
v for all v, updating the lifted graph

and Q as needed. The restriction of choosing k such that
|E(f,r)
k | ≤ 1

2 · |Ff | (line 9) is necessary to maintain the com-
plexity results of (Berkholz, Bonsma, and Grohe 2013), as
discussed in the appendix.

Coarse-to-fine algorithm
One simple way to construct a coarse to fine inference pro-
cedure is to interrupt the main loop of Algorithm 1 to per-
form lifted inference with relaxations and symmetries spec-
ified by the current partition P . This would yield any-time
bounds and ensure that we never produce a model finer than
the coarsest stable partition.

In practice, however, superior results are obtained by
choosing refinement operations based on their predicted de-
crease of the objective value. Algorithm 2 illustrates this
idea, where Srf (detailed in next section) judges the qual-
ity of a split of (f, r), cost(P) is the estimated cost of one
inference iteration (we count the number of operations used
to compute the lifted score (6)), and β controls how much
refinement we allow between inference calls.

Algorithm 2 Coarse to fine inference

1: Execute lines 1 to 6 of Algorithm 1 . Initialize P
2: Ψ← 0;
3: repeat
4: if cost(P) > Ψ then
5: [δ̄, w̄] = inference(P, δ̄, w̄)
6: Set Srf via (9) ∀(f, r) ∈ Q
7: Ψ← cost(P) · β;
8: end if
9: (f∗, r∗)← argmin(f,r)∈Q S

r
f

10: Set N̄ ′1 ⊂ N̄ (f∗,r∗) as argmin of Sr
∗

f∗ via (9)
11: F ← F + 1;

12: FF ← ∪k∈N̄ ′1E
(f∗,r∗)
k ; Ff∗ ← Ff∗ \ FF ;

13: refinePV(f∗)
14: Set Srf ′ via (9) for f ′ ∈ {f∗, F}, r ∈ N+

r̄f

15: until P is stable
16: [δ̄, w̄] = inference(P, δ̄, w̄) . Stable P inference

Objective based scoring function We first define a met-
ric to measure the quality of a proposed parameter partition,
then we will show how to optimize this metric efficiently,
using only information contained in the lifted graph.

For the set of ground parameters associated with an (f, r),
we measure the error induced by the current parameter ty-
ing restrictions as the distance of the ground gradients to
their projected gradient. Letting grα be the set of ground gra-
dients associated with an (α, r), this metric is d(Ff , r) =∑
α∈Ff ||g

r
α − γ||22, with γ = (

∑
α∈Ff g

r
α)/|Ff |.

We would like to find a split of Ff into Ff1 and Ff2

that minimizes d(Ff1 , r) + d(Ff2 , r) − d(Ff , r), which is
the change in the projected gradient distance. By symmetry,
this split groups together factors with the same grα. Recalling
from (7) that grα = ḡ

(f,r)
k for all α ∈ E(f,r)

k , we write this
grouping as Ffi = ∪k∈N̄ ′iE

(f,r)
k where N̄ ′1 ⊂ N̄ (f,r) and

N̄ ′2 = N̄ (f,r) \ N̄ ′1 (adopting the convention |Ff1 | ≤ |Ff2 |).
We can now form a compact optimization problem

to find the best split. For any N̄ ′ ⊆ N̄ (f,r) we have
d(∪k∈N̄ ′E

(f,r)
k , r) = d̄rf (N̄ ′) where

d̄rf (N̄ ′) =
∑
k∈N̄ ′

|E(f,r)
k | · ||ḡ(f,r)

k − γ||22

and γ = (
∑
k∈N̄ ′ |E

(f,r)
k | · ḡ(f,r)

k )/(
∑
k∈N̄ ′ |E

(f,r)
k |). Letting

P(N̄ (f,r)) be the power set (all subsets) of N̄ (f,r), we solve

Srf = min
N̄ ′1∈P(N̄(f,r))

2∑
i=1

d̄rf (N̄ ′i)− d̄rf (N̄ (f,r)). (9)

This is a weighted K-Means (K=2) problem with “data”
ḡ

(f,r)
k and weights |E(f,r)

k |. If we approximate this by us-
ing only one of the elements of ḡ(f,r)

k (for example only the
gradient wrt δ̄(f,r)

k (1), as we use on binary problems in this
paper’s experiments), the optimum can be found exactly by
sorting ḡ(f,r)

k and looping over all splits.



