
TESTGENERATION FORHARDWARE-SOFTWARE
COVALIDATION USINGNON-LINEAR PROGRAMMIN G

Fei Xin andIan G. Harris
University of Massachusetts,AmherstMA

fxin@ece.umass.edu,harris@ecs.umass.edu

Abstract

Hardware-softwarecovalidation involvesthecosimulationof a sys-
tem descriptionwith a functional test sequence. Functionaltest
generationis heavily dependent on manualinteraction,making it
a time-consuming and expensive process. We presentan auto-
matictestgenerationtechnique to detectdesignerrorsin hardware-
softwaresystems.Thedesignerrorstargetedarethosecausedby in-
correctsynchronizationbetweenconcurrent tasks/processeswhose
detectionis dependenton event timing. We formulatethetestgen-
erationproblemasa non-linearprogramon integer variablesand
we usea public domainfinite domainsolver to solve theproblem.
We presentthe formulationandshow theresultsof testgeneration
for a numberof potentialdesignerrors.

Introduction
Hardware-softwaresystemsarepervasive in the electronics
systemsindustry. The widespreaduseof thesesystemsin
cost-criticalandlife-critical applications motivatestheneed
for asystematicapproachto verify functionality. Several ob-
staclesto theverificationof hardware-softwaresystemsmake
this a challenging problem. To managethe complexity of
theproblem, covalidation techniquesin which functionality
is verifiedby simulating(or emulating) a systemdescription
with a giventestinputsequencearebeingconsidered.

Hardware-softwaresystemsarebuilt from separatecom-
ponents which arenot globally synchronized. As a result,
hardware-software systemsare vulnerableto inter-process
synchronization problems resulting from timing problems
betweenprocesses.In previous work we have developeda
fault modelto describe thesetiming-inducederrors[1] and
we have presenteda test generation approach for the fault
model [2]. Previous researchhasinvestigatedtestgeneration
for hardware-softwaresystemsby directly targetingspecific
fault or by improving fault coveragewithout targetingindi-
vidual faults.Theproblem of targetingthedetectionof indi-
vidual faults hasbeena SAT problem [3] as well as Con-
straint Logic Programming(CLP) problem [5, 7], solving
various engines[4, 6]. Previouswork useda GeneticAlgo-
rithm [8, 9] anda RandomMutationHill Climberalgorithm
[10] to target fault coverage.In this work we presenta new
testgenerationapproachfor thedetectionof synchronization
errors which employs CLP to arrive at a solution. The test

generationproblemis formulatedasa setof non-linearcon-
straintson integer variables. We usea public-domainCLP
finite domainsolver [6] but this formulationprovidesthepo-
tentialto leveragethestrengthof industrial CLP solvers.

Test Generation Process
Thegoalof testpatterngenerationis to identify a timedtest
sequence of input patternswhich will causethe detection
conditionsof agiventiming fault to besatisfied.Figure1 de-
pictsour testgeneration processfor hardware-softwaresys-
tems. The input of testgeneration is a systemundertestde-
scribedasa network of CodesignFinite StateMachine(CF-
SMs). TheComputation Constraints Generator (CCG)is
theprogramwhichgeneratesasetof computationconstraints
thatdescribesthebehavior of thesystemunder test. To en-
force the fault detectionconditions, Fault Detection Con-
straints areadded to the computation constraintsto gener-
ate the Automatic Test Pattern Generation (ATPG) con-
straints. If a given timing fault canbe detected,a testse-
quencewill be identifiedaftersolvingtheATPGconstraints
usingthepublic-domainG-Prolog solver [6] .

