ATPG for Timing Errors in Globally Asynchronous Locally Synchronous Systems*

Srikanth Arekapudi, Fei Xin, Jinzheng Peng, and Ian G. Harris

Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA 01003, USA

Globally Asynchronous, Locally Synchronous (GALS) systems are now commonplace
in many cost-critical and life-critical applications, thus motivating the need for a sys-
tematic approach to verify functionality. The complexity of the verification problem
for large heterogeneous GALS systems necessitates the development of simulation-based
validation approaches to uniformly validate hardware, software, and their interaction.
GALS systems are comprised of several processes which may be mapped to different
hardware and software components and communicate through asynchronous interfaces.
Communication between these processes must be verified to ensure that the system is
working correctly. Previous work focusses on checking the correctness of individual pro-
cesses rather than communication between multiple processes. Timing errors may cause
a signal to have an incorrect value for a short time period. Timing errors can cause a
problem in GALS systems if the value of a signal with a timing error is used while is has
an incorrect value. This paper presents an automatic test pattern generation (ATPG)
tool to generate tests for timing-induced functional errors.

1. Introduction

The high density of VLSI circuits has increased the difficulty of the clock rout-
ing problem to the point that even a single chip must be composed of multiple
clock domains, which are either semi-synchronous or asynchronous. Systems of
this nature are referred to as Globally Asynchronous, Locally Synchronous (GALS)
systems. The majority of complex systems, even single chip systems, are imple-
mented as GALS systems. The widespread use of GALS systems in cost-critical
and life-critical applications motivates the need for a systematic approach to verify
functionality. Several obstacles to the verification of GALS systems make this a
challenging problem. Formal techniques such as model checking require properties
to be specified manually. The level of sophistication required to develop a complete
and correct set of properties in a reasonable amount of time is beyond the abilities
of many designers. In order to manage the complexity of the problem, validation
techniques in which functionality is verified by simulating (or emulating) a system
description with a given test input sequence are being considered. The tractability
of simulation-based validation makes it the only feasible verification solution for
large designs.

GALS systems are sensitive to timing problems at the asynchronous interface
between components. A timing error at an asynchronous interface can result in in-
correct functionality. Behavioral hardware description languages, including VHDL
and Verilog, support time-varying signals, and include concurrency constructs such
as the process statement in VHDL. Timing validation at component interfaces is
central to the GALS validation problem.

*This work was supported in part by the National Science Foundation under award CCR-0204130

The validation process typically requires a time-consuming manual test genera-
tion step. An Automatic Test Pattern Generation (ATPG) tool which can be used
to greatly reduce the time required for validation has been developed. The result
of the ATPG process is a timed sequence of events on the system inputs which will
detect timing-induced faults based on an extension to the fault model described
in . The test generation tool uses the Codesign Finite State Machine (CFSM)
model to describe system behavior. The CFSM model has the advantage that it is
supported by the POLIS co-design framework 2, and it can be constructed directly
from reactive languages including ESTEREL 3.

The paper is organized as follows: Previous work in simulation-based validation
is presented in Section . Section introduces the computational model used to de-
scribe the behavior of GALS systems. Section describes the design fault model used
for timing errors. Section outlines the stages of the test pattern generation tech-
nique. Results are presented in Section and results are discussed in . Conclusions
and future work are presented in Section .

2. Previous Work

2.1. Validation Fault Models

Several fault models have been developed to evaluate behavioral designs, many
of which are based on software test fault models. Mutation analysis describes a fault
model which was originally developed in the field of software test *°, but has also
been applied to hardware validation ¢ and to manufacturing test 7 (referred to as
micro-operation faults). In mutation analysis terminology, a mutant is a version of
a behavioral description which differs from the original by a single potential design
error.

A number of validation fault models are based on the traversal of paths through
the CDFG representing the system behavior. The earliest control-dataflow fault
models include statement coverage, branch coverage and path coverage ® models
used in software testing. Statement coverage associates a potential fault with each
line of code, and requires that each statement in the description be executed during
testing. It is well accepted that the limited accuracy of statement coverage requires
that it be used in conjunction with other fault models in order to properly validate
a design. The branch coverage metric associates potential faults with each direction
of each conditional in the CDFG. The path coverage metric is a more demanding
metric than the branch coverage metric because path coverage reflects the number of
control-flow paths taken. The assumption is that a defect is associated some path
through the control flow graph and therefore all control paths must be executed
guarantee fault detection.

Many control-dataflow fault models consider the requirements for fault activa-
tion without explicitly considering fault effect observability. Researchers have de-
veloped observability-based behavioral fault models %19:11:12 to alleviate this weak-

ness. The OCCOM fault model has been applied for hardware validation %'° and
for software validation ''. The OCCOM approach inserts faults called tags at each
variable assignment which represent a positive or negative offset from the correct
signal value.

2.2. Validation Test Generation

Several automatic test pattern generation approaches have been developed which
vary in the search space technique adopted, the fault model assumed, and the design
abstraction level used.

A challenge in generating test vectors for validation of behavioral/RTL designs
is that those designs are typically composed of complex arithmetic units, such as
adders/subtractors, multipliers, barrel shifters, etc., as well as Boolean functions.
To alleviate the problem, Fallah et al. 1° proposed a hybrid satisfiability approach,
HSAT, which considers linear arithmetic constraints together with boolean SAT
constraints. Nonlinear functions, such as multiplication, used in a behavioral de-
scription are linearized and modeled as integer linear equations.

Constraint propagation techniques between different domains have been also
explored in '® to generate test vectors and check assertions on HDL descriptions
using publicly available logic program solvers. The common denominator of all these
methods is that an explicit backtracking or constraint propagation between the
heterogeneous domains (arithmetic and Boolean) is employed. Another approach
to the problem resolves both linear and Boolean constraints in the single unified
domain by formulating a problem as an Integer Linear Program (ILP) ', or as a
Constraint Logic Programming '5. These methods offer a significant improvement
in terms of the complexity of the designs they can handle and the runtime.