Weight Formula
b (∀x 6= y) V (x)⇔ V (y)

ux (∀x) V (x)

(a) Complete Graph

Weight Formula
b (∀ x 6= y) L(x, y)⇒ (C(y)⇔ C(x))

ux (∀x) C(x)

lxy (∀x 6= y) L(x, y)

(b) Binary Collective Classification

Weight Formula
b (∀ x 6= y)Q1(x)⇔ Q2(y)

b (∀ x 6= y)Q2(x)⇔ Q3(y)

b (∀ x 6= y)Q3(x)⇔ Q1(y)

uix (∀x)Qi(x), i ∈ {1, 2, 3}

(c) Clique-Cycle

Figure 3: Test models with distinct soft evidence (u and l terms).
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(b) Collective Classification
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(c) Clique Cycle

Figure 4: Comparison of optimization at stable coloring (exact model symmetries) with our coarse to fine inference framework
for three different splitting methods, on each of the test models with d = 160 domain size for the logical variables. Vertical
black dashed lines indicate coarse-to-fine transitions for objective based splitting (“C2F - Objective” curve). Transitions for
other C2F curves occur at approximately the same positions.

Experiments
This section provides an empirical illustration of our lifted
GenDD algorithm. We demonstrate the superiority of our
objective based approach over purely syntactic based ap-
proaches for generating a coarse to fine approximation se-
quence. We also demonstrate excellent any-time perfor-
mance on MLNs with distinct soft evidence on every node
compared to exact lifted variational approaches which are
forced to ground the entire problem.

Datasets and methodology
Datasets. Figure 3 shows the models we use (similar mod-
els without evidence were used in (Mladenov and Kerst-
ing 2015; Bui, Huynh, and Sontag 2014) to evaluate perfor-
mance on marginalization tasks). In all models b was set to
2.5 and the u terms specify random evidence uniformly dis-
tributed on [−ζ, ζ] where ζ = log((1−10−2)/10−2), so that
the u terms act like “probabilities” between 0.01 and 0.99.
For the collective classification problem, we also choose a
random 10% of the x, y values associated with links L(x, y)
and set lxy to a random value on [0, 5.0]. This can be inter-
preted as the strength of a link between two web pages.

Parameter settings. In our experiments, we set ε =
10−3, t = 10−2 (in the definition of a(x)) and perform an
LBFGS black box optimization with rank 20 Hessian correc-
tion. For the coarse to fine procedure, it is important to bal-
ance performing inference with model refinement. We found
it worked well to perform a small number of inference itera-
tions (30), followed by a small amount of model refinement
(setting β = 1.25 in Algorithm 2). This worked better than
trying to diagnose inference convergence to determine the

transition point. Future work will look at more principled
methods of balancing inference work with refinement.

Timing methodology. In our experiments, we measure
only the cost of performing inference, ignoring the cost
of identifying symmetries. This is common in experiments
on approximate lifted inference in other works (Mladenov,
Globerson, and Kersting 2014; Broeck and Niepert 2014;
Venugopal and Gogate 2014) as well as exact lifted varia-
tional inference approaches (Bui, Huynh, and Riedel 2012;
Bui, Huynh, and Sontag 2014; Mladenov and Kersting 2015)
which assume problem symmetries are available before in-
ference. Works such as (Singla, Nath, and Domingos 2014;
Kersting et al. 2010) note that identifying (approximate)
symmetries can be a bottleneck. (Singla, Nath, and Domin-
gos 2014) used a sparse hyper-cube based representation to
specify approximate symmetries in MLNs; adapting lifted
GenDD to leverage a similar representation is an interesting
direction for future work.

Results
Figure 4 compares our coarse to fine procedure vs. perform-
ing inference on the stable coloring (ground model in our
setup) on each of our three test models. The blue curve
(“C2F - objective”) performs objective-based splitting as per
Algorithm 2 using the metric (9) to guide splitting choice.
We also show syntactic splitting (“C2F - syntactic”, orange)
as per Algorithm 1, interleaving inference when the pre-
dicted inference cost exceeds a cost bound (then multiplying
that bound by β as in Algorithm 2). “C2F - Size” (red) splits
the largest super-factor in Q and chooses a random split that
is as even as possible (adding random edges from N̄ (f,r) to
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(c) d = 80
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(e) d = 320

Figure 5: Scalability comparison. Panels (a)-(e) show bound vs time on instances of complete graph with evidence, varying
logical variable domain size d (in MLN specification). C2F exhibits increasing advantage as model grows larger.

N̄ ′2, stopping when
∑
k∈N̄ ′1

|E(f,r)
k | > 1

2 · |Ff | and setting
N̄ ′1 = N̄ (f,r) \ N̄ ′2 in line 10 of Algorithm 2), interleaving
inference with refinement as in the other C2F methods. The
stable (here, ground) inference process is shown in green.

We see that objective-based refinement significantly out-
performs the others, with size-based refinement worse, but
still better than syntactic splitting. Objective-based splitting
provides orders of magnitude speed-up over the stable color-
ing for similar quality results, and all methods provide bet-
ter early performance than the stable coloring, which must
touch the entire model to even provide an initial bound.

