Mutation Analysisfor the Evaluationof FunctionalFault Models

QiushuangZhangandlan Harris
Departmentf ElectricalandComputerEngineering
Universityof Massachusettat Amherst
E-mail: gzhang@ecs.umass.ethayris@ecs.umass.edu

. INTRODUCTION

Design validation by simulation-based
techniquess the mostcommonapproachto
verification due to the computationalcom-
plexity of more formal techniques. Valida-
tion entails the generationof a test pattern
sequencavhich is appliedto the designdur-
ing simulationto trigger erroneoushehaior.
Sincesimulationcanonly be performedwith
a small subsetof the entire spaceof testse-
guencessomemethodis neededo estimate
thedegreeof verificationachievedby a given
testsequence.The degreeof verificationaf-
forded by a testsequencenustbe known in
orderto directtestpatterngenerationandto
provide the designemith the knowledgethat
verificationgoalshave beenachiesed.

Several researcherfiave proposeddiffer-
entfunctional fault models astoolsin deter
mining the degreeof verificationachiezed by
atestsequenceA functionalfault modelde-
scribesthe spaceof erroneouslesignbehar-
iorswhich canbeexpectedasaresultof ade-
signerror. A functionalfault modelis anab-
stractionof thespaceof all possibledesigner-
rors which could be inadwertently createdoy
the designer Several functionalfault models
have beendevelopedto capturefaultsin abe-
havioral hardwaredescriptiondescription3].
Thesimilarity betweerthe problemof behar-
ioral hardwareverificationandthe problemof
softwaretestinghasledto theinvestigatiorof
softwaremetricsaswell, includingstatement,
branch,andpathcoverage[1].

As new fault modelsareproposedit is es-
sentialthat the quality of thesefault models
be measuredbeforedesignercanrely onthe

modelsfor verification. Thequality of afunc-
tional fault model can be measuredy two
parameters:(1) the accurag with which it
modelsthe spaceof all possibledesigner-
rors, and (2) the numberof faults included
in the fault model. The size of a given fault
modelis easilyevaluated but areliabletech-
niqueis neededo evaluatetheaccurag of the
fault model. The problemof measuringthe
accuray of afunctionalfault modelfor veri-
ficationis analogoudo the problemof relat-
ing stuck-atfault coverageto defectcoverage
for manufcturetest[2]. In both problems,
an abstracthigh-level fault model must be
evaluatedby comparisoro alow-level defect
model. Thedefectmodelis tied directlyto the
sourceof the defectswhile thefault modelis
an abstractiorof the behaior causedoy de-
fects. In the caseof manuhcturetest,thede-
fect modelis largely understooecausehe
physicalsourceof spotdefectshasbeenstud-
ied by previous researchers.An analogous
validation defect model is moredifficult to de-
scribebecausehe sourceof designdefectsis
ahumandesigneratherthana physicalenvi-
ronment.In orderto evaluatethe accurag of
a functionalfault model, it is first necessary
to definea validationdefectmodelwhich de-
scribeghedesignerrorsmostlikely to becre-
atedby a designer Validationdefectmodels
have beenproposedoreviously for gate-level
circuits[5], but little work hasbeendonefor
defectmodelsin behaioral designs.

Il. APPROACH

We have developeda behaioral validation
defectmodelwhich is basedon previous re-
searchin mutation analysis for softwaretest-

ing [6]. Mutation analysishasbeenusedto

generatenardware manufcturetests[4], but

it hasnot beenpreviously usedfor hardware
designvalidation. In mutationanalysister

minology, a mutant is a version of a soft-

wareprogramwhich differsfrom the original

by a single potentialdesignerror. A muta-

tion operator is a function which is applied
to the original programto generatea mutant.
A setof mutationoperatorsdescribesall ex-

pecteddesignerrors, and thereforedefines
thebehaioral validationdefectmodel. Since
behaioral hardwaredescriptionsharemary

featuresn commonwith procedurakoftware
programswe have useda subsetof the soft-

ware mutationoperationgresentedn [6] as
the coreof ourinitial defectmodel. We have

slightly modifiedthesemutationoperatordo

matchthe syntaxof behaioral VHDL. The
mutation operationswhich we are currently
using are describedbelow, and Table | con-
tainsexamplesof eachoperationappliedto a
line of VHDL code.

« Arithmetic Operator Replacement (AOR)
Eachoccurrencef oneof theoperatorst, —,
x and/ is replacedoy eachof the otheroper
ators.In addition,eachis replacedoy the op-
eratord EFTOPandRIGHTOPR, LEFTOPre-
turnstheleft operandRIGHTOP returnsthe
right operand.

