A Method for the Evaluation of Behavioral Fault Models*

Emilio Gaudette, Michael Moussa

Dept. of Electrical and Computer Engineering

University of Massachusetts
Ambherst, MA 01003

elmilio2@yahoo.com, ed_b_tzQyahoo.com

Abstract

Many fault models have been proposed which attempt
to capture design errors in behavioral descriptions, but
these fault models have never been quantitatively eval-
uated. The essential question which must be answered
about any fault model is, “If all faults in this model
are detected, is the design guaranteed to be correct?”
In this paper we present a method to examine the de-
gree to which an arbitrary fault model can ensure the
detection of all design errors. The method involves com-
paring fault coverage to error coverage as defined by a
practical design error model which we describe. We have
employed our method to perform a limited analysis of
the statement and branch coverage fault models.

1 Introduction

Validation techniques verify functionality by simulating
(or emulating) a system description with a given test
input sequence. The validation process is known to be
a cost bottleneck and time bottleneck in the overall de-
sign process. A large component of validation cost is
the test generation process required to ensure the de-
tection of all design errors. The cost of the test gen-
eration process derives from the largely manual nature
of the process, necessitating the effort of multiple de-
signers for an extended period of time. Automation of
the test generation process is essential to greatly re-
duce time to market and design cost. A key component
of automatic test generation is the fault model which
abstractly describes the expected erroneous behaviors.
Fault models are needed to provide detection goals for
the automatic test generation process, and fault models
enable the error detection qualities of a test sequence to
be evaluated. The chief benefit of using a fault model

*This work was supported in part by the National Science
Foundation under Grant No. 0204134

Ian G. Harris
Department of Computer Science
University of California Irvine
Irvine, CA 92697
harris@ics.uci.edu

is that the detection of a small number of faults ensures
the detection of a large number of potential design er-
rors. The total set of potential design errors is far too
large to target directly during test generation, but the
use of fault models makes the test generation process
tractable.

The effectiveness of automatic test generation de-
pends on the effectiveness of the underlying fault mod-
els used. If the detection of all faults in a fault model
does not guarantee the detection of the majority de-
sign errors, then test generation is not complete. Auto-
matic test generation tools cannot be reliably used for
design validation until the set of fault models used have
been evaluated and are known to ensure the detection
of nearly all design errors. Many fault models have been
identified in previous research [3] but the ability of these
fault models to ensure detection of real design errors has
never been evaluated.

We have developed a technique to evaluate the design
error detection ability of an arbitrary behavioral fault
model. Fault coverage, for a given test sequence and
design, is compared to error coverage based on a design
error model which we present. The design error model
which we use is known to capture a significant subset of
real design errors. By comparing fault coverage to error
coverage for many test sets and benchmark designs, it
is possible to draw some statistical conclusions about
the effectiveness of the fault model. We have used our
proposed method to perform a limited evaluation of the
statement and branch coverage fault models.

The remainder of this paper is organized as follows.
Previous research in fault modeling for validation is
summarized in Section 2. The relationship between
fault models and design errors is described in Section
3. The details of the evaluation method are presented
in Section 4 and the set of design errors which we con-
sider is described in Section 5. The evaluation of state-
ment and branch coverage is described in Section 6, and

conclusions are presented in Section 7.

2 Previous Work

Several fault models have been developed to evaluate
behavioral designs, many of which are based on soft-
ware test fault models. A survey of fault models used
for validation of behavioral hardware and software de-
scriptions can be found in [3]. A number of fault models
are based on the traversal of paths through the control
dataflow graph (CDFG) representing the system behav-
ior. The earliest control-dataflow fault models include
statement coverage and branch coverage [1] models used
in software testing. Statement coverage associates a po-
tential fault with each line of code, and requires that
each statement in the description be executed during
testing. The branch coverage metric associates poten-
tial faults with each direction of each conditional in the
CDFG.

Although significant research has been performed in
the development of fault models, the evaluation of these
models in terms of design error coverage has not been
convincing. Fault models are either compared to other
fault models which also have not been evaluated, or only
anecdotal evidence is used to justify their usefulness. To
our knowledge, no fault model has been shown to cover
any class of real design errors.