Synchronization/Timing Fault Model
A synchronizationerror occurswhena signalhastheincor-
rectvalueat thetimewhenthesignal’svalueis beingusedby
a process.Synchronizationerrors canbetheresultof timing
problemsat thecommunicationinterfacebetweenprocesses.
If a signal’s valueis assignedeitherearlieror later thanex-
pected,it is possiblethata processwhichusesthevaluewill
receive an unexpectedvalue. In previous work [1] we have
extendedtraditional dataflow faultmodelsto capturetiming-
inducedsynchronization errors. A timing fault is associated
with the definition anduseof a signalin the behavioral de-
scription. A definition of a signalx is an assignment of a
valueto x, anda useof x is theassignmentof anothersignal
y which dependson thevalueof x. For example, a � in1 is
a definitionof a andz � a is a useof a. A timing errorcan
occurif adefinition-usepairareexecutedin theincorrector-
der. For example, a synchronizationerroroccursif signala
shouldbe assignedto a constantbeforeit is used,but due
to a timing problem,a is usedbefore it is properly assigned.
We refer to this type of fault asa Mis-Timed Event Late
(MTElate) fault becausethe definition occurs later than it

1

CFSM2

CFSMn

CCG Constraints
Computation ATPG

Constraints Solver Sequence

Fault
Detection

Constraints

G−Prolog Test

:
:

CFSM1

Figure1: ComputationGenerator

should. Conversely, anMTEearly faultoccursonadefinition-
usepair if thedefinitionis executedtooearly.

Behavioral Representation

A behavioral description formatmustbechosenwhichrepre-
sentscommunicationbetweenmultiple processeswhich are
not synchronouswith eachother. The standard finite state
machine model is not sufficient for this purposebecause
it implicitly assumesthe existenceof a singlesynchronous
component. We have chosenthe CFSM model which de-
scribeseachprocessasa separatestatemachine. A system
is describedasa network of CFSMs,whereeachCFSMde-
scribesaconcurrentprocessin thesystem.TheCFSMscom-
municate via eventson signals.Eachevent is identifiedby a
name,a value, anda time of occurrence. EachCFSM in a
systemcontainsasetof statesandatransitionrelationwhich
canbedescribedasa setof edgesin a graph in which each
stateis representedby anode. Eachedgeis acause-reaction
pair wherethecauseis a setof eventnamesandvalues,and
eachreactionis a setof eventsandvalues. Whenanedgeis
triggered by an event which matches its cause,the CFSM
changes stateto the destinationstateof the edge,and all
events in thereactionsetareemitted.Thereis anonzero time
betweenthecauseandtheeffect which, in practice,wouldbe
determinedusingsomeperformanceestimationtechnique.

As a CFSM example we usethe Traffic Light Controller
[11] shown in Figure2. Thesystemcontains3 CFSMs,one
representing the highway signal, onerepresentingthe road
signal,andonerepresenting atimerusedtocontrol thelights.
Eachedgein theCFSMsis labeledcause� reaction, unless
the edge doesnot involve a reactionin which caseonly the
causeis shown. The highway signal remains greenby de-
fault. Occasionally, carsfrom thecountry roadarrive at the
traffic signal. The traffic signal for the country road turns
greenonly long enough to let the carson the country road
pass. As soonasthereareno carson the country road, its
traffic light turnsyellow andthenredandthetraffic signalon
thehighwayturnsgreenagain. A sensoris usedto detectcars
waiting on thecountry road. Thesensorsetssignalhavecar
to be 1 if therearecarson the road; otherwisehavecar=0.
Signal*short indicatesthat the time for thehighway traffic
light to beyellow hasended.

CFSMsincludetwo typesof signals,trigger signalsand
value signals. Trigger signals (denoted with a * prefix)
implement the basic synchronizationmechanism. Trigger
events canbeusedto causea transitionin a CFSM.This is
similar thesensitivity l ist concept in VHDL andotherhard-
waredescription languages.Valuesignalsmayhave anarbi-
trarily large domainandtheir valuespersistuntil the signal
valueis reassigned.Valuesignalscannotcausea transition,
but canbeusedto chooseamongdifferentpossibilities.Each
edgein aCFSMmustbecausedby atleastonetriggersignal.

Synchronization Errors in CFSMs

In order to apply the proposedfault model to CFSMs,we
mustidentify definitionandusestatementsin a CFSM.Sig-
naldefinitionsexist at eachreaction associatedwith anedge
becausethereactionsassignvaluestosignals.Signalusesare
thecausesof eachedgebecausethevalueof asignalcausing
a transitionmustbedetected.By thisdefinition,adefinition-
usepair mapsto a pair of edgesin theCFSMnetwork; one
edgeincludesthe definitionasoneof its reactions, andthe
otheredgeincludestheuseasoneof its causes.

