Application of Built in Self-Test for Interconnect Testing of FPGAs*

Dereck A. Fernandes

Dept. of Electrical and Computer Engineering

University of Massachusetts
Ambherst, MA 01003
dafernan@ecs.umass.edu

Abstract

Field Programmable Gate Arrays (FPGAs) are
becoming more difficult to test due to their in-
creasing complexity and density. Test method-
ologies for FPGAs consist of generating nu-
merous configurations of programmable switches
that connect wire segments to create signal
flow paths. We have developed a system that
takes an arbitrary FPGA interconnect network
and automatically generates configurations for
test. These configurations detect single stuck-at
faults, pair-wise bridging faults and wire-open
faults. We have modified the traditional Ford-
Fulkerson Max-Flow algorithm to enable the ef-
ficient definition of test configurations. The sys-
tem also generates the bitstreams, programs the
FPGA, and displays the result. We have tested
a Xilinx Virtex XCV150 and have presented the
number of configurations and the test time for
the device.

1 Introduction

Field Programmable Gate Arrays are gaining
widespread acceptance in digital design. Such
devices are used in many different configura-
tions making it important that manufacturers
ensure that each potential configuration does not
fail due to device defects. An FPGA is a pro-
grammable logic device, which consists of an ar-

*This work was supported in part by the National Sci-
ence Foundation under Grant No. 0081343

Ian G. Harris
Department of Computer Science
University of California Irvine
Irvine, CA 92697
harris@ics.uci.edu

ray of regular logic blocks surrounded by a dense
network of wire segments. Programmable mem-
ory controls the interconnections between the
wire segments and the logic block. A configu-
ration is the data loaded into the programmable
memory which determines interconnect and logic
functionality. With increased use in high volume
and critical applications coupled with increasing
device densities, the test methodology and reli-
ability of FPGAs is gaining importance. This
paper evaluates the manufacturing test of FP-
GAs.

We have developed a system to test intercon-
nect in FPGAs and have applied it to test the
Virtex XCV150. As seen from Figure 1, our sys-
tem takes a FPGA interconnect structure and
generates various configurations for the stuck-
at fault, pair-wise bridging fault and wire-open
fault models. These configurations are converted
into bitstreams using Xilinx JBits [2], which is
used to program the FPGA. These configura-
tions perform a self-test and display the result
at the output pins.

To test every stuck-at, bridging and wire-open
fault, every wire is connected to every other con-
nectable wire (i.e. needs to have a programmable
switch between them), in at least one configura-
tion. Since we can connect only a subset of the
possible connections, we need to configure the
device many times for complete fault coverage.
To reduce the test time it is important to keep
the number of reconfigurations to the minimum.
Our comprehensive system performs test on a

Input I nterconnect Structure

!

[Generate Test Configurations J

Test Configurations

FPGA
Architecture
Independent

Xilinx Virtex Specific
BitStream Generation

!

FPGA Bitstream

Figure 1: FPGA Test System

commercial FPGA and provides acceptable test
times. The organization of the paper is as fol-
lows. Section 2 investigates the previous work
in this area, and Section 3 describes the island-
style FPGA architecture. Section 4 explains the
interconnect faults and Section 5 describes the
test structure. Section 6 presents the configura-
tion generation algorithm and test application.
Section 7 describes the Virtex architecture and
the JBits programming tool used to configure
the device. Section 8 reports the results of the
experiments and Section 9 concludes the paper
with a review of future work.

2 Previous Work

FPGA test consists of the logic block test [7]
[20], interconnect test of the wire segments sur-
rounding the logic blocks [4] [5] [13] [14] [19],
input/output block test, embedded memory test
and miscellaneous tests that include delay test
[3], clock and power wires test etc. This paper
focuses on the test of FPGA interconnect which
comprises the majority of the area in modern
FPGAs. Since FPGAs have limited IO pads, re-
cent research has focused on Built in Self-Test
(BIST) [10]. We also use the BIST technique,
which uses part of the FPGA resources as test
generation and response analyzer circuitry while
testing the remaining circuitry. Previous work
has targeted the Xilinx XC4000 series and Lu-

cent ORCA series architectures [8] [9].