Several techniques have been also developed for test sequence generation us-
ing randomized algorithms to improve overall coverage without a strongly directed
search mechanism. An example of such a technique is presented in 617
a genetic algorithm to successively improve the population of test sequences. Work
presented in '® uses a Random Mutation Hill Climber (RMHC) algorithm which
randomly modifies a test sequence to improve a testability cost function.

which uses

We have previously applied both domain testing and dataflow testing methods
to the validation of behavioral VHDL descriptions 220, We have also proposed a
design fault model for timing errors ', and we have presented preliminary results
using the model.

3. Codesign Finite State Machines

Codesign Finite State Machines (CFSMs) ? are the formal model used in the
POLIS codesign tool for specification, simulation, analysis, synthesis and optimiza-
tion. The CFSM model is used to describe the behavior of GALS systems by our
ATPG tool. A system is described as a network of CFSMs, each of which describes
a single concurrent process. Each edge in a CFSM is a cause-reaction pair, where

the cause describes the events which cause the edge to be traversed, and the reac-
tion describes the events emitted when the edge is traversed. There is a non-zero
amount of time between the cause events which trigger a state transition and the
emission of the reaction events. Communication between processes involves writing
to and reading from queues which are located at the inputs of the receiver.

3.1. Semantics of CFSMs

A system is described as a network of CFSMs. Each CFSM is a finite state
machine with extensions to add support for data handling and asynchronous com-
munication. A CFSM network has,

e 4 finite state machine part that contains a set of inputs, outputs, states, a
transition relation and an output relation,

e a data computation part in the form of references in the transition relation to
datapath computation.

e executes a transition by producing single output reaction based on a single
snapshot input assignment in 0 time. Once a reaction starts, it must continue
to the end before the next reaction to some other input assignment can start.
This is locally synchronous behavior.

e reads inputs, executes a transition and produces outputs in an unbounded but
finite amount of time as seen by the rest of the system. This is asynchronous
communication from system perspective.

This semantics, along with a scheduling mechanism to coordinate CFSMs, pro-
vides a Globally (at system level) Asynchronous and Locally(at CFSM level) Syn-
chronous (GALS) communication model. Each process in the network is a CFSM.

3.1.1. Classes of Signals

CFSMs communicate through signals. Signals can be any of the following three
types,

e trigger event with value
e trigger event
e pure value

Events on trigger signals can be detected and used only at the time when they
are emitted, and each event can only be consumed once by each CFSM. Trigger
signals implement the basic synchronization mechanism of CFSMs because events
on trigger signals can cause transitions in other CFSMs. Pure value signals cannot
directly cause a transition, but can be used to choose among different possibilities
involving the the same set of trigger events.

3.2. Gas Station CFSM Example

To clarify the the CFSM model we present a CFSM network representing the
Gas Station Problem 2! in Figure 1. The gas station problem is an implementation
of an automated self-serve gas station. Our version of the gas station consists of
three tasks,

e Station
e Customer
e Pump
S1 C1

*pay, paykey=5||10]|15->
paid=5||10||15

*car->*pay

S3 S2
*done-> *tick, paid=5||10]|15 -> C3 C2
*change, *bill *pump, pump=5||10||15 *change *ill->*done

(a) (b)

P1

*tick,*pump, pump=15

*pump, pump=10,
*tick

P6

*tick->*fill

P4
*tick
*pump, pump=5,
*tick

PS5

*tick

(c)

Figure 1: The Gas Station Problem, (a) Station CFSM, (b) Customer CFSM, (c)
Pump CFSM

The pump provides a discrete amount of gasoline, either 5, 10, or 15 gallons.
When a car arrives a sensor associated with the %car signal notifies the station.
When the station detects the car the station requests money (via the *pay signal)
according to the amount of fuel required. The paykey input is used to indicate the
amount of gasoline required. The customer pays for the fuel (via the pay signal).
After payment, the pump pumps the appropriate amount of fuel and notifies the
station on completion. The station then returns the change via the *bill output and
goes to its idle state to await the next car. The CFSMs for the station, customer,
and the pump tasks are shown in Figure 1. Each edge in the CFSMs is labeled.
The xtick signal is the output of a clock. The signals in the gas station problem
shown in Figure 1 are classified into three types,

o trigger event with value - xpump, pump
e trigger event - xcar, xtick, xdone, xpay, %bill, xchange, x fill

e pure value - paid, paykey

4. Timing Design Faults

A design defect is a difference between the design and the intended specification.
Examples of design defects include,

e incomplete or inconsistent specifications
e incorrect mappings between different levels of design

e violations of design rules

The number of potential design defects is too large to be managed either au-
tomatically or manually, so a method is needed to reduce complexity without sac-
rificing accuracy. A design fault describes the behavior of a set of design defects,
allowing a large set of design defects to be modeled by a small set of design faults.
A design fault model describes a set of faults for an arbitrary design. A design
fault model allows the concise representation of the set of all design defects for an
arbitrary design.

in dat ai n dat aout out
—> —>
Proc. X wite | o |l4€ad Proc. Y
full enpty

Figure 2: Two processes communicating via a FIFO

A timing fault exists if a signal is assigned a value at the incorrect time. A
timing fault will cause a signal value to endure for the incorrect length of time,
and therefore can be observed only during the incorrect time period. The detection
properties of timing faults are explained with the help of a small example shown
in Figure 2. This example has two processes X and Y which run in parallel and
exchange data through a FIFO buffer. Typical timing constraints for FIFO-based
communication include the maximum latency on output signals such as the empty
signal. If the empty signal is asserted later than expected, then process Y may
attempt to read data from an empty buffer.

4.1. Timing Fault Model

Dataflow fault models have been extended to capture timing-induced functional
defects in previous work . Dataflow fault models classify each signal occurrence
in a behavioral description as either a definition occurrence or a use occurrence. A
definition occurrence of a signal describes a statement where a value is bound to a
signal. A use occurrence describes a statement which refers to the value of a signal.
For example the VHDL statement x<y represents the definition of x and use of y.
Each definition and use occurs at a discrete point in time and, due to a design fault,
may occur either early or late.

