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Abstract—

The widespread use of field programmable
gate arrays (FPGAs) as components in high-
performance systems has increased the signif-
icance of path delay faults in FPGAs. We
present a technique for FPGA path delay fault
detection which integrates test insertion with
the FPGA placement and routing stages to
accomplish testing with low test application
time. An accurate static timing analyzer is
used to identify critical paths and built-in self-
test (BIST) hardware is inserted using a place-
ment and routing tool. Initial experimental re-
sults show that testing is accomplished with low
test application time for several benchmark de-
signs.

I. INTRODUCTION

Field programmable gate array (FPGA) technology
has drastically reduced the cost of hardware manu-
facture, making hardware implementation economi-
cally feasible for applications which were previously
restricted to software. As the use of FPGAs in com-
mercial products becomes more commonplace, the sig-
nificance of reliability and test has a greater finan-
cial impact. The use of FPGA technology in high-
performance systems has increased the significance of
FPGA path delay faults. As FPGA technology moves
to cluster-based architectures [3], the major impact
of delay faults on interconnect paths becomes more
acute.

We present a built-in self-test (BIST) approach for
the testing of FPGA path delay faults. In order to
be able to guarantee correct operation at the highest
possible speed, it is essential to verify that no path de-
lay exceeds the clock period. FPGA BIST techniques
do not suffer from the overhead restrictions of tradi-
tional BIST because the FPGA is reconfigured after
testing to remove all BIST logic. Given the millions
of interconnect transistors in an FPGA it would be
impossible to test the path delay characteristics of all

feasible interconnect paths. Most FPGA consumers
load a specific design into many FPGAs. Therefore
it is only necessary to test these specific design paths.
Examples include FPGAs used in network hardware,
data processing equipment, and military systems. Al-
though devices have the capability to be reconfigured
in the field, most FPGAs maintain the same design
throughout their usable life. As a result initial testing
for a specific design at manufacture time is of primary
verification concern.

Our technique is application specific, testing only
those paths which are critical for a particular appli-
cation. A static timing analyzer is used to identify
critical paths for testing and the paths are scheduled
into test sessions each of which tests a set of paths
in parallel. Since FPGA reconfiguration can require a
great deal of time, the chief goal is to minimize the test
application time by minimizing the number of test ses-
sions. The main restriction on the insertion of BIST
logic is that the delay characteristics of the paths un-
der test must not be altered. This is accomplished
by inserting BIST logic using only components of the
FPGA which are not driven by any path under test.
We have modified a placement and routing tool to con-
sider this restriction during BIST insertion.

The remainder of this paper is organized as follows:
Section IT summarizes previous work. Section III pro-
vides a high level view of the system which we have
implemented to insert BIST logic into an FPGA de-
sign. Section IV briefly reviews the assumed FPGA
structure and the basic concepts of delay testing. Sec-
tion V describes how BIST structures are inserted into
the design to test each path. Section VI describes the
process of test session definition. Sections VII and
VIII present experimental results and conclusions re-
spectively.

I1I. PrREVIOUS WORK

Several methods for non-delay testing FPGAs have
been published in the literature, e.g., [2], [9], [8], [10],
[11], [12], [16], [17], [19]- Most of the methods utilize



built-in self-test (BIST) by configuring a pattern gen-
erator and a signature analyzer from unused parts of
the FPGA. These methods have been applied to test-
ing for logic blocks faults [10], [16], interconnect faults
[15], [17], [8], [9] and bridging faults [19].

FPGA BIST techniques have also been applied to
delay testing by using test pattern generators which
generate two pattern tests [6], [14]. Krasniewski [11],
[12], has proposed an approach which configures un-
used CLBs in the FPGA as linear feedback shift reg-
isters (LFSRs) for pattern generation and signature
analysis. However, the delay fault coverage obtained
using random patterns has been found to be low [12].
Two methods of improving fault coverage by mod-
ifying the the functions implemented by individual
configurable logic blocks (CLBs) have been proposed.
Since the delay through a CLB implemented by a look-
up table (LUT) is independent of the function realized
by it, this transformation will not affect any path de-
lay.

In the first method [11], the LUT of every mod-
ule is reprogrammed to implement the parity (XOR)
function of its inputs. Although this transformation
increases the probability of detection of delay faults,
the signal transitions along the tested path may not
be the same as those in the original circuit. There-
fore, the test results may not truly indicate whether
or not the original circuit would operate correctly at
the rated clock speed.