3 Island-style FPGA Architec-
ture

Island-style FPGAs primarily contain config-
urable logic blocks (CLBs) and switch matrices
(SM). A Tile is composed of a switch matrix
and a CLB as shown in Figure 2. We refer to
the wires connecting a tile to neighboring tiles as
tile I/O (TIO). The switch matrix provides the
interconnections between various types of wire
segments. The CLB contains a programmable
logic block composed of look-up tables, flip-
flops, and assorted special-purpose logic such as
a carry chain. The output of each LUT can be
connected to a flip-flop or to an unregistered out-
put. The CLB also contains set of input and
output multiplexers (I0 muxes) that connect the
programmable logic to the switch matrix.

Figure 2: Virtex Architecture

Connection Block

: Input : Output :
Multiplexers : Muxes :
k

: 9 .| :

: -] His! :

: ie :

Programmable | : =

L ogic Block

Figure 3: CLB Overview

To eliminate sequential behavior during test,
we connect each LUT output directly to an un-
registered output, bypassing the flip-flop. As a
result, the length of the required test sequence is
linear in the number of TIO. We refer to the in-
puts of a programmable logic block as CI and the
outputs of a programmable logic block as CO.

4 FPGA Interconnect Faults

We target four classes of faults as described by
Renovell et al [8] and one class which is the wire-
open fault.

e Permanent Connection: A short circuit be-
tween any pair of wires.

e Permanent Disconnection: An open circuit
between any pair of wires, which have the
programmable switch between them turned
on.

e Stuck-At Zero: A short-circuit between a
wire segment and ground.

e Stuck-At One: A short-circuit between a
wire segment and power.

e Wire-Open: A permanent break in a wire.

5 Test Structure

This paper uses a test structure similar to that
described by Stroud et al [11]. In each config-
uration, a portion of the FPGA circuitry con-
tains a test generator, tiles under test and a
response analyzer as seen in Figure 4. Both
the tiles have an identical logic and intercon-
nect configuration. The LUTs are configured
as 4-input XOR gates to pass any fault effect.
XOR gates provide good controllability and ob-
servability properties at gate inputs and outputs.
The LUT output is connected to the unregistered
CLB output. All other configurable resources in
the programmable logic are set to be off. The
same test stimuli are simultaneously applied to

the two tiles. The presence of a fault is deter-
mined by comparing the corresponding outputs.
If their outputs differ, a fault is detected.

The structure of the test generator as shown
in Figure 4, is a shift register that shifts a one
through zeros (1000..., 0100..., 0010..., 0001...).
The outputs of the shift register route to the TIO
of the tiles under test. The response analyzer
consists of XOR gates that compare the signal
values from corresponding output wires from the
two tiles. The output of these XOR gates are
ORed together and the result stored in a flip-flop
which is connected in a loop circuit with an OR
gate as shown in Figure 4. This flip-flop output
is connected to an LED which lights if a fault is
present.

6 Configuration Generation

Algorithm

Each FPGA tile configuration is generated by
representing the tile interconnect structure as a
graph and solving the Max-Flow problem [1] suc-
cessively to identify paths through which signal
should flow. Since all the switch matrices are
identical, we require the description of only one
switch matrix. The resultant configurations can
be applied to any tile that needs to be tested.

6.1 Graph Model of Interconnect

FPGA interconnect is composed of wire seg-
ments, programmable pass transistors, and pro-
grammable multiplexers which may be imple-
mented as a series of pass transistors. In the
graph model, each wire segment is a node, each
individual pass transistor is an edge, and each
multiplexer is a set of edges. The mapping from
FPGA interconnect to graph is shown in Fig-
ures ba and b. Figure 5a shows the mapping of
two segments with an intervening pass transis-
tor and Figure 5b shows two segments sl and
$2, connected to s3 by a 2-way multiplexer. It is
necessary to ensure that each segment connects
to only one driver. We ensure that the Max-Flow

Generator __|
3 Tile1 :
3 LED:
D Q D
: : | oo
- ; Tile2
N 3
FF

Figure 4: The Detailed Test Structure

process adheres to this constraint by applying a
node capacity of one to each node in the graph.