\ FIFO description I \ Proc. Y description '
time >
: : Correct Late
. . ¥ ¥
Def => empty <= 1; Use —> if (empty = 0) then Def Use| Def
. p := ReadFromFIFO() ;
. . < error span »
° L]
L]
(a) (b) (c)

Figure 3: empty signal is asserted late, (a) a section of the FIFO description, (b) a
section of the process Y description, (c) event trace with error span highlighted.

Figure 3 depicts the timing details involved with a late empty signal. Figure 3a
shows the definition of the empty signal in the FIFO description where empty signal
is asserted to 1. Before process Y can read data from the FIFO, it must check the
empty signal as shown in Figure 3b. The event trace shown in Figure 3¢ shows both
the correct and the late assertion times of the empty signal. The highlighted region
which is referred to as the error span is the time during which the empty signal
has the incorrect value. If there is a use occurrence during the error span, then that
use will receive different data values in the correct and the faulty circuits, and the
fault can be detected.

‘ FIFO description I ‘Proc. Y description I

time >
. . Early Correct
° L]
° L]

Def Use|Def
Use —> if (empty = 0) then « error span
Def —> empty <= 0; p := ReadFromFIFO();

° L]
° L]
° L]
@ (b) ()

Figure 4: empty signal is asserted late, (a) a section of the FIFO description, (b) a
section of the process Y description, (c) event trace with error span highlighted.

Figure 4 depicts the timing details involved with an early empty signal. Figure
4a shows the definition of the empty signal in the FIFO description where empty
signal is asserted to 0. Before process Y can read data from the FIFO, it must
check the empty signal as shown in Figure 4b. If empty signal is asserted to 0 earlier
than it should be, process Y tries to read data from the empty FIFO. The event
trace shown in Figure 4c shows both the correct and the early assertion times of
the empty signal.

Figures 3 and 4 show examples of Mis-Timed Event of a Value signal (MTEV)
faults. A potential MTEV fault is associated with each pair of definition and use
statements on a given signal s € S, where S, is the set of all value signals used
in the design. The existence of an MTEV fault indicates that the associated signal
definition occurs at the incorrect time and causes the associated use to receive in-
correct data. Two types of MTEV faults can exist, MT EV,q, Where the definition
occurs earlier than the correct time, and MT EV,;. where the definition occurs later
than the correct time. Figure 3 and 4 respectively show MT EV,qriy and MT EVige
faults associated with the empty signal.

4.1.1. Fault Model for Trigger Signals

Because events on trigger signals implement the synchronization mechanism in
CFSMs, timing faults on trigger signals have a different effect than timing faults on
value signals. A Mis-Timed Event of a Trigger signal (MTET) fault is associated
with definition and use statements on a given signal s € S; along with the state
either preceding or succeeding the use, where S; is the set of all trigger signals used
in the design. The existence of an MTET fault indicates that the associated signal
definition occurs at the incorrect time and causes the system to be in a different
state. Two types of MTET faults can exist, MT ET,,, where the definition occurs
earlier than the correct time, and MT ET},te where the definition occurs later than
the correct time.

An early fault on a trigger signal can cause the event to occur while the receiving
CFSM is in a state prior to the correct state. This can be explained by examining
the FIFO example shown in Figure 2. The read and write signals are trigger signals
because events on these signals cause the state of the FIFO to change. In order for
the system to operate correctly, an event on the read signal cannot occur when the
FIFO is in the empty state, and an event on the write signal cannot occur when
the FIFO is in the full state. An MTET fault can cause events on the read and
write signals to occur in the empty and full states respectively.

4.2. Detection of Timing Faults

The example of Figure 3 demonstrates that a timing fault associated with a
signal is detected only if there is a use of the signal inside the error span of the
fault. The error span extends from the erroneous time step to the correct time step.
Unfortunately, the precise position of the error span is not known since simulation

of the faulty circuit reveals only the erroneous time step. It is clear, however, that
the error span must extend, either forward or backward in time, from the erroneous
time step. In order to ensure that a use occurrence is within the error span of a
fault, the use occurrence must be close to the corresponding definition occurrence
in time.

4.3. Error Span Threshold

The error span is the different between the correct definition time and the er-
roneous definition time. In order to ensure the detection of MTE faults, the time
difference between the associated definition and use must be less than the error
span. The error span cannot be known for a particular fault apriori so some thresh-
old must be assumed for the purpose of test generation. We use § to refer to the
maximum time allowed between a definition-use pair associated with a fault which
is detected. The § value is used to constrain the test generation process for each
fault to ensure that the definition-use pairs associated with each fault are separated
by no more than ¢ time units. This ensures that all detectable faults with error
span greater than or equal to § are detected. Faults with an error span less than
0 may not be detected because the definition and use are not guaranteed to occur
within the error span.

The value of § has several impacts on the test generation process. The § value
constrains test generation so a small § tends to increase test generation time since
constraints are more tight. The § value impacts fault coverage because some faults
may not be detectable for small values of ¢ if the minimum time separation between
the definition-use pair is greater than §. This implies that fault coverage should
increase as 0 increases because more definition-use pairs may be executed with ¢
time units. The impact of § on both test generation time and fault coverage are
demonstrated in the results in Section .

The value of § also impacts the sensitivity of the validation process to small
timing variations. In order for an MTE fault on a value signal to be detected, the
execution order of the definition and use must be reversed due to a change in timing.
A small change in the timing of the definition may not be sufficient to reverse the
order of the definition and use.

5. Automatic Test Pattern Generation

Automatic Test Pattern Generation (ATPG) deals with generating a timed se-
quence of input vectors which causes the detection conditions of the timing fault
under consideration to be satisfied. For each fault, the ATPG tool identifies a com-
putation of the system whose output response is different in the presence of the
fault. During a computation a system must traverse a single path in each CFSM in
the system. Any computation can be described as a path set, a set of paths which
describe the state transitions in each CFSM. The ATPG tool explores the space of
all path sets to identify those which detect faults in the system. A path set alone is

10

not sufficient to describe a computation because it lacks timing information. Each
transition in each path must be placed in time in such a way that the semantics of
the CFSM model are satisfied.