Figure 5 demonstrates the scalability of our approach.
Plots (a)-(e) show the running time for our coarse-to-fine
(“C2F - Objective” (blue)) method and the stable coloring
method on instances of the complete graph, varying its size.

Conclusions
We presented a framework for lifting GenDD for approxi-
mate inference by imposing over-symmetric constraints on
the optimization parameters to induce symmetry in the vari-
ational bound. We developed a coarse-to-fine procedure
that, guided by the objective, provides high-quality any-time
approximations even in models with no exact symmetry.
Our method provides orders of magnitude speed-up on our
benchmarks, with increasing advantage for larger models.
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Appendix
Description of refinePV.

After creating a new partition FF (possibly via split-
ting it from Ff ), algorithms 1 and 2 call refinePV to
update PV such that variables having identical neighbor
counts Mv = [M1

v , . . . ,M
F
v ] are grouped together (where

Mf ′

v
def
= [M

(f ′,1)
v . . .M

(f ′,r̄f′ )
v ] for all f ′). We assume that

at entry, the neighbor counts Mf ′

v are correct for all v and
f ′ = 1 . . . F − 1, and that PV correctly groups variables by
these counts, i.e., Mf ′

v = M̄f ′

k for all v ∈ Vk.
The first loop updates N

(f,r)
v and N

(F,r)
v and their

counts. The second loop groups variables by their signa-

Algorithm 3 refinePV
Input: f : if f 6= 0, FF was deleted from Ff before call.

1: for r = 1 to r̄F do
2: for α ∈ FF do . Update ground neighbor lists
3: v = αr;

4: N
(f,r)
v ← N

(f,r)
v \ α; N

(F,r)
v ← N

(F,r)
v ∪ α;

5: M
(f,r)
v ←M

(f,r)
v + 1; M

(F,r)
v ←M

(F,r)
v − 1;

6: end for
7: Vmk ← ∅ (∀k,m) . New variable groupings
8: for α ∈ FF do
9: v = αr; k ← Kv; m = M

(F,r)
v ;

10: Vk ← Vk \ v; Vmk ← Vmk ∪ v;
11: end for
12: for (k,m) : Vmk 6= ∅ do . Update lifted graph
13: K ′ ← k;
14: if m 6= last m(k) then . New super-node
15: K ← K + 1; K ′ ← K

16: M̄
(f ′,r′)
K ← M̄

(f ′,r′)
k ∀(f ′, r′) ∈ N̄k

17: end if
18: VK′ ← Vmk ; Kv ← K ′ (∀v ∈ VK′)
19: M̄

(F,r)
K′ ← m; M̄

(f,r)
K′ ← M̄

(f,r)
K′ −m;

20: end for
21: end for
Note: Updating M̄

(f ′,r′)
k′ (for any k′, f ′, r′) changes N̄k′ ,

N̄ (f ′,r′), Q. For compactness, these changes are not shown.

ture [Kv,M (F,r)
v ], creating the sets Vmk = {v | Kv =

k,m = M
(F,r)
v }, where Kv is the partition holding vari-

able v (v ∈ Vk with k = Kv). This produces the same
grouping as would be obtained by grouping the full signature
[M1

v . . .M
(F−1)
v ,MF

v ] because only M
(f,r)
v and M

(F,r)
v

counts change during the call. Note that the change to
M

(f,r)
v does not affect our grouping since for all v ∈ Vmk ,

M
(f,r)
v is equal to its value before the call minusM (F,r)

v (the
updates to M̄ (f,r)

K′ on line 19 reflect this fact).
Lastly, the third loop adds Vmk sets to PV and updates

quantities associated with the lifted graph (M̄ , N̄ terms). Vk
will be over-written with Vm′k where m′ is the last (k,m)
encountered in the loop. In all other cases, k splits into a
new super-node and its neighbors are copied (line 16).



Complexity analysis Each set is implemented as a hash
table supporting O(1) addition and deletion (N (f ′,r′)

v stores
pointers to factor scope vectors). Hence, each α ∈ FF
contributes O(|α|) time to the first two loops of refinePV.
Throughout algorithms 1 and 2, an α is moved to an FF that
is at most half the size of its current set. Thus, each α partic-
ipates in at most log2 |F| sets throughout either algorithm.
Equivalent to the result of (Berkholz, Bonsma, and Grohe
2013), the total time of the these loops isO(R · |F| · log |F|)
where R = maxα∈F |α|.

Throughout algorithms 1 and 2, the total time spent in the
third loop of refinePV is proportional to the size of the lifted
graph. This is because the loop adds nodes and edges to the
lifted graph in O(1) and each addition is accompanied by at
most one deletion (if M̄ (f,r)

K = 0 in line 19). Since the size
of the lifted graph is at most the size of the ground graph
(R · |F|), the total time is dominated by the first two loops.
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