1 Initialize flow and weights V edges

In this way, only one driver can push a signal 2 repeat

through each segment.

(a) (b)

Figure 5: Mapping Interconnect Structure to a
graph, (a) two segments connected via a pass
transistor, (b) two segments connected to an-
other via a 2-way mux.

6.2 Using Max-Flow

Figure 6 illustrates our configuration generation
algorithm that uses Max-Flow. The Max-Flow
function takes in two arguments, the node type
of the source nodes and the node type of the
sink nodes. This function executes three times to
generate every configuration as described below.

1. CLB Outputs (CO) to Tile Outputs
(TTIO): Paths are identified which connect

3 Max-Flow (CO, TIO)

4 Max-Flow (TIO, CI)

5 Max-Flow (TI, TO)

6 Calculate Fault Coverage

7 Increment the Weight on all edges
with flow by 1

8 Reinitialize flow along all edges

10 until Detect All faults

Figure 6: Pseudo code for the Configuration gen-
eration algorithm

the outputs of all CLBs to the Tile IO. Due
to limited routing resources between CO
and TIO this is done first.

. Tile I0 (TIO) to CLB Inputs (CI):

Paths are identified which drive the inputs
of all CLBs from the Tile I0O. We need to
ensure that the CO is driven with certain
values therefore, this is done second.

. Tile Inputs (TI) to Tile Outputs (TO):

Since the TTO can be driven bi-directionally
the remaining TIO are randomly marked

Tile inputs (TI-sources) and Tile outputs
(TO-sinks). We generated flow paths that
connect Tile inputs to Tile outputs. This
step increases the fault observability until
all tile inputs and outputs are used.

When generating a configuration, it is impor-
tant to direct the Max-Flow solution to push flow
through segments that are associated with unde-
tected faults. The algorithm associates a weight
with each edge. The weight of an edge is incre-
mented when an edge has flow through it. The
path selection process selects a path that has the
minimum net weight, thus the algorithm is en-
couraged to push flow through edges with lower
weights. In this way, untested wire segments will
be tested in future configurations.

6.3 Fault Detection Criterion

As seen in Figure 6 for each configuration we cal-
culate the fault coverage based on the following
assumptions.

e Permanent connect faults for any two pair
of nodes are detected if those two wire seg-
ments are in separate paths from source
to sink and have flow going through them.
Since both these paths will be running oppo-
site values, we can detect if there is a bridge
of any type between them.

e A Permanent disconnect fault between any
two connectable pair of nodes is detected,
if they lie in the same path from source to
sink and have flow going through them.

e Stuck-At faults at a node are detected, if
the node has signal flow moving through it
at all times. This is sufficient because the
test generator shifts both a zero and a one
along each segment at some point during
test. Thus, the wire will be passing a one
and a zero at different times.

e A Wire Open fault is detected, if the wire
segment has signal flow through it at all

times and is driven by a zero and a one at
a different point. This is sufficient because
the output of this segment will be unknown,
and since the test generator drives a zero
and a one, the fault will be detected.

6.4 Benefits of Max-Flow Algorithm

The goal of our algorithm is to detect the max-
imum number of faults in a single configuration
with low time complexity. We chose Max-Flow
for two reasons. First, the number of faults de-
tected in a configuration is related to the number
of segments connected to the TIO. Our modi-
fied Max-Flow algorithm increases the number
of segments connected to the TIO and therefore
increases the faults detected in a configuration.
Second, the use of the Max-Flow algorithm re-
sults in low computation time because the Max-
Flow algorithm has polynomial time complex-
ity. The complexity of Max-Flow remains poly-
nomial for the first two calls in the algorithm.
In the third call to Max-Flow we chose TI and
TO very randomly from among the TIO, this
causes the complexity of the algorithm to be non-
polynomial. Therefore, the entire algorithm is
non-polynomial in nature.