GALS System Description

Fault List Generation

v

(J
[Path Identification]4
(

v

Select Undetected Fault]4

v

[Trigger Event Matching]

[Timing Resolution]

all undetected

[Fault Simulation faults checked?

all path sets
explored?

Done

Figure 5: Test Generation Flow

11

The test generation flow of the ATPG tool is shown in Figure 5. The input to the
process is the description of the design under test in the form of a network of CFSMs.
A list of faults is generated based on the definitions and uses of each signal in the
description. The algorithm contains two main loops, the outer loop which iterates
through all feasible path sets, and the inner loop which determines which faults
can be detected by each path set. The Path Identification step generates the next
feasible path set. The Trigger Event Matching and Timing Resolution steps map
each transition in the path set to a point in time, completing the test sequence for
the chosen fault. Fault simulation is performed with the test sequence to determine
which faults in addition to the targeted fault are detected. The inner loop continues
until all untested faults have been evaluated and the outer loop continues until all
feasible path sets within a fixed path length limit have been evaluated.

5.1. GALS System Description

Berkeley’s Software Hardware Interface Format (SHIFT) which can represent
various Codesign Finite State Machines (CFSMs) is used to specify the system
design to the ATPG tool. SHIFT is one of the intermediate formats in Berke-
ley’s POLIS tool 2. It can be obtained directly from ESTEREL ? code using the
ESTEREL to SHIFT compiler which is readily available in POLIS. ESTEREL is
a synchronous programming language, which is devoted to programming control-
dominated reactive systems.

5.2. Fault List Generation

All timing faults are enumerated and placed in a fault list which will be used
during test generation to select faults to target. Timing faults are associated signal
definitions and uses, and CFSM edges. Signal definitions in a CFSM are associated
with the reaction of some edge, and signal uses are associated with the cause of some
edge. We enumerate the set of all timing faults in a CFSM network by applying the
definitions presented in Section . As an example we enumerate some of the timing
faults in the gas station problem shown in Figure 1.

e Early Faults in Value Signals (MTEV,q,.y)

The paid signal has 3 possible values, 5, 10, and 15. The signal paid has 3
definitions (one for each value) in the customer CFSM, and has 3 uses in the
station CFSM. There are a total of 3 definition-use pairs of the paid signal
which involve the same signal value, so there are 3 early faults associated with
the paid signal.

e Late Faults in Value Signals (MTEV,.)

Each definition-use pair of the paid signal is associated with a single late fault,
so there are 3 late faults associated with the paid signal.

e Early Faults in Trigger Signals (MT ET,q,y)

12

The xfill signal is a trigger signal used by one edge of the customer CFSM,
and defined by one edge in the pump CFSM. There is only one definition-use
pair involving *fill. The source state of the edge using *fill has 3 incoming
edges. This means that there are 3 MT ET.q., faults associated with the
x fill signal, one for each definition-use-incoming edge triple.

Late Faults in Trigger Signals (M T ET},4.)

There is only one definition-use pair involving *fill. The destination state
of the edge using =fill has 1 outgoing edge. This means that there is 1
MTET,qry fault associated with the xfill signal which corresponds to the
single definition-use-outgoing edge triple.

Signal

Early |

Late |

paid

*pay

pump

x fill

xchange

xdone

|| W WO w|w

=W =W Olwlw

Table 1: Faults in Gas Station Example

13

All the faults associated with the gas station example are listed in Table 1.
There are a total of 48 faults.

5.3. Path Identification

All possible path sets containing paths whose length is under a fixed limit are
generated and evaluated for compatibility. If all paths in a path set are compatible
with each other then the timing of the path set is further refined during the Trigger
Event Matching and Timing Resolution stages of test generation.

Input *car paykey=10 *tick *tick
Events *tick *tick
S1 S2
) » ” U2:*tick D2:*pump
Station: Ul car I D1:*pay U3:paid=1ID3:pump=1D
P2
U4:*tick
Pump: U5:*pump
c1 U6:pump=1
Customer: U7:*pay D4:paid=10
U8:paykey=1
Time
(@)
Input *car paykey=10 *tick *tick
Events *tick *tick
S1 S2
. U2:*tick D2:*pump
. k il
Station: Ul:*car I D1:*pay I D3:pump=5
P2
U4:*tick
Pump: U5:*pump
c1 U6:pump=1
Customer: U7:*pay D4:paid=1(Q
U8:paykey=1
Time

(b)

Figure 6: Example path sets, (a) Compatible Paths, (b) Incompatible Paths

14

[Signal | Uses [Definitions ||

*car 1 Primary Input

paykey=10 1 Primary Input

*tick 2 Primary Input
*pay 1 1
*pump 1 1
pump=10 1 1
paid=10 1 1

Table 2: Uses and Definitions for Compatible Paths

15

Two paths are incompatible if they cannot both exist in the same computation
due to conflicting edge triggering requirements. We identify two types of conflicts.
The first type involves the number of definitions and uses of a trigger signal. The
number of uses of a trigger signal in a single CFSM must be less than or equal to
the number of definitions of that signal. This restriction arises from the fact that
a trigger event is instantaneous and may be consumed only once by each CFSM.
Figure 6 shows two path sets for the gas station CFSM network shown in Figure 1;
one path set is compatible and the other is incompatible. The top row contains the
input events which include the definitions of the xtick signal representing a clock,
the xcar signal, and the paykey signal. The successive three rows depict the paths
traversed in each of the three CFSMs in the system. Each path is composed of a set
of path elements which represent the edges in traversed in the corresponding CFSM.
Each path element is depicted as a rectangle with two sections; the left section lists
the causes of the corresponding edge and the right section lists the reactions of
the edge. Each path element is labeled with the name of its corresponding CFSM
edge. The number of definitions and uses of each signal in the path set in Figure
6a is shown in Table 2. The table shows that the path set is compatible because
the number of definitions and uses satisfy the feasibility constraints. The path set
in 6b is incompatible because the paid = 5 and pump = 10 events are used, as
highlighted, but are never defined.

crsmr | « | =

cesmz | -l |

Figure 7: Path sets having cross definition-use pairs

16

Two paths are also incompatible if the order of definitions of a set of trigger
signals in one path does not match the order of uses of those signals in the other
path. An example of a path set which violates this requirement is shown in Figure

7. In this example CFSM 1 defines xz after defining *y while CFSM 2 uses the
signals in the reverse order making the path infeasible.