3 Fault Models and Design Er-
rors

The central goal of this research is to evaluate fault
models by understanding the relationship between a
fault model and the set of real design errors. In order
to more clearly describe the problem, some definitions
are required. A design error is a difference between the
abstract design concept and the executable design de-
scription. Design errors may range from simple syntax
errors, confined to a single line of a design description,
to a fundamental misunderstanding of the design spec-
ification which may impact a large segment of the de-
scription. The goal of design validation is to identify all
potential design errors through simulation. The num-
ber of potential design errors is too large to be managed
either automatically or manually, so a method is needed
to reduce this complexity. A design fault describes the
behavior of a set of design errors, allowing a large set
of design defects to be modeled by a small set of design
faults. A fault model describes the detection criteria of

a set of faults for an arbitrary design. A fault model
enables the concise representation of the set of all de-
sign errors for the purposes of test generation and test
quality evaluation.

Figure 1 depicts the relationship between design
faults and design errors. The figure shows two sets, the
set of all potential faults in a design, and the set of all
potential errors in a design. Each fault is said to model
a set, of errors if the detection of the fault ensures the
detection of all of the errors in the set. The errors mod-
eled by faults are indicated using dotted lines in Figure
1. An error is referred to as an unmodeled error if it
is not modeled by any fault. In order to rely upon a
fault model, the union of all faults must model the vast
majority of design errors.

4 Evaluation of Fault Models

A fault model is used to estimate the error detection
ability of a test sequence t for a design d by computing a
Fault Coverage (FC(d,t)). The FC(d,t) value indicates
the degree to which design errors in design d will be
detected using test sequence t. For example, a given
test sequence may only produce FC(d,t) = 90% using
the statement coverage fault model, indicating that only
90% of all statements are executed during simulation
with the sequence.

A test sequence t applied to a design d can also be
associated with an Error Coverage (EC(d,t)) which in-
dicates the fraction of potential errors in design d which
would be detected by test sequence t. For the purposes
of our analysis, we assume that a design error is de-
tected if it produces an incorrect result at the system
outputs. The number of potential errors in a design is
huge, so computation of the EC(d,t) value as part of
the design cycle is too costly in practice.

The main purpose of a fault model is to approximate
the error detection qualities of a test sequence for a de-
sign using the FC(d,t) value. The EC(d,t) value is the
true indicator of the error detection abilities of a test
sequence by definition, but since it cannot be computed
during design, the FC(d,t) value is used as an approxi-
mation. A fault model is said to have high accuracy if
the difference between FC(d,t) and EC(d,t) is known to
be small for almost all designs and test sequences.

We estimate the accuracy of fault models experimen-
tally by computing and comparing the FC(d,t) and
EC(d,t) for a wide range of designs and test sequences.
Computation of the EC(d,t) is very time consuming
but it is necessary to determine the accuracy of a fault

Design Faults

Design Errors

Unmodeled Errors ==~

Figure 1: Mapping Between Design Faults and Errors

model. A fault model has perfect accuracy if the quan-
tity FC(d,t) - EC(d,t) is always equal to zero. To esti-
mate the accuracy we compute both the average and the
standard deviation of the quantity FC(d,t) - EC(d,t) for
a large set of random test sequences. Together the aver-
age and standard deviations of FC(d,t) - EC(d,t) reflect
how close fault coverage is to true error coverage, and
how consistently the fault coverage correlates to error
coverage.

5 Design Error Model

Computation of the EC(d,t) requires that each poten-
tial design error be inserted into the design individually,
and that the erroneous designs be simulated with the
test sequence. Inserting errors into a design requires
the use of a design error model which describes the set
of design errors to be considered. The wide variety of
potential design errors makes it impossible to capture
all of these errors at this time. Instead, we restrict our
investigation to a subset of design errors which has been
found to be most common in hardware design [2]. These
errors (referred to in [2] as “goof” errors) include sim-
ple typographical mistakes and accounted for 12.7% of
the design errors found in the Pentium 4. To determine
the EC(d,t) value we use the mutation analysis tech-
nique studied previously in software testing and hard-
ware validation [4, 5]. In mutation analysis terminology,
a mutant is a version of a behavioral description which
differs from the original by a single potential design er-
ror. A mutation operator is a function which is applied
to the original program to generate a mutant. A set of
mutation operators describes all expected design errors.
The mutation operations which we use are described
below.

e Arithmetic Operator Replacement (AOR) - Each

occurrence of one of the operators +, -, * and /
is replaced by each of the other operators. In ad-
dition, each is replaced by the operators LEFTOP
and RIGHTOP. LEFTOP returns the left operand;
RIGHTOP returns the right operand.

e Relational Operator Replacement (ROR) - Each
occurrence of one of the relational operators (<, >,
<. >, =, #) is replaced by each one of the other
operators. In addition, the expression is replaced
by FALSEOP and TRUEOP.

e Variable Replacement (VR) - Each variable in a
description unit is replaced by every variable of the
same type in the description.