7 Virtex Architecture and

JBits

The Virtex FPGA consists of configurable
logic blocks (CLBs), switch matrices (SM), on-
chip RAM (BRAM), and input, output blocks
(IOBs). We will only describe the CLBs and
SMs since our work is restricted to them.

7.1

In a Virtex FPGA, each CLB consists of two
slices. Each slice contains two LUTs. A LUT is
a 4-input function generator. There are 13 in-
puts to every slice. These inputs contain four
inputs for each of the two LUTs and control in-
puts; clock, clock enable, synchronous set, syn-

Configurable Logic Blocks

chronous reset and a direct connection input.
The LUT and inputs can be combined to rep-
resent functions of various sizes. For each input,
there is a corresponding multiplexer that con-
nects the input to the switch matrix. There are
eight 28:1 input multiplexers for the LUT inputs
and five 16:1 input multiplexers for the control
inputs (clock, set, reset etc). Our work considers
only 16 of 26 LUT inputs omitting control inputs
Clock, Set, Reset, etc. A slice has six outputs,
two unregistered, two registered and two carry
outputs. The outputs of each slice are connected
to eight 12:1 output multiplexers. The output of
these multiplexers are each connected to a eight
6:1 multiplexers that connect to wire segments in
the switch matrix and to the input of the LUTs.
We consider only four of twelve CLB outputs
omitting the registered and carry outputs.

7.2 Switch Matrix

North4

B
BT

EastO 1 West0
o

Figure 7: Switch Matrix Detail

South6

The switch matrix contains the routing re-
sources to connect a CLB to adjacent and distant
CLBs. It contains 24 single wire segments, to
route signals to adjacent SMs in each of the four
directions [17] [18]. It also has 12 buffered hex
wire segments, to route SM signals to other SMs
six blocks away in each of the four directions.
Finally, it contains 12 long wire segments that
span the vertical height and horizontal width of
the device. A direct connection wire provides
a direct routing resource between two horizon-
tally adjacent CLBs. There are four horizontal
tri-state busses per CLB row that provide ded-

icated busses for the CLBs and there are two
wires per CLB that propagate carry signals ver-
tically to the adjacent CLBs bypassing the SM.
In Figure 7, if the A SRAM bit is set to 1 then
the wires East0 and West0 are connected. A
Virtex XCV150 contains a array of 24x36 tiles.
Each tile has a switch matrix that has 960 pro-
grammable switches (SRAM bits). Of these,
288, connect single wire-segments to other sin-
gle wire-segments.The remaining switches con-
nect the 96 single, 48 hex, tri-state busses and
long wire-segments to the 26 inputs and 12 out-
puts of the CLB.

7.3 Tested Virtex Interconnect

We only test the general purpose interconnect
in the FPGA. The special purpose interconnect
that consists of global buses, IO routing, clock
wires and tri-state busses are not tested. Within
the general purpose interconnect we restrict our
test to single wires, and omit hex and long wire
segments. In each tile, we test 124 out of 142
wire segments and set 776 out of 960 switches.

7.4 The JBits Interface

JBits is a Xilinx bitstream interface, based on a
set of Java classes, which provides an Applica-
tion Specific Interface (API) for the FPGA bit-
stream. This interface permits all configurable
resources in the device to be individually set.
The following is a short code snippet that illus-
trates its programming capability.

jbits.set(0,1,0utMuxToSingle.
OUT6_TO_SINGLE_NORTH20,
OutMuxToSingle.ON) ;

This line of code uses the JBits set method to
connect the output multiplexer 6 in row 0 and
column 1 of the FPGA to the single wire North20
in the same tile. A proof of concept for testing
FPGASs using JBits was presented by Sundarara-
jan, et al [12].