The second method [12] attempts to correct this by
reprogramming each LUT so that the transitions on
each input/output pair are the same as those in the
original LUT and the total number of output tran-
sitions is maximized. This method has been shown
to produce higher fault coverage with reduced test se-
quence length. Since the functions implemented by
the various CLBs have been changed, the signal tran-
sitions along various paths may still differ from those
in the original circuit.

I1I. BIST INSERTION SYSTEM

The overall structure of the BIST insertion system
is shown in Figure 1. A key part of our approach is
the direct implementation of path delay testing cir-
cuitry in the FPGA device. To prove the delay testing
concept we have used the Versatile Place and Route
(VPR) FPGA tool set from the University of Toronto
[4] to implement the circuitry. The tool suite includes
timing driven packing, placement, and routing func-
tions. The VPR tool targets a generic cluster-based
architectural model rather than a specific industrial
FPGA architecture.

The original logic design is synthesized using the
VPR tool. A static timing analyzer which is built into
the VPR tool [13] is used to identify critical paths for
testing. Test sessions are defined by grouping together
the critical paths which must be tested. The VPR
tool is used again to place and route the BIST logic
needed for each test session. The final result is a set
of FPGA BIST designs, one for each test session. By
programming the FPGA with each BIST design, all
critical path timing faults are detected.

IV. PRELIMINARIES

We assume an island-style FPGA architecture [5]
which is composed of an array of identical tiles. Each
tile is composed of a cluster [3] and surrounding in-
terconnect as shown in Figure 2. The interconnect
structure of each tile is a set of lines which can be con-
nected by a set of programmable interconnect points
(PIP) which act as switches. PIPs are shown as small
squares at the intersections of line segments in Figure
2. Each cluster in a tile is a CLB whose functionality
can be programmed. A CLB is composed of a set of
multiplexers, flip-flops, and LUTs as shown in Figure
3. Each LUT is a 4-bit addressable RAM which can be
programmed to implement any 4 input logic function.
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Fig. 2. Island-Style FPGA Tile

Before presenting our test method, we first review
some terminology in delay testing, as applied to cir-
cuits consisting of simple gates (AND, NAND, OR,
NOR and NOT). We shall use the same terminolgy
for FPGAs, replacing gates by LUTs.

A path m is a sequence of gates and lines,
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90,10, 91,01, -, 11, 9n, where g; is a gate, and [; is
a line that connects the output of g; to an input of
gi+1- 9o and g, are the source and destination of 7,
respectively. We shall represent such a path by a se-
quence of gates alone, i.e., 7 = go g1 -.. gn, Since it is
sufficient to uniquely identify the path. Every gate in-
put on a path « is an on-path input of w. All other
inputs to gates on 7 are called its side inputs.

A path 7 has a rising (falling) transition foult if, in
the presence the fault, the delay of the path is greater
than the clock period, for the particular direction of
transition at the source of the path. An input vector
v is said to sensitize a path if the value at the desti-
nation depends on the value at the source. A test for
the rising(falling) transition fault on a path 7 consists
of a vector-pair < vy,vs >, where v; and vs produce
0(1) and 1(0), respectively, at the source of 7, and vy
sensitizes the path.

When path delay faults are caused by variations
in the manufacturing process, we cannot assume that
only the tested path is faulty. So, a frequent require-
ment in delay testing is that the fault under test must
be detected independent of delays in the rest of the cir-
cuit. Tests with this property are called robust tests.

A test <wi,vy > is applied as follows: After v; is
applied, sufficient time is allowed for the circuit to sta-
bilize before vs is applied. This guarantees the initial

value at the destination is that produced by the value
at the source, independent of any delay faults that may
be present. The value at the destination is observed
(latched) exactly after the rated clock period. If the
fault is present, the value at the destination will be the
same as the value under v;.

V. CIRCUIT RECONFIGURATION FOR TESTING

The paths to be tested are first identified by com-
puting paths delays of the customized FPGA, using
values available from FPGA specifications and routing
information. Since the rise and fall delays are differ-
ent, each selected path must be tested with the signal
transitions that can be produced along the path un-
der test during actual operation. However, the actual
signal transitions will depend on the signal values that
can be produced at the inputs of each CLB. Determin-
ing all combinations of signal transitions that may be
produced along the path is therefore not feasible ex-
cept in small circuits. Our goal is to test it for all tran-
sitions that can be produced along the path, based on
the functions implemented by the LUTSs on the tested
path after customization. Qur approach will deter-
mine whether the worst case delay of the path exceeds
the test clock period.