5.4. Trigger Event Matching

nput [Fear. ol [k~ ek
Events tick ./ tick
S1 v/ s2 K

. ») U2:*tick D2:*pump |+ .|

Station: Ul:*car D1:*pay, | - 1 UM "

U3:paid=5D3:pump=5 .
'\‘ | s // P3 s i

Pump: \ [1\ uartick |l
| ' | US*pump
\ \ " =+U6:pump=5
Customer: [UT*pay S
U8:paykey=>5 D=y
TIME
(a)
Input “ " i
paykey= -tlck tick
Events tick | e
Sl : . S2
Stati '/ (UL I DI7pay | . Tuzsiec] Joz s
ation: :car *pay |— — D3 =5
x 1| [U3:paid=5 g 3:pPump
\\\ P3 \\\\ \\‘ ///
U4:*tick VS
Pump: U5:*pump v
U6:pump= ’, ‘,
Cl
. u7: *pay
Customer: D4:paid=5
ot I m

TIME

(b)

Figure 8: Trigger Matching, (a) Feasible Trigger Matching , (b) Infeasible Trigger
Matching

17

Events which cause an edge to be traversed in a CFSM must be matched with
a corresponding definition (trigger) event. This matching is required to ensure that
each CFSM traverses the specified paths. An example of this matching is shown
with the paths in Figure 8(a). The top row contains the input events which include
the definitions of the stick signal representing a clock. The successive three rows
depict the paths traversed in each of the three CFSMs in the system. Each path
element is labeled with the name of the CFSM edge to which is corresponds in
Figure 1. Three paths are shown in the Station CFSM {S1, S2}, the Pump CFSM
{P3}, and the Customer CFSM {C1}. Each matched definition-use pair is indicated
by a dashed line with arrows at each end indicating the associated definition and
use. Figure 8(a) shows matching which is feasible because all uses are matched to
a corresponding definition. Figure 8(b) shows matching which is infeasible because
the uses of pump = 5 and xpump, which are the causes of path element P3, are
cannot be matched to definitions.

5.5. Timing Resolution

Each event which triggers a CFSM edge must be mapped to a time step. The
final test sequence is the set of events on input signals, so this step completes the test
sequence definition by mapping all input events to time steps. All signal definitions
and triggers which are matched during trigger event matching must be mapped
to the same time step. Restrictions must be placed on the timing to ensure that
unspecified edges are not traversed. For example, Figure 9 shows a timed path set
for the gas station example in Figure 1. The path set in Figure 9 contains an event
on the xtick signal in each time step. The Station CFSM traverses two edges, S1 and
S2, and during the time between these transitions, the Station is in its WAIT state.
The WAIT state is sensitive to events on the xtick signal because the outgoing edge
S2 is triggered by the xtick signal. The timing shown in Figure 9 is inconsistent at
time step t2 because the Station CFSM is in its WAIT state and an event occurs
on the xtick signal, but edge S2 is not triggered at that time.

18

Input
Events

Station:

Customer

Time

*car , paykey=5 , *tick *ick
1 *tick | Mtick | |
s1 | S2 |
U2:*tick D2:*pump
“k %
Ul car I D1:*pay U3:paid=5 ID3:pump=E
| - C1 | |
' || U4rpay D4:paid=5 | |
:’ 3 U5:paykey=5 3
3 t1 3 t2 3 t3 3

Figure 9: Timing resolution, two events with timing freedom

19

Timing resolution is formulated as a linear program in which the execution time
of each edge is represented as an integer variable. Linear equations are used to ex-
press ordering constraints between adjacent path elements. Trigger event matching
has the effect of forcing matched events to occur at a fixed time separation. Match-
ing constraints are also expressed as linear equations. The problem is expressed as
a linear program as long as the range of time in which each edge can be scheduled is
continuous. If the time range of an edge is not continuous then a single continuous
subrange must be selected for each edge.

5.6. Fault Simulation

Fault simulation consists of determining the set of all faults which are detected
by a new test sequence so that the faults can be removed from future consideration.
Once a test sequence is completed for a timing fault under consideration, the fault
is marked detected. Each new test sequence may detect a number of faults other
than the one for which it was created. By examining the timed computation, it is
simple to locate all faults pairs for which the fault detection criteria presented in
Chapter are satisfied.

20

Example # of # of | Fault CPU
CFSMs | faults | Coverage | Time (sec)

Gas

Station 2 3 48 87.50% 7.50

Seat Belt

Controller 2 || 2 94 62.77% 650.83

Traffic Light

Controller 22 || 3 30 63.33% 10.10

Railroad

Crossing 23 4 22 81.82% 2.28

Lift

Controller 2* || 4 313 50.48% 908.59

Table 3: Benchmark Examples

6. Experimental Results

A version of the ATPG tool has been developed. The ATPG tool is tested to
observe the variation in complexity and fault coverage with different parameters.
The variation of CPU time per fault with ¢ (error span) is analyzed. Fault coverage
is not 100% due to the inclusion of redundant faults in the fault list. The effect of
redundant faults is discussed.

Five examples have been used to test the ATPG tool. The integer linear pro-
gramming formulation in timing resolution stage was solved using the public domain
tool Ip_solve. The ATPG tool has been used to detect each of the MTE faults. All
results were run using a Sun Ultra 5 machine with 256 Mb of RAM. In our experi-
ments four parameters were varied to evaluate their impacts on ATPG complexity:
ML - Maximum length of the path, CLK - the period of the clock, § - the error span
threshold, and delay - the delay associated with each CFSM edge. For simplicity
we assume that each edge has the same delay. Table 3 shows the characteristics of
the benchmark examples and fault coverage for ML=6, CLK=2, §=10, delay=1.