We use the JBits JRoute [6] tool to do the
routing between the shift register outputs and
TIO, between TIO and the response analyzer

and between the flip-flop and the Input/Output
Blocks of the FPGA.

7.5 The JBits RTPCore Interface

JBits provides a Java core library, with cores for
shift-register, logic gates, counters, etc. These
cores perform the placement and assignments of
nets. Our test generator is a shift-register con-
structed from the JBits flip-flop core. The four
flip-flops in a CLB are connected in a chain.
The shift-register is placed in a column fashion.
The test generators are typically 10-11 CLBs in
height and one CLB wide. The response ana-
lyzer is constructed from the XOR gate, wide
OR gate and flip flop cores. The response ana-
lyzer core is two CLBs columns wide and twenty
CLBs rows tall. In the response analyzer the
first column implements the XOR gates and the
second column the wide OR gate.

8 Experimental Results

A Xilinx Virtex XCV150 device was used to ver-
ify our technique. We have instantated the test
structure shown in Figure 4 on the XCV150 de-
vice. The configuration generation time - the
time required to generate FPGA test configura-
tions, and the test application time - the time
required to test a single FPGA part using the
test configurations were determined through ex-
perimentation.

8.1 Configuration Generation Time

The Max-flow algorithm generated 59 test con-
figurations per tile for the Xilinx Virtex XCV150
device. The algorithm was executed on a 1.6
GHz Pentium 4 machine, with 256 MB RAM,
running RedHat Linux 8.0. The total time
required to generate all 59 configurations was
2045.85 seconds. We used a random number seed

of 1 to select which TIO would be TI and TO.
The Stuck-At fault coverage requires four con-
figurations. The permanent connect fault cov-
erage requires eleven configurations, while the
permanent disconnect fault / line-open coverage
requires 59 configurations. The bitstream gen-
eration time is the time required for the Java
JBits program to generate a device bitstream.
Our bitstream generation results were obtained
on a Pentium IT 366 MHz machine with 256 MB
RAM running Windows 2000 operating system
and having JDK 1.2.2. Different computers were
used because JBits only works on Windows plat-
form. JRoute is a maze router that executes a
fixed number of tries to route a particular set
of nets. It takes the same time on average to
route nets of similar widths at the same (X,Y)
location. The JBits runtime for each configura-
tion was 41.5 seconds. Thus for 59 configurations
the runtime is 2452.6 seconds. A total of 4498.5
seconds were required to generate FPGA pro-
grammable bitstreams from our algorithm. This
time is relatively insignificant because test gen-
eration needs to be performed only once for each
FPGA product line.

8.2 Test Application Time Computa-
tion

The total test application time is the sum of the
reconfiguration time - the time required to recon-
figure the FPGA for all 59 configurations, and
the pattern time - the time required to apply all
test patterns in each configuration.

8.2.1 Reconfiguration Time Estimation

The Xilinx AFX-BG352 prototype board con-
tains a Virtex XCV150 device with a 50 MHz
Clock. A Xilinx Parallel III cable connects
the board and the computer. The configura-
tion clock for the FPGA was 4 MHz and the
Slave Serial Mode was used to program the de-
vice. In real production testing, the configura-
tion clock could be set as high as 66 MHz and
the SelectMap programming mode that writes 8

bits/clock rather than 1 bit/clock in Slave Se-
rial could be used. In addition, production test
would use Automatic Test Equipment (ATE),
which would eliminate the speed limitations we
have due to the download cable and operating
system. This paper presents the estimated con-
figuration time for an ATE using the SelectMap
mode of programming with a 66 MHz clock.

The Virtex configuration memory bits are
grouped into vertical frames that are one bit
wide and have a fixed length depending on the
FPGA. The FPGA reconfiguration mechanism
consists of a startup activity that activates the
circuitry that identifies the frame length and
the frame address. It then loads the frame
into a temporary register and performs a par-
allel Cyclic Redundancy Check (CRC) on the
frame data. The configuration controller com-
pares this value to the value embedded in the bit-
stream. Once the CRC check passes, the config-
uration controller writes the entire frame in par-
allel into the location specified in the bitstream.
The XCV150 has a configuration bitstream of
1,040,096 bits.