We assume that the path to be tested starts at a flip-
flop output, and ends at a flip-flop input. We first an-
alyze each LUT along the path to determine whether
it is positive unate, negative unate, or binate with re-
spect to its on-path input. If it is positive unate, the
LUT is changed to make the output equal to the on-
path input, independent of the values of the remaining
inputs. Similarly, each negative unate LUT is changed
to make its outputs the complement of its on-path in-
put. Every binate LUT is changed so as to produce
the exclusive-OR of the on-path input and one of its
other inputs, which we shall refer to as its controlling
side-input. Since the delay through an LUT is inde-
pendent of the function implemented by it, the above
modifications will not affect the delay of the path be-
ing tested [11]. The transitions produced along the
path will be the same as in the actual circuit if its side
inputs were controllable.
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Fig. 4. Reprogramming LUTs for testing

The test circuitry is configured using CLBs that do
not affect the delay of the path under test. For a path
containing n binate LUTs, the test circuitry consists
of an n-bit counter and control circuitry to produce
transitions on the source flip-flop, and observe the des-
tination flip-flop. The counter may be replaced by any
component which produces all combinations of n bits
in an arbitrary order. The outputs of the counter are
connected to the controlling side-inputs of the binate
LUTs. To prevent any change in the delay of the tested
path, no part of the FPGA in the transitive fanout of
LUTs on the tested path, up to the first flip-flop should
be used for testing. This guarantees that the load of
the tested path remains unchanged.

Fig. 4(a) shows the original circuit, and the path to
be tested in thick lines. Positive unate, negative unate
and binate functions are labeled +, - and +/-, respec-
tively. The modified circuit is shown in Fig. 4(b). Test
application consists of producing a transition at the
source flip-flop and observing whether the destination
changes within a clock period. After each test applica-
tion the counter is incremented to apply a new pattern
of signals to the XOR. Thus, 2™ tests are applied for
each direction of transition at the source.

In the modified circuit any signal transition at the
output of the source flip-flop of the tested path will
propagate along the path and produce a transition at
the destination flip-flop. If the delay of the path is less
than the clock period, the new value will be latched
into the destination flip-flop.

Figure 5 shows the proposed test configuration for
applying delay tests to a path in an FPGA. All the flip-
flops shown are edge-trigerred, and clocked by a com-
mon clock. The pattern generator applies a repeated
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Fig. 5. Test configuration

sequence of three Os followed by three 1s to the flip-flop
at the source of the path, as shown in Fig 6. At the
clock pulse following every transition at the source of
the path, labeled z in Fig. 5, the final value at the des-
tination is latched into the destination flip-flop. Thus,
the new and old values at the destination are avail-
able at the input and output, respectively, of FF-A. If
they are equal, FF-B is set to 1, and will remain at
that value until the end of the test session. Signal E
which enables the counter to be incremented every six
clock cycles, after both rising and falling transitions
have been produced at x. Thus, the path is tested for
all allowed combinations of inversion in all LUTs in it.
A test session ends when the counter returns to the
initial state.

In the test procedure described above, the only sig-
nal transition applied during a test is at the source of
the path under test. The controlling side-inputs of all
LUTs are constant during the period when the tran-
sition propagates through the path. However, a side
input of an LUT may change if it is from a fanout from
the path under test. Since each LUT implements the
XOR of its on-path input and controlling side-input,
its output will be unaffected by any change in other
side-inputs. This is illustrated in Fig. 7, where a tnd
b are its on-path input and controlling side-input, re-
spectively. Thus, delays along paths other than the
one under test cannot affect the outcome of the test,
and the test is robust.

The proposed method can be used to test a num-
ber of paths simultaneously if they are disjoint, ex-
cept possibly a common source. The pattern genera-
tor and counter can be shared by all the tested paths.
The number of bits in the counter must be the largest
number of binate LUTs in any set of paths. Each path
must have its own result analyzer, and their FF-Bs can
be connected to form a scan chain. The failing paths
can be identified by shifting out the contents of the
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scan chain at the end of a test session. By restricting
the placement of BIST logic to avoid all paths under
test and their fanout, we ensure that the delays of the
paths under test are not modified by BIST insertion.

It is highly unlikely that a delay fault in the BIST
logic will impact the results of testing. The BIST
logic required for the approach described here is simple
and compact as we demonstrate with our experimen-
tal results. By choosing an appropriate design for the
counter shown in Figures 4(b) and 5, all delay paths in
our BIST implementation can be limited to contain a
single LUT. Because the delay paths in the BIST logic
are short, it is unlikely that a path delay fault in the
BIST logic will impact test results.