An MTE faultmayoccuroneitheravaluesignalor a trig-
gersignal. An example of anMTE fault on a triggersignal
canbeseenin example of Figure2. The � short signalis ex-
pectedwhile theHIGHWAY CFSMis in theyellow (Y) state.
If thereis an MTEearly fault on the � short signalcausingit
to beassertedwhile theHIGHWAY is in thegreen(G) state,
thenthesystemwill deadlock whentheHIGHWAY light en-
terstheyellow state.

Detection of Synchronization/Timing Faults

The timing fault associatedwith a signalis detectedonly if
thereis a useof thesignalinsidetheerror spanof the fault.
The error spanextends from the erroneoustime stepto the
correct time step. Unfortunately, theprecisepositionof the
errorspanis not known sincesimulationof thefaultycircuit
reveals only theerroneoustimestep.It is clear, however, that
the error spanmust extend, either forward or backward in
time, from the erroneous time step. In order to ensurethat
a useoccurrenceis within the error spanof a fault, the use
occurrencemustbe “close” to the corresponding definition
occurrencein time. If thedefinition anduseareclosein time,

2

*car, havecar=1
−> *start1

*long2

*short

G

R Y

HIGHWAY

*long1
*car, havecar=0

−> *start2

*short

STREET

Y

G

R

*tick
−> *long2

*tick −> *short

*tick −> *short *start2

*tick
−> *long1

*start1
T1

T6

T3

T5 T4

T2

TIMER

Figure2: Traffic Light Controller

thena smallerrorin timing will causethedefinitionanduse
to bereorderedandcausethefault to bedetected.

This detectioncriterion is different for a fault on a trigger
signalbecausetheusewill move in time with thedefinition
which triggersit. In thesystemof Figure2, theassertionof
the � short signalcanmove in time aslongasit occurs while
theHIGHWAY CFSMis in theyellow state.For this reason,
the detectionof MTE faultson trigger signalsrequires that
thedefinitionoccur whentheusingCFSMis in anincorrect
state.For example,anMTEearly faulton the � shortsignalin
Figure2 is detectedif thedefinitionoccurswhenHIGHWAY
is thegreenstate,ratherthantheyellow state.

Problem Formulation
The test generation problem is describedas a set of con-
straintson thesetof variableswhich represent thecomputa-
tion of theCFSMnetwork. We first describethesetof vari-
ableswhich representa computation, andwe thendescribe
the setof constraints on thoseequations which ensurefault
detection.

Computation Variables

Eachfeasiblecomputationof aCFSMnetwork is represented
by thevaluesof asetof integervariables. Thevariablesused
to represent a computationaredividedinto threecategories.
Eachtimestepis representedusingadistinctsetof variables,
so eachvariable describessomeaspectof a computationat
onetimestep.

1. State Variables - Thesevariablescontainthe valueof
thestateof aCFSMatagiventimestep.Eachstatevari-
ableis referredto asSVc � t , wherec refersto theassoci-
atedCFSM,andt refersto thetimestep.Thedomainof
a statevariable contains

�
Sc
�
valueswhereSc is the set

of all statesin CFSMc.

2. Edge Variables - Thevaluesof thesevariablesreferto
theedges in eachCFSMwhich aretraversedat a given
time step. Eachedgevariableis referred to as EVc � t ,
wherec refersto the associatedCFSM,andt refersto
thetime step.Thedomain of anedgevariable contains�
Ec
���

1 valueswhereEc is thesetof all edgesin CFSM
c. Thedomainincludesa value which indicatesthatno
edgeis traversedata giventimestep.

3. Signal Variables - Thesevariablescollectively contain
thevaluesof all signalsatagiventimestep.Eachsignal
variable is referredto asTVp� t , wherep referstoasignal
in thesystemandt refersto a timestep.Thedomain of
a signalvariable is thesameasthedomain of thesignal
which it represents. Notethatthedomains of all trigger
signalsarebinary.