« Logical Operator Replacement (LOR)
Eachoccurrenceof one of the logical oper
ators (and, or, xor) is replacedby each of
the other operators;in addition, eachis re-
placedoy FALSEOR TRUEOR LEFTOPand
RIGHTOR

« Relational Operator Replacement (ROR)
Eachoccurrencef oneof therelationaloper
ators(<, >, <=. >=, =, /=) is replacedby
eachone of the otheroperators.In addition,
the expressionis replacedoy FALSEOP and
TRUEOR

« Variable Replacement (VR)
Eachvariablein aprogramunitis replacedyy
every compatiblevariablein the program.

| Types| GoodMachine| Mutant |
AOR X =X—-Y X =X+Y
LOR x and y X ory
ROR rs =true |rst/=true
VR y:=h y:=X
TABLE |

EXAMPLES OF MUTANTS

We have developeda software tool which
parsesa behaioral VHDL descriptionand
automaticallygenerateall mutants By simu-
latingthemutantsandtheoriginalcodewith a
setof testpatternsye candeterminehecov-
eragefor eachclassof mutants.By compar
ing the mutantcoverageto the coveragepro-
vided by a functional fault coveragemetric,
we canevaluatetheaccurayg of thefault cov-
eragemetric. We canalsodiagnoseheweak-
nesse anexisting metricby identifyingthe
classof mutantdn whichtheaccurag is most
degraded.

[I1. PRELIMINARY RESULTS

As aninitial explorationinto thisapproach,
we have generatedall mutantsof the GCD
VHDL benchmarkexample. The total num-
ber of mutantsfor the GCD exampleis 81,
andthebreakdevn accordingo operatottype
is shavn in Table Il. The mutant opera-
tor VR(c) includesV R mutantsn conditional
statementsyhile VR(s) includesV R mutants
in non-conditionalstatements.The original
GCD codeandall mutantversionsof thecode
were simulatedwith a setof pseudo-random
testpatterngo determinghecoverageof each
classof mutants. The statementoverageof
theoriginal circuit wasalsocomputedandall
coverageresultsareshavnin Figurel.

Althoughthe GCD is a singleexample,its
validation resultsreveal a weaknessin the
statementcoveragemetric. Notice that the
accuray of the statementoveragemetricis
worstfor the LOR mutants.Theonly line in

| Type | Numberof Mutants|

AOR 3
VR(C) 12
VR(s) 46
ROR 15
[OR 5
TABLE Il

GCD, NUMBER OF MUTANTS OF EACH TYPE

statement coverage vs. mutant coverage

0.8

0.6 |

coverage

0.2 |

statement AOR VR(c) VR(s) ROR LOR

Fig. 1. GCD, statementoveragevs. mutationcover-
age

the GCD descriptionwhich involves a logic
operationis the following conditional state-
ment:

if (x /=0) and (y /= 0) then

The else clauseof this conditionaldoesnot
containary statementsAs aresult,the fact
that the else clauseis never executedis not
reflectedin the statementoveragemetric. A
solution to this problem would be to use a
branchcoveragemetric in additionto state-
mentcoverage.

V. FUTURE WORK

We intendto useour mutationanalysigool
to evaluatestatementoverage,branchcov-
erage andotherfunctionalfault models.We
will usea large numberof high-level synthe-
sisbenchmarkso allow ourresultsto begen-

111,

eralizedmorebroadly Becausdhe mutation
operationsarelocal, we expectthatthe num-
berof mutantswill increasdinearly with the
numberof linesin the behaioral description.
This will allow usto usemuchlargerbench-
mark exampleswith relatively low computa-
tional effort.

REFERENCES

[1] B. Beizer Software Testing Techniques,
Second Edition. VanNostrandReinhold,
1990.

[2] J. T. deSousa,F. M. Goncales, J. P.
Teixeira, C. Marzocca, F. Corsi, and
T. W. Williams. Defect Level Evalua-
tion in anlC DesignErnvironment. IEEE
Transactions on Computer-Aided Design,
15(10):1286—1293)ctober1996.

[3] F. Fallah,P. Ashar andS. Devadas.Sim-
ulationVectorGeneratiorfrom HDL De-
scriptions for Obsenrability Enhanced-
StatementCoverage. In Proceedings of
the 36" Design Automation Conference,
pages66—671Junel999.

[4] G. Al HayekandC. Robach.FromSpec-
ification Validationto Hardware Testing:
A Unified Method. In International
Test Conference, pages885-893October
1996.

[5] S.KangandS.A. SzygendaDesignVal-
idation: ComparingTheoreticaland Em-
pirical Resultsof Design Error Model-
ing. IEEE Design & Test of Computers,
11(1):18-26Spring1994.

[6] K. N. King andA. J. Offutt. A Fortran
Language System for Mutation-Based
Software Testing. Software Practice and
Engineering, 21(7):685-7181991.