Thus, the reconfiguration time is,

StartupTime+(ShiftFrameTime+CRCTime)
(1)

1. Startup Time is the time required to start
the process of configuration. It involves
loading and execution of around 39 32-bit
words from the bitstream. This process
takes 39 x 32 x (1/66 M Hz) = 18.9 us.

2. Shift Frame Time is the time required to
write the frame into the appropriate loca-
tion. A Virtex XCV150 has 48 frames per
column and 36 columns. It has a frame size
of 512 bits. Therefore, the time to write
the frame bits is (36 * 48 * 512) * (1/(66 *
8)MHz) = 1.6ms. The 8 in the denomina-
tor is the bits/clock write for SelectMap.

3. CRC Time is the time to do a parallel CRC
on 512 bits. The generated CRC value is

compared with the CRC value embedded in
the bitstream. Therefore, this time is 512 *
(1/66MHz) =17.7 us.

Thus, configuration time for one configuration
is approximately 1.7 msec. The time required for
all 59 configurations is 100.3 msec.

8.3 Pattern Time

The time required to apply all test patterns in a
single configuration is dependent on the size of
the shift register. The largest shift register we re-
quired was of 53 bits. We assume that the FPGA
uses the 66 MHz functional clock frequency. The
time required to apply all 53 patterns in a single
configuration is 53 % (1/66) = 0.7 microseconds.
We estimate a bound for the total time required
for all the configurations by scaling this time to
all configurations. Therefore, 59 % 0.6 = 46.9 mi-
croseconds was required to apply test patterns
in all 59 configurations.

8.4 Total Test Application Time

The total test application time for 59 configu-
rations, found by adding the configuration time
and the pattern time, is 100.3 mseconds +
0.046 ms = 100.34 ms.

9 Conclusions and Future

Work

This paper presents a new and practical tech-
nique for testing FPGA interconnects. The re-
sults of this technique are very encouraging. Our
technique does not add any hardware overhead
to the FPGA architecture. The configuration
generation mechanism is generalizable and can
be applied to island-style FPGAs. However, the
test application mechanism, which consists of
generating the bitstream, is currently restricted
to the Xilinx Virtex series because JBits only
supports the Virtex series. For other Xilinx FP-
GAs the circuit description could be written in

the Xilinx Design Language (XDL) and the cir-
cuit could be routed with Xilinx Place and Route
Tools (PAR) or other third party tools. Unlike
JRoute, where one can completely lock the rout-
ing that is required for test, other commercial
routers like PAR use the rip-up and re-reroute
method that removes part of the routing. The
goal of all commercial routers is to complete the
route rather than to use specific wire resources,
this has been a major problem to all FPGA inter-
connect test methods. An ideal router solution
would rip-up and re-route route with the abil-
ity to route to particular wire segments and not
just LUT inputs. JRoute has the ability to route
to particular wire segments but does not have a
rip-up and reroute capability. Hence the routes
provided by JRoute can be very inefficient. Al-
though we have avoided specific interconnect in
the FPGA like hex wires and long wires, our ap-
proach could be enhanced in the future to in-
corporate them. Stuck-At fault coverage for hex
wires and long wires is not difficult but the detec-
tion of bridging faults between single wires and
the hex and long wires is quite a problem be-
cause the observability of these wires could span
multiple blocks. Since we consider system test,
we would investigate how multiple configurations
could be stored in a EEPROM and programmed
recursively into the FPGA using a CPLD. This
would make the FPGA test system self contained
[15].

10 Acknowledgments

The authors are very grateful to Mr. Alex
Carreira, graduate student at the University of
Calgary, Alberta for his immense support in
our JBits work and for providing the Shift-
Register and Response Analyzer Cores. The
authors also want to thank Xilinx Corporation
for their generous donation of the XCV150 de-
vices, AFX-BG352 prototype board and the Xil-
inx Foundation series software. We also thank
Mr. Prasanna Sundarajan and Mr. Eric Keller
of the JBits team at Xilinx for helping us use

JBits and JRoute.