Computation Constraints

In this sectionwe defineall of the constraints required to
ensurethatthesolutiongeneratedcorrectly satisfiestheexe-
cutionsemanticsof CFSMs.Constraintequations areall im-
plicationsof thefollowing form: antecedent � consequent,
wherethe antecedent is the assignment of a variable to a
value and the consequent describesthe set of variable as-
signments which must be assertedto satisfy the semantics
of CFSMs.Theconstraints aredivided into threecategories
basedon thetypeof signalin theantecedent.

1. State Constraints - Theseequations describethecon-
ditionswhich allow a CFSM to be in a stateat a given
time step.A CFSMcanbein states at time t if oneof
thefollowing statementsis true.

(a) TheCFSMis in statesat timet 	 1 andtheCFSM
doesnot traverseanedgeat time t 	 1.

(b) TheCFSMis in astatesp at timet 	 1 andanedge
from statesp to s is traversedat time t 	 1.

Theequations which expresstheseconstraintsarepro-
ducedusingthealgorithm in Figure3. In Figure3 the
resultingconstraintsare referred to as stateconstr c � s� t ,
wherec refers to a CFSM, s refers to a statein that
CFSM, and t refersto a time step. In the algorithm,
CFSM representsthe setof all CFSMs,TMAX is the
maximum time step,andInEdges is thesetof all edges
whichenterstates.

2. Edge Constraints - Theseequations describethecon-
ditionswhich allow anedgein a CFSMto betraversed
at a given timestep.A CFSMwill traverseanedgee in
thatCFSMis all of thefollowing statementsaretrue.

(a) TheCFSMis in statesp at time t, wheresp is the
predecessorstateof edgee

3

1 for eachc
 CFSM �
2 for eacht � TMAX �
3 for eachs
 Sc �
4 antecedent = SVc
 t � s
5 consequent = � SVc
 t � 1 � s����� EVc
 t � 1 � NULL �
6 for eache
 InEdges �
7 sp = thepredecessorstateof e
8 condition = � SVc
 t � 1 � sp ����� EVc
 t � 1 � e�
9 consequent = consequent � condition
10 �
11 stateconstrc
 s
 t � antecedent � consequent
12 �
13 �
14 �

Figure3: Algorithm to GenerateStateConstraints

(b) All of thetrigger conditionsof edgeearesatisfied
at time t

Theequations which expresstheseconstraintsarepro-
ducedusingthealgorithm in Figure4. In Figure4 the
resultingconstraintsare referred to as edgeconstr c
 e
 t ,
wherec refersto a CFSM, e refersto an edgein that
CFSM, andt refersto a time step. Whenconsidering
the triggerconditions for anedgewe refer to a trigger
pair � p � v� , wherep is asignalandv is avalueto which
signal p mustbe assignedto trigger the edge. We use
pt to refer to the variable which describes thevalueof
signal p at time t. Eachedgee is associatedwith its
predecessorstatesp anda setof triggerpairsTe, all of
whichmustbesatisfiedto triggertheedge.Theprocess
of creatingtheedgeconstr relatedto edgee in CFSMc
at time t is describedon lines 3-11 in Figure 4. Lines
7-9ensure thatall thecausesrelatedto edgeearesatis-
fied. Lines12-17 describethecondition whenno edge
in theCFSMc is triggeredat time t.

3. Signal Constraints - Theseequationsdescribethecon-
ditionswhich allow a signalto have a givenvalueat a
giventimestep.Firstwedescribethetriggersignalcon-
straints.A triggersignalin CFSMc will haveavalueof
1 at timet (representedby tsigconstr c
 t
 1) only if at least
oneedgee which emits the trigger signal is traversed
at time t � δ, whereδ is thedelayof the edge;A trig-
gersignalhaving a valueof 0 at time t (representedby
tsigconstrc
 t
 0) implies that none of theseedgesis tra-
versedat time t � δ, andis formulatedas ��� EVc
 t � δ ��
e� . The equations which expresstheseconstraints are
producedusingthe algorithm in Figure5. In Figure5
theresultingconstraints arereferred to astsigconstr g
 t ,
whereg refers to a triggersignal,andt refersto a time
step.TSIG refersto thesetof all trigger signals,andgt

refersto thevariable representing thevalueof a trigger
signalg at time t. We refer to the setof edgeswhich