The test application time with our method depends
on the maximum number of LUTs along a path and
the number of test sessions, but not on the circuit size
or the number of paths. If the longest path has n
LUTs and the number of sessions required is S, the
test application time will be 6 - S - 2 % *n clock cycles.
The method can therefore be expected to be applicable

Action
x stable at 0

x changes to 1; destination FF and FF-A will be at
value produced by x=0

value produced by x=1 captured in destination FF
FF-B set if FF-A and destination FF have same value

x changes from 1 to O to test falling transition
(x steady at 1 from 3 to 6)

final value of 1->0 transition captured in destination FF

counter incremented

iming diagram

to relatively large circuits.

VI. TEST SESSION DEFINITION

An important goal of FPGA test insertion is to min-
imize test application time by reducing the number of
test sessions. Ideally all delay paths would be tested
in a single session, but this is often impossible because
some pairs of delay paths cannot be tested in the same
session. There are two conditions under which a pair
of paths cannot be tested in the same configuration:
e« Two paths share a LUT - If two paths share a
logic component, then it is possible for faults along
these two paths to interfere with each other, and pos-
sibly mask each other.
¢ One path drives an off-path input of the other
path - The problem in this situation is that the off-
path input possibilities of one of the paths cannot be
fully explored. If path 1 drives an off-path input of
path 2, then that off-path input cannot be driven by
a counter. If a counter does not drive the off-path
input, then we cannot guarantee that all off-path input
combinations are explored during testing.

By identifying all pairwise scheduling conflicts be-
tween paths, we create a conflict graph in which each
node represents a path to test, and each edge repre-
sents the existence of a conflict between two paths.
The problem of defining a minimum set of test ses-
sions is equivalent to solving the Graph K-Colorability
problem [7] which is NP-complete for K > 3. We solve
this problem using an iterative, greedy heuristic which
adds paths to a test session by selecting the one with
the least number of conflicts with other paths not cur-
rently in the test session. The use of the heuristic



enables the problem to be solved tractably for a very
large number of paths.

VII. EXPERIMENTAL RESULTS

A key part of our approach is the direct implemen-
tation of path delay testing circuitry in the FPGA de-
vice. To prove the delay testing concept we have used
the Versatile Place and Route (VPR) FPGA tool set
from the University of Toronto [4] to implement the
circuitry. The tool suite includes timing driven pack-
ing, placement, and routing functions.

Eight benchmarks from the MCNC benchmark suite
[18] were targeted to FPGA devices with the same ar-
chitecture and physical characteristics as 1.8V Xilinx
Virtex devices [1]. Initially, circuits were mapped to
logic blocks and placed and routed. Then static anal-
ysis along all circuit paths was performed to locate
the longest paths in the circuit. Subsequently, the test
circuitry shown earlier was synthesized from RTL to
FPGA logic using the Synopsys FPGA compiler. This
logic was physically integrated into the FPGA device,
placed and routed. The results in Table I show that
the test circuitry for each design takes up a small por-
tion of overall space and is easily implemented on any
FPGA architecture. Qur experiments show that the
circuits for path delay testing were able to route suc-
cessfully using VPR.

The first four columns of Table I show information
about the FPGA layout of each design excluding test
logic. The Virtex column shows the name of the Xilinx
Virtex part to which each design was mapped, and the
size column shows the dimensions of that part in terms
of tiles. The CLB/wire column shows both the number
of CLBs and the number of wires used by the design in
the FPGA. The first two BIST Data columns show the
number of LUTSs, flip-flops, CLBs, and wires used by
the BIST logic in each test session. The sess. column
shows the number of test sessions required to delay test
all critical paths of each design. The greedy heuristic
used to identify test sessions results in the minimum
number of test sessions in all cases.

VIII. CONCLUSION

We have presented a BIST method for testing se-
lected sets of paths in FPGAs. The paths are selected
based on computed path delays after the array has
been programmed, placed and routed. The tests iden-
tify paths whose delay exceed the clock period for any
input/output transition that can be produced along
the tested path.

The method transforms the LUTs along the tested
path to inverters, buffers or XORs, depending on the

unateness of the original functions, allowing the path
to be tested by simply applying transitions at the
source of the path. A counter is used to apply all
possible input combinations to the side inputs of the
path. A number of non-interacting paths are tested si-
multaneously, sharing the pattern generator and con-
trol logic, and a scan chain is used to make test results
of individual paths observable. Thus, the method not
only detects faults on all tested paths but also identi-
fies faulty paths. This information can be used during
timing verification to reroute failing paths or modify
the design.

Our experimental results have shown the feasibilty
of the proposed method for relatively small circuits.
As mentioned earlier, the test application time de-
pends only on the maximum path length and the num-
ber of test sessions required to cover all selected paths.
Although the CPU time for determining test sessions
may increase with circuit size, the test application time
is not likely to increase significantly.
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