References

[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest,
and C. Stein. Introduction to Algorithms.
MIT Press and McGraw-Hill, 2001.

[2] S. A. Guccione and D. Levi. XBI: A Java-
Based Interface to FPGA hardware. In
John Schewel, editor, Configurable Com-
puting: Technology and Applications, Proc.
SPIE 3526 SPIE - The International So-
ciety for Optical Engineering, November
1998.

[3] I. G. Harris, P. Menon, and R. Tessier.
BIST-Based Path Delay Testing in FPGA
Architectures. In International Test Con-
ference, pages 932-938, October 2001.

[4] I. G. Harris and R. Tessier. Interconnect
Testing of Cluster-based FPGA Architec-
tures. In Design Automation Conference
(DAC), pages 49-54, June 2000.

[6] I. G. Harris and R. Tessier. Testing
and Diagnosis of Interconnect Faults in
Cluster-based FPGA Architectures. IEEE
Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 21(11),
November 2002.

[6] E. Keller. JRoute: A Run-Time Rout-
ing API for FPGA Hardware. 7th Re-
configurable Architectures Workshop (RAW
2000), May 2000.

[7] M. Renovell, J.M. Portal, J. Figueras, and
Y. Zorian. SRAM-based FPGAs: Testing
the LUT/RAM modules. In International
Test Conference, pages 1102-1111, October
1998.

[8] M. Renovell, J.M. Portal, J. Figueras, and
Y. Zorian. Testing the Interconnect of RAM
based FPGAs. IEEFE Design and Test of
Computers, 15(1):45-50, Jan-Mar 1998.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M. Renovell and Y. Zorian. Different Ex-
periments in Test Generation for Xilinx FP-
GAs. In International Test Conference,
pages 854-862, October 2000.

C. Stroud, J. Nall, M. Lashinsky, and
M. Abramovici. BIST-Based Diagnosis of
FPGA Interconnect. In International Test
Conference, pages 618-627, October 2002.

C. Stroud, S. Wijesuriya, C. Hamilton, and
M. Abramovici. Built-in self Test of FPGA
Interconnect. In International Test Confer-
ence, pages 404—411, October 1998.

P. Sundararajan, S. McMillan, and S. A.
Guccione. Testing FPGA Devices Using
JBits. Military and Aerospace Applications
of Programmable Devices and Technologies
Conference, September 2001.

M. B. Tahoori, S. Mitra, S. Toutounchi, and
E. McCluskey. Fault Grading FPGA In-
terconnect Test Configurations. In Interna-
tional Test Conference, pages 608-617, Oc-
tober 2002.

S. Toutounchi and A. Lai. FPGA Test and
Coverage. In International Test Conference,
pages 559-607, October 2002.

Xilinx Application Notes. Configuring Vir-
tex FPGAs from Parallel EPROMs with a
CPLD XAPP137 (v1.0). Xilinx, 1999.

Xilinx Application Notes. Xilinx Proto-
type Platforms User Guide for Virtex and
Virtex-E Series FPGAs DS020 (v1.1). Xil-
inx, 1999.

Xilinx Databook. Virtex 2.5V FPGA
Detailed Functional Description DS003-2
(v2.6). Xilinx, 2002.

Xilinx JBits. JBits SDK Version 2.8 for
Virtez. Xilinx, 2001.

[19]

[20]

L. Zhao, D.M.H Walker, and F. Lombardi.
Bridging fault detection in FPGA intercon-
nects using IDDQ. In International Sympo-
sium on Field Programmable Gate Arrays,
pages 95104, February 1998.

L. Zhao, D.M.H Walker, and F. Lom-
bardi. Detection of Bridging Faults in
Logic Resources of Configurable FPGAs us-
ing IDDQ. In International Test Confer-
ence, pages 1037-1046, October 1998.