21

6.1. Detailed Results, Gas Station Example

This example is shown in Figure 1 and its details are presented Section . Figure
10 shows the detailed result produced to detect the MTEV,.., and MTEViq.
faults associated with the definition of paid = 5 in edge C1, and the use of paid = 5
in edge S2. Two CFSM paths are shown, one containing 2 edges in the Station
CFSM, and the other containing 1 edge in the Customer CFSM. In this example a
delay of 2 is used, so each edge reaction is 2 time steps after its cause. The input
events which comprise the test sequence are shown along the top row, and are placed
in time. The MT EV,qyiy fault is detected when the xcar and paykey = 5 input
events occur some small € time after time steps 0 and 2 respectively because this
forces the definition of paid = 5 to occur € after the use. Similarly, the MT EVq;.
fault is detected when the xcar and paykey = 5 input events occur some small

€ time before time steps 0 and 2 respectively because this forces the definition of
paid = 5 to occur € before the use.

*car paykey=5

Input Events*tick *tick *tick

s1 | S2
s : ; | U:*tick D:*pump

‘ * A % I

Station: | U:*car | D:*pay - U:paid=5 D:pump=5
1 C1 i
U*pay i g

Customer: U:paykey= Dipaldss

Time 0 2 4

Figure 10: Test Sequence for MTEV faults on paid = 5

22

CPU Time (sec.)

140

Clock=2 Delay=1 Delta=2 e I I I
Clock=2 Delay=1 Delta=5 X
‘Clock=2 Delay=1 Delta=10 ke
120 | Clock=2 Delay=2 Delta=2 e
100
80
60 -
40
20
O sk sk,
1 2 3

Figure 11: Gas Station:

Maximum Path Length

CPU Time Vs Maximum Path Length

23

Clock=2 Delay=1 Delta=5 —moXee-
| Clock=2 Delay=1 Delta=10 ke
Clock=2 Delay=2 Delta=2 g

Clock=2 Delay=|1 Delta=2 —t Koo Horomammn e k

Fault Coverage (%)

70

60

50

40

30

20

10

24

Maximum Path Length

,’){'l

a =]
1 1
4 5

Figure 12: Gas Station: Fault Coverage Vs Maximum Path Length

o Figure 11 shows how the CPU time varies with maximum path length for
different values of clock period, delay, and 6. CPU time increases exponentially
with maximum path length; this is due to the exponential increase in the
number of path sets traversed with maximum path length.

e Figure 12 shows how the fault coverage varies with maximum path length
for different values of clock period, delay, and é. Fault coverage initially in-
creases with maximum path length because some faults are only detectable
with longer test sequences. The fault coverage ceases to grow when the max-
imum path length is large enough to detect all non-redundant faults.

6.2. Detailed Results, Seat Belt Controller

An example 2 of seat belt alarm controller is shown in Figure 13. The function
of the controller is to beep the alarm for five seconds or until the key is turned
off, if the belt has not been fastened within five seconds after the key is turned
on. There are two CFSMs; the Controller CFSM is shown in Figure 13(a) and the
Timer CFSM is shown in Figure 13(b).

*key, key=on->

- *tick —>
*start_timer

*end, end=10

*end, end=5 —> *start_timer

*alarm, alarm=on

*key,key=off ||
*belt, belt=on —>
*alarm, alarm=off

*end, end=10 ||
*belt, belt=on ||
*key, key=off ||
*key, key=on —>
*alarm, alarm=off

(a) (b)

*tick —>
*end, end=5

Figure 13: Seat belt controller, (a) Controller CFSM, (b) Timer CFSM

25

CPU Time (sec.)

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

Clock=2 Delayél Delta=2
Clock=2 Delay=1 Delta=5
| Clock=2 Delay=1 Delta=10

sk

=
N B

4
Maximum Path Length

w %

Figure 14: Seat Belt: CPU Time Vs Maximum Path Length

26

Fault Coverage (%)

70

60

50

40

30

20

10

Clock=2 Delay=1 Delta=2 e I I I

Clock=2 Delay=1 Delta=5 —-X---

Clock=2 Delay=1 Delta=10 ke
| Clock=2 Delay=2 Delta=2 B =

/,/" P
x
,’/
//,
L -
////
A&
- ///
= .
1 1 1 1 1

1 2 3 4 5 6

Maximum Path Length

Figure 15: Seat Belt: Fault Coverage Vs Maximum Path Length

27

o Figure 14 shows how the CPU time varies with maximum path length for

different values of clock period, delay, and 6. CPU time increases exponentially
with maximum path length.

e Figure 15 shows how the fault coverage varies with maximum path length for

different values of clock period, delay, and é. Fault coverage initially increases
with maximum path length and then levels off when all non-redundant faults
are detected.

7. Discussion of Results

Several trends can be identified in the results which are common over all bench-

mark examples.

7.1.

Fault coverage increases with maximum path length and becomes constant
after a particular maximum path length. Some faults can only be detected by
long test sequences, so fault coverage increases until all non-redundant faults
are detected.

CPU time increases with increasing maximum path length, this is due to the
exponential increase in number of feasible path sets traversed.

Fault coverage increases significantly in most of the cases as J increases with
other parameters kept constant.

CPU time decreases significantly in most of the cases as delta increases with
other parameters kept constant. The decrease in CPU time is due to the
decrease in time taken by the linear program solver as the constraints become
more slack with increasing delta.

CPU time changes slightly in some cases as the time taken by path identifi-
cation and time taken by trigger event matching dominate the time taken by
the linear program solver.

CPU time per faults detected in most of the cases decreases with increasing
delta.

Redundant Faults

Fault coverage in all cases is less that 100%; this is because all combinations

of definitions and uses of the signal are considered as potential faults but some
faults are redundant and can never be stimulated. We have identified two classes of
redundant faults. We refer to the first type of redundancy as unmatchable redun-
dancy because it exists because a definition-use pair on a trigger signal cannot be
matched together. Unmatchable redundancy occurs when there exist definition-use

28

pairs which can be matched but which are associated with other definitions and
uses which cannot be matched. An example of this can be seen in the path set
for the gas station example shown in Figure 16. Definition D2 must occur with
definition D3 because they are reactions of the same edge, and use U5 must occur
with U6 for the same reason. D3 and U6 cannot occur together because they involve
different values of the pump signal. D2 and U5 cannot be matched because they are
associated with D3 and U6 which cannot be matched. The majority of redundant
faults are of the unmatchable type. For example, consider the gas station example
with parameters CLK=2, Delay=2, §=10 and maximum path length of 7. Out of
13 undetected faults, 12 of these faults are unmatchable redundant faults.