1 for eachc
 CFSM �
2 for eacht � TMAX �
3 for eache
 Ec �
4 antecedente = � EVc
 t � e�
5 sp = thepredecessorstateof e
6 consequente = � SVc
 t � sp �
7 for each� p � v��
 Te �
8 consequente = consequente � pt � v
9 �
10 edgeconstrc
 e
 t � antecedente � consequente

11 �
12 antecedentnul l = � EVc
 t � NULL �
13 consequentnull = NULL
14 for eache
 Ec �
15 consequentnull = consequentnull � NOTconsequente

16 �
17 edgeconstrc
 null
 t � antecedentnul l � consequentnull

18 �
19 �

Figure4: Algorithm to generateedgeconstraints

emit triggersignalg asEDg.

Theconstraintsfor valuesignalsaredifferentfromthose
for triggersignalsbecausetriggersignalshave only in-
stantaneousvalues.A valuesignalwill keepits previous
valueuntil anedgee which emitsthevalue signalwith
a differentvalue is traversed. Theequations which ex-
presstheseconstraintsareproducedusingthealgorithm
in Figure6. In thealgorithm,VSIG representsthesetof
all valuesignals,Vl representsthesetof valuesfor value
signall , EDl is thesetof edgeswhichemit valuesignal
l , EDNl
 v is the setof edgeswhich emit valuesignal l
to beall theothervaluesexcept v. Two conditionswill
set the valueof the signal l to be v at time t. First, at
leastoneof the edgesemitting the signalwith valuev
is traversedat time t, which is describedin lines5-9 in
theFigure6; Theothercondition is thatthesignalis al-
readysetto bev at time t � 1 AND none of thoseedges
emitting it to beothervaluesis triggeredat time t � δ.
This is describedin lines10-14 in Figure6.

Fault DetectionConstraints
Additional constraints are required to ensurethat the solu-
tion generateddetectsa particular fault. The fault criteria
expressedearlieraredirectly expressedasconstraintson the
variables associatedwith the signalinvolved in a fault. For
triggersignals,fault detectionis accomplishedby forcing a
signal definition associatedwith a fault to occurwhile the
usingmachine is in the incorrect state.For example, to de-
tect the MTElate fault on the short signal in Figure2, the
 shortsignalmustbeassertedwhile theHIGHWAY in in the
greenstate. This is accomplishedby addingthe following
constraints.

4

1 for eachg ! TSIG "
2 for eacht # TMAX "
3 antecedent1 = $ gt % 1&
4 consequent1 = NULL
5 antecedent0 = $ gt % 0&
6 consequent0 = NULL
7 for eache ! EDg "
8 c is theCFSMcontaining edge e
9 consequent1 = consequent1 ' $ EVc (t) δ % e&
10 consequent0 = consequent0 * $ EVc (t) δ +% e&
11 ,
12 tsigconstrc (t (1 % antecedent1 - consequent1

13 tsigconstrc (t (0 % antecedent0 - consequent0

14 ,
15 ,

Figure5: Algorithm to generatetriggersignalconstraints

. SV HIGHWAY / 1 % G

. TV0 short (1 % 1

In this way, thedetectioncriteriaof eachMTE fault areex-
pressedusing2 constraint equations.

Experimental Results
In order to evaluateour ATPGtool we have usedit to detect
theMTE faultsin thetraffic light controller [11], gasstation
problem[12], andgeneralizedrailroadcrossing[13]. All the
resultsrunonIntelCeleron566Processorwith 256MB mem-
ory andLinux7.1operatingsystem.

time step 0 1 2 3

input signal *ti ck 1 1 1 1
*car 0 1 0 1

havecar 0 1 1 1

state highway green green yellow yellow
road red red red red

internal signal *short 0 1 0 0

Table1: MTE EarlyFaulton*short Signal

Figure2 presentsthenetwork of CFSMsdescribing acon-
troller for traffic at theintersectionof a highway anda coun-
try road. Undernormal conditions,signal*short shouldbe
triggeredwhenthehighway traffic light is yellow. If thereis
aMTE earlyfault in thesystemthattriggersthe*short signal
whenthetraffic light of highwayis still green,thenthetraffic
light in the highway will be stuckat yellow andthesystem
will halt. Table1 shows theresultsof testgenerationfor this
fault. Eachsignalis assigneda valueat eachtimestep.Each
row describesstateor signalin thesystem,andeachcolumn
showsthevalueof thesestateor signalateachtimestep.The
ATPGtool required190msto producetheresult.