6 Experimental Results

We have applied our method to evaluate the statement
coverage and branch coverage fault models. We have
used three design benchmarks to perform the evalua-
tion, the greatest common divisor (GCD), the differ-
ential equation solver (diffeq) and the traffic light con-
troller (TLC). We have described each benchmark as a
Java program and we have inserted design errors into
these programs. Analysis is performed with 20 different
randomly generated test sequences for each benchmark.
The number of test patterns in each test sequence is
different for each benchmark and is set to ensure high
fault coverage (> 80%) without allowing fault coverage
values to consistently saturate at 100%. High fault cov-
erage values are required for evaluation because high
fault coverage values are the most likely requirement in
practice.

Table 1 shows the basic information about each
benchmark, including the number of statements,
branches, and design errors using our design error

Stmts Brnch Errors
GCD 19 1 162
Diffeq | 21 7 502
TLC 65 14 214

Table 1: Benchmark Information

SC-EC BC-EC
Avg Stdev Avg Stdev
GCD 16.35 3.17 16.68 3.16
Diffeq 8.88 11.59 14.60 20.45
TLC 10,72 5.06 2.28 6.34
Table 2: FC-EC Results
model. Table 2 shows the FC-EC evaluation results.

The second and third columns labeled SC-EC show the
average and standard deviations of the FC-EC quantity
for statement coverage, and the next two columns show
the result data for the branch coverage fault model. The
numbers in Table 2 are in percent. It is difficult to draw
conclusions from this initial experiment which uses only
three small design benchmarks, but some interesting
trends can still be identified in this experiment. For
example, the standard deviation of the FC-EC values
is roughly proportional to the number of errors in the
design. If this trend continues for larger examples then
both statement and branch coverage fault models will
be completely unreliable for large examples.

By examining results in more detail it is possible to
evaluate the accuracy of a fault model for different types
of design errors. Figure 2 shows the distribution of the
FC-EC results when statement coverage is used as the
fault model and Arithmetic Operator Replacement is
used as the error model. The figure shows a distribu-
tion of 20 random test runs. The majority of the runs
result in a perfect match between statement coverage
and error coverage. When there is a difference between
statement coverage and error coverage it is usually posi-
tive, showing that the statement coverage metric is gen-
erally optimistic because it overestimates error coverage.
The negative differences occur when statement coverage
is pessimistic. In this case, pessimism could result from
the existince of lines of code which contain no arithmetic
operators. It would then be possible to achieve 100%
coverage for Arithmetic Operator Replacement without
achieving 100% statement coverage.

ic Operator Repl.

417

-12.0 0.0

Figure 2: Statement Coverage - Error Coverage, GCD
Benchmark

7 Conclusions

We have presented a method to evaluate a fault model
by comparing its fault coverage to error coverage based
on a subset of design errors. This type of evaluation
is essential if new fault models are to be accepted and
used in an industrial setting. The analysis which we
present will be expanded on in the future to reveal de-
tailed strengths and weaknesses of existing fault mod-
els, and to provide direction for the development of new
fault models in the future.

References

[1] B. Beizer. Software Testing Techniques, Second Edition.
Van Nostrand Reinhold, 1990.

[2] B. Bentley. Validating the intel pentium 4 microproces-
sor. In Design Automation Conference, 2001.

[3] I. G. Harris. Hardware-software covalidation: Fault
models and test generation. IEEE Design and Test of
Computers, 20(4):40-47, July-August 2003.

[4] G. Al Hayek and C. Robach. From specification valida-
tion to hardware testing: A unified method. In Interna-
tional Test Conference, pages 885-893, October 1996.

[6] K. N. King and A. J. Offutt. A fortran language system
for mutation-based software testing. Software Practice
and Engineering, 21(7):685-718, 1991.