Input
Events

Station:

Pump:

Customer

Time

*car paykey=5 *tick *tick *tick
*tick *tick
S1 ! 'S2 ! |
okt = !
Ulcar | Dirpay u2:ttick |
U3:paid=5 D3:pump=5 '
1 1 1 P2
| ! ! U4:*tick
| | |
| ' C1 | U6:pump=1
! | U7:*pay D4:paid=5
| 1| U8:paykey=5

t1 t2

t3

t4

Figure 16: Example of a Redundant Fault

29

The second type of redundancy is referred to as error span redundancy because
the size of error span threshold § is too small to allow the detection criteria of a
fault to be satisfied. The detection of an MTE fault depends on the value of §;
the definition and use must occur within § time steps for a value signal, and the
definition-use pair must occur within ¢ time steps of a state transition for a trigger
signal. If the value of 4 is too small then it may not be possible to satisfy the
timing constraint required for detection. What this means functionally is that the
system is not sensitive to a small change in the timing of some definition-use pairs.
This type of redundancy is very difficult to identify in practice because it depends
on the solution to the Minimum Time Separation problem which is known to be
NP-complete. An example of a fault in this class is in the gas station example
with parameters CLK=2, Delay=2, §=10 and maximum path length of 7. Out of
13 redundant faults, one fault is in this class. The fault is an early fault on the
definition of *done in edge C2, the use of *done in edge S3, and the edge S2 which
precedes S3. The definition and use must occur within ¢ time units of S2, but the
minimum time separation is 12 time units. The timed path set which achieves 12
units of time separation is shown in Figure 17.

Input *car paykey=15 *tick *tick *tick ick
Events S1 152 |

. " stick [Fpump |
Station: | paid=1! pump:lﬁ

chan,
done f bil

;

I
I
i
I
C

|
|
|
i P6
| |
| | I
Pump: ! I I
| c1 | | | | 2
Customef: | | | |
| . . . | il I
| | | | |
| | | | | | i
| | | | | | |
Time 0 4 8 10 12 14 16

12 > Delta

Figure 17: Timed sequence of the path sets having an early fault of *done Signal

30

7.2. Effect of the Error Span Threshold

The error span threshold, 4, is one of the parameters which is varied during
the simulations. We discuss the impact of § on test generation for the gas station
example but similar trends can be seen in other examples as well. Figure 18 shows
the variation in the CPU time which decreases with increasing delta. The decrease
in time can be explained with the help of Figure 20 which shows the variation in
number of feasible matchings considered and Figure 21 which shows the variation in
number of calls to the linear program solver. As delta increases the number of feasi-
ble matchings considered decreases drastically which in turn decreases the number
of calls to the linear program solver. This decrease in calls to the linear program
solver decreases CPU time. As the constraints given to the linear program solver are
less strict with increasing delta, the time for solving the equations decreases. Figure
19 shows the variation in fault coverage which increases with increasing delta.

120 T
Clock=2 Delay=1 Delta=2
Clock=2 Delay=1 Delta=5
Clock=2 Delay=1 Delta=10 -~ |
100
80
w
=}
c
o
(5]
[T}
X2
> 60
£
'_
>
o
O
40
20 +
O k.
1 2

Maximum Path Length

Figure 18: Gas Station: CPU Time Vs Maximum Path Length

31

Fault Coverage (%)

90

70

60

50

40

30

20

10

Clock=2 Delay=1 Delta=2 ~ —+— | ' R R 1
Clock=2 Delay=1 Delta=5 X -

- //)K'l |
- //X/// |
1 1 1 1 1
1 2 3 4 5 6 7

Maximum Path Length

Figure 19: Gas Station: Fault Coverage Vs Maximum Path Length

32

Feasible Matchings Considered

800

700

600

500

400

300

200

100

Figure 20:

Clock=2 Delay=|1 Delta=2
Clock=2 Delay=1 Delta=5

Maximum Path Length

Gas Station: Matchings Considered Vs Maximum Path Length

33

Calls to LP Solver

1000 T
Clock=2 Delay=1 Delta=2
Clock=2 Delay=1 Delta=5
900 -Clock=2 Delay=1 Delta=10 -
800
700
600
500
400
300
200
100
0 ¥
1 2

Maximum Path Length

Figure 21: Gas Station: Calls to LP Solver Vs Maximum Path Length

34

7.3. Complexity Issues

The use of an ATPG tool greatly reduces the need for manual interaction in
the covalidation process, but the time complexity of the ATPG process must be
considered. The experimental results show the actual CPU time required for a
number of examples but it is important to understand how time complexity will
scale for larger designs. Here we analyze the worst-case time complexity of our
ATPG approach as a function of different parameters of the design including its
size. We analyze the complexity of the three main steps of test pattern generation,
Path Identification, Trigger Event Matching, and Timing Resolution.

7.3.1. Path Identification Complexity

The step is enumerative in the worst case, evaluating every possible combination
of paths under a given length limit in each CFSM. The number of paths in a CFSM
depends on the out degree of each state in the CFSM. An upper bound on number
of paths of length i in a CFSM can be expressed as G, where ¢ € C' is an element
of the set of all CFSMs C, and G, is the maximum out degree of all states in CFSM
c. Path identification enumerates all paths whose length is less than or equal to the
length limit L, so the total number of paths is the sum of all paths of all lengths
less than or equal to L. The upper bound on the number of paths in a CFSM ¢
with length less than or equal to L is expressed as ZiL:1 G'.

L
> a (1)
ceC i=1
Path identification explores all path sets which are described by all combinations
of paths over the set of all CFSMs. The total number of combinations is the product
of the number of paths in each CFSM. The upper limit on the number of path
sets is expressed in Equation 1. Based on Equation 1, complexity should increase
exponentially with the limit on maximum path length L and this is borne out in
the results.