The gasstationproblem is a simulationof an automated
self-serve gasstation[12]. Our version of the gasstation
consistsof threeprocesses:theCustomer, theServer, andthe

1 for eachl ! VSIG "
2 for eacht # TMAX "
3 for eachv ! Vl "
4 antecedent = $ lt % v&
5 consequent1 = NULL
6 for eache ! EDl "
7 c is theCFSMcontaining edgee
8 consequent1 = consequent1 ' $ EVc (t) δ % e&
9 ,
10 consequent2 = $ lt) 1 % v&
11 for eache ! EDNl (v "
12 c is theCFSMcontaining edgee
13 consequent2 = consequent2 * $ EVc (t) δ +% e&
14 ,
15 vsigconstrc (v(t % antecedent -

(consequent1 ' consequent2)
16 ,
17 ,
18 ,

Figure6: Algorithm to generatevaluesignalconstraints

time step 0 1 2 3 4 5

input *car 1 0 0 0 0 0
signal *tick1 1 1 1 1 1 1

*tick2 1 1 1 1 1 1
paykey 15 15 15 15 15 15

state station idle wait wait pump pump pump
customer idle idle fill fill fill fill

pump idle idle idle idle fill3 idle

internal *pay 0 1 0 0 0 0
signal *pump 0 0 0 1 0 0

pump 5 5 5 5 15 15
paid 0 0 15 15 15 15

output signal *fill 0 0 0 0 0 1

Table2: MTE LateFaultonPumpSignal

Pump.ThePumpcanprovide discreteamounts of gasoline,
either5, 10, or 15 gallons.Whena cararrives,a sensoras-
sociatedwith the *car signalnotifiestheStation.Whenthe
Stationdetectsthe car, the Stationrequestsmoney (via the
*pay signal)according to the amount of fuel required. The
paykey input is usedto indicate the amount of gasoline re-
quired. TheCustomerpaysfor thefuel (via the*pay signal).
After payment, the Pumppumps the appropriateamount of
fuel andnotifiesthestationon completion. TheStationthen
returns the change via the *bill outputandgoesto its idle
stateto await thenext car.

This systemcontains 6 potential MTE faults associated
with thevaluesignalpump. Table2 showsthetestgeneration
resultsfor MTE late fault on pump. In this casewe assume
that the initial value of pumpis 5. If thedefinitionof signal
pumpto value15 takesmoretime thanthedefinitionof the
trigger signal*pump, pumpwill keepits old value5 when
*pump is triggered, so edgeP3 will be triggeredinsteadof
thecorrect edgeP1in CFSMPump.Functionally thismeans
that a customerpaying for 15 gallons receives5 gallonsof

5

time step 0 1 2 3 4 5

input *tick1 1 0 1 0 1 0
signal *tick2 1 0 1 0 1 0

*tick3 0 0 1 0 0 1
*tr aininP 0 1 0 1 0 1
*tr ainoutI 1 0 1 0 1 0

state controller tEnter lower lower tExit tExit tEnter
gate up up goDown down down down
train nHere nHere nHere nHere nHere nHere

internal *tr ainEnter 0 0 0 0 0 0
signal *tr ainExit 0 0 0 1 0 0

*lower 0 1 0 0 0 0
*r aise 0 0 0 0 0 1

Table3: MTE EarlyFault on*lowerSignal

gas.TheATPGtool required1760msto producetheresult.
The GeneralizedRailroadCrossing(GRC) systemcon-