7.3.2. Trigger Event Matching Complexity

In the worst case, trigger event matching will attempt to match each signal
definition with each use of the same signal with the same value. For a single signal
we can express the upper bound on the number of possible matchings as dsus, where
s € S is an element of the set of all signals S, d; is the set of all definitions of signal
s, and ug is the set of all uses of signal s. Trigger event matching must evaluate
all combinations of matchings of all signals. The upper bound on the number of
matching combinations of all signals is computed as the product of the number of
matchings of each signal individually. The upper bound on the total number of
matchings is shown in Equation 2.

35

H dsug (2)

seES
The rate at which trigger event matching complexity grows depends on the rate
of increase in the number of signal definitions and uses. If we assume that the
number of definitions and uses increases as a constant fraction of the number of

vertices in the CFSM network, then complexity grows exponentially with the size
of the CFSM network.

7.3.3. Timing Resolution Complexity

Timing resolution is solved as an integer linear program. The complexity of
integer linear programming is known to be O(k?), where v is the number of boolean
variables, and k is a constant determined by the implementation of the solver used.
One variable is used to represent each path element in a path set. Since the number
of path elements in a path is limited by L and the number of paths is |C], we can
express the complexity of timing resolution as shown in Equation 3.

O(k"11) (3)

8. Conclusions

A test generation technique is presented to ensure the detection of synchroniza-
tion faults in globally asynchronous, locally synchronous systems. A novel fault
model is used which describes potential timing errors which can cause synchro-
nization faults. The test generation technique constructs test sequences by direct
analysis of the underlying codesign finite state machine model used to describe
system behavior. The test generation tool developed has been tested with several
examples and the results obtained are promising.

1. Q. Zhang and I. G. Harris, “A validation fault model for timing-induced functional
errors,” in International Test Conference, October 2001.

2. F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, C. Passerone,
A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and B. Tabbara, Hardware-
Software Co-Design of Embedded Systems: The POLIS Approach, Kluwer Aca-
demic Publishers, 1997.

3. F. Boussinot and R. deSimone, “The ESTEREL language,” Proceedings of the IEEE,
vol. 79, no. 9, pp. 1293-1304, September 1991.

4. K. N. King and A. J. Offutt, “A fortran language system for mutation-based software
testing,” Software Practice and Engineering, vol. 21, no. 7, pp. 685-718, 1991.

5. A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, “An experimental
determination of sufficient mutant operators,” ACM Transactions on Software En-
gineering Methodology, vol. 5, no. 2, pp. 99-118, April 1996.

6. G. Al Hayek and C. Robach, “From specification validation to hardware testing: A
unified method,” in International Test Conference, October 1996, pp. 885-893.

7. C.-H. Cho and J. R. Armstrong, “B-algorithm: a behavioral test generation algorithm,”
in International Test Conference, 1994.

36

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

B. Beizer, Software Testing Techniques, Second Edition, Van Nostrand Reinhold,
1990.

S. Devadas, A. Ghosh, and K. Keutzer, “An observability-based code coverage metric
for functional simulation,” in International Conference on Computer-Aided Design,
November 1996, pp. 418-425.

F. Fallah, S. Devadas, and K. Keutzer, “Occom: Efficient computation of observability-
based code coverage metrics for functional verification,” in Design Automation Con-
ference, June 1998, pp. 152-157.

J. C. Costa, S. Devadas, and J. C. Montiero, “Observability analysis of embedded soft-
ware for coverage-directed validation,” in International Conference on Computer-
Aided Design, November 2000, pp. 27-32.

P. A. Thaker, V. D. Agrawal, and M. E. Zaghloul, “Validation vector grade (VVG):
A new coverage metric for validation and test,” in VLSI Test Symposium, 1999, pp.
182-188.

R. Vemuri and R. Kalyanaraman, “Generation of design verification tests from be-
havioral vhdl programs using path enumeration and constraint programming,” IEEE
Transactions on Very Large Scale Intergration Systems, vol. 3, no. 2, pp. 201-214,
1995.

Z. Zeng, P. Kalla, and M. Ciesielski, “Lpsat: A unified approach to rtl satisfiability,”
in Design, Automation and Test in Europe Conference, 2000.

Zeng 7., Ciesielski M., and Rouzeyere B., “Functional test generation using constraint
logic programming,” in VLSI-SOC Conference, 2001.

F. Corno, P. Prinetto, and M. Sonza Reorda, “Testability analysis and ATPG on
behavioral RT-level VHDL,” in International Test Conference, 1997, pp. 753-759.
F. Corno, M. Sonze Reorda, G. Squillero, A. Manzone, and A. Pincetti, “Automatic
test bench generation for validation of RT-level descriptions: an industrial experience,”
in Design Automation and Test in Europe, 2000, pp. 385-389.

M. Lajolo, L. Lavagno, M. Rebaudengo, M. Sonza Reorda, and M. Violante,
“Behavioral-level test vector generation for system-on-chip designs,” in High Level
Design Validation and Test Workshop, 2000, pp. 21-26.

Q. Zhang and I. G. Harris, “A domain coverage metric for the validation of behavioral
vhdl descriptions,” in International Test Conference, October 2000.

Q. Zhang and I. G. Harris, “A data flow fault coverage metric for validation of behav-
ioral hdl descriptions,” in International Conference on Computer-Aided Design,
November 2000.

D. Helmbold and D. Luckham, “Debugging ada tasking programs,” IEEE Software,
vol. 2, no. 2, pp. 47-57, March 1985.

Tiziano Villa, Gitanjali Swamy, and Thomas Shiple, VIS User’s Manual.

Nikolaj Bjrner, Zohar Manna, Henny Sipma, and Toms E. Uribe, “Deductive verifica-
tion of real-time systems using step,” ARTS, pp. 2243, 1997.

“Call for papers, fourth international workshop on software specification and design,”
ACM SIGSOFT Software Engineering Notes, , no. 11, pp. 94-96, 1986.

37