tains one railroad track protected by a gate and a gate
controller. The track is divided into three regions:
I(intersection),P(aninterval preceding the intersection) and
notHere(everywhereelse). The gatecanbe in any of four
states: down, up, goingDown, and goingUp. Initially the
train is notHereand the gate is in stateup. The track is
equippedwith two sensors:onelocatedat the beginning of
theP, triggeredwhenthefront of thetrain enters,andoneat
the endof the I, triggered whenthe train completelyleaves
the intersection. Table 3 shows the test generation result
whenthereis aMTE earlyfaultonsignal*lower. In Table3,
’ tEnter’, ’ tExit’, ’goDown’ and’nHere’ represent’ trainEn-
ter’, ’ trainExit’, ’goingDown’ and’notHere’ separately. The
ATPG tool required10msto find a test sequenceto detect
this fault.

Conclusions
Wepresent anautomatic testgenerationtechniquefor theco-
validation of hardware-softwaresystems.We formulate the
testgeneration problemasa setof non-linearconstraintson
integervariableswhich collectively describe thespaceof all
systemcomputations. The testgeneration approachtargets
the detection of errorsin synchronizationbetweenconcur-
rentprocesseswhicharisefrom timing faultsat communica-
tion interfaces.Our future work will investigate a new for-
mulationwhoseconstraintsincludefewerdisjunctiveclauses
which is a significantsource of computationalcomplexity in
constraint logic programming.

References

[1] Q.ZhangandI. G.Harris,“A validation faultmodel for
timing-inducedfunctionalerrors,” in International Test
Conference, October2001.

[2] S. Arekapudi, F. Xin, J. Peng,andI. G. Harris, “Test
patterngeneration for timing-inducedfunctionalerrors
in hardware-sofwaresystems,” in High-Level Design
Validation andTestingWorkshop, 2001.

[3] F. Fallah,S.Devadas,andK. Keutzer, “Functional vec-
tor generationfor hdl modelsusinglinearprogramming

and3-satisfiability,” in DesignAutomation Conference,
June1998, pp.528–533.

[4] J.Jaffar, S.Michaylov, P. J.Stuckey, andR. H. C. Yap,
“The CLP(R) languageand system,” ACM Transac-
tionsonProgrammingLanguagesandSystems, vol. 14,
no.3, pp.339–395, July1992.

[5] R.Vemuri andR.Kalyanaraman,“Generationof design
verification testsfrom behavioral vhdl programsusing
pathenumerationandconstraintprogramming,” IEEE
TransactionsonVeryLargeScale Intergration Systems,
vol. 3, no.2, pp.201–214, 1995.

[6] D. Diaz, GNU Prolog: A NativeProlog Compilerwith
Constraint Solvingover Finite Domains, The GNU
Project,www.gnu.org, 1999.

[7] C. Paoli, M.-L. Nivet,andJ.-F. Santucci,“Use of con-
straintsolving in orderto generatetestvectors for be-
havioral validation,” in High Level DesignValidation
andTestWorkshop, 2000, pp.15–20.

[8] F. Corno,P. Prinetto,andM. SonzaReorda,“Testability
analysisandATPGon behavioral RT-level VHDL,” in
International TestConference, 1997, pp.753–759.

[9] F. Corno,M. SonzeReorda,G. Squillero, A. Manzone,
andA. Pincetti, “Automatictestbenchgeneration for
validation of RT-level descriptions: an industrial ex-
perience,” in DesignAutomation and Test in Europe,
2000, pp.385–389.

[10] M. Lajolo, L. Lavagno,M. Rebaudengo,M. SonzaRe-
orda, and M. Violante, “Behavioral-level test vector
generationfor system-on-chip designs,” in High Level
DesignValidation andTestWorkshop, 2000, pp.21–26.

[11] PalnitkarS., Verilog HDL,, PrenticeHall, 1996.

[12] Helmbold D. andLuckhamD., “Debuggingadatasking
programs,” IEEESoftware, pp.47–57,March1985.

[13] Bjormer N., MannaZ., SiopmaH. B., and Uribe T.
E., “Deductive verification of real-timesystemsusing
step,” Theoretical ComputerScience, vol. 253, no. 1,
pp.27–60, 2001.

6

