
1

MutationAnalysisfor theEvaluationof FunctionalFaultModels

QiushuangZhangandIan Harris
Departmentof ElectricalandComputerEngineering

Universityof MassachusettsatAmherst
E-mail: qzhang@ecs.umass.edu,harris@ecs.umass.edu

I. INTRODUCTION

Design validation by simulation-based
techniquesis the mostcommonapproachto
verification due to the computationalcom-
plexity of more formal techniques. Valida-
tion entails the generationof a test pattern
sequencewhich is appliedto thedesigndur-
ing simulationto trigger erroneousbehavior.
Sincesimulationcanonly beperformedwith
a small subsetof the entirespaceof testse-
quences,somemethodis neededto estimate
thedegreeof verificationachievedby agiven
testsequence.The degreeof verificationaf-
fordedby a testsequencemustbe known in
orderto direct testpatterngeneration,andto
provide thedesignerwith theknowledgethat
verificationgoalshavebeenachieved.

Several researchershave proposeddiffer-
ent functional fault models astools in deter-
mining thedegreeof verificationachievedby
a testsequence.A functionalfault modelde-
scribesthespaceof erroneousdesignbehav-
iorswhichcanbeexpectedasaresultof ade-
signerror. A functionalfault modelis anab-
stractionof thespaceof all possibledesigner-
rorswhich couldbe inadvertentlycreatedby
thedesigner. Several functionalfault models
havebeendevelopedto capturefaultsin abe-
havioral hardwaredescriptiondescription[3].
Thesimilarity betweentheproblemof behav-
ioral hardwareverificationandtheproblemof
softwaretestinghasledto theinvestigationof
softwaremetricsaswell, includingstatement,
branch,andpathcoverage[1].

As new fault modelsareproposed,it is es-
sentialthat the quality of thesefault models
bemeasuredbeforedesignerscanrely on the

modelsfor verification.Thequalityof afunc-
tional fault model can be measuredby two
parameters:(1) the accuracy with which it
modelsthe spaceof all possibledesigner-
rors, and (2) the numberof faults included
in the fault model. The sizeof a given fault
modelis easilyevaluated,but a reliabletech-
niqueisneededtoevaluatetheaccuracy of the
fault model. The problemof measuringthe
accuracy of a functionalfault modelfor veri-
fication is analogousto theproblemof relat-
ing stuck-atfault coverageto defectcoverage
for manufacturetest [2]. In both problems,
an abstracthigh-level fault model must be
evaluatedby comparisonto alow-level defect
model.Thedefectmodelis tieddirectlyto the
sourceof thedefects,while thefaultmodelis
an abstractionof the behavior causedby de-
fects. In thecaseof manufacturetest,thede-
fect modelis largely understoodbecausethe
physicalsourceof spotdefectshasbeenstud-
ied by previous researchers.An analogous
validation defect model is moredifficult to de-
scribebecausethesourceof designdefectsis
ahumandesignerratherthanaphysicalenvi-
ronment.In orderto evaluatetheaccuracy of
a functional fault model, it is first necessary
to definea validationdefectmodelwhich de-
scribesthedesignerrorsmostlikely to becre-
atedby a designer. Validationdefectmodels
have beenproposedpreviously for gate-level
circuits [5], but little work hasbeendonefor
defectmodelsin behavioral designs.

I I . APPROACH

We havedevelopeda behavioral validation
defectmodelwhich is basedon previous re-
searchin mutation analysis for softwaretest-

ing [6]. Mutation analysishasbeenusedto
generatehardwaremanufacturetests[4], but
it hasnot beenpreviously usedfor hardware
designvalidation. In mutationanalysister-
minology, a mutant is a version of a soft-
wareprogramwhich differsfrom theoriginal
by a single potentialdesignerror. A muta-
tion operator is a function which is applied
to theoriginal programto generatea mutant.
A setof mutationoperatorsdescribesall ex-
pecteddesignerrors, and thereforedefines
thebehavioral validationdefectmodel.Since
behavioral hardwaredescriptionssharemany
featuresin commonwith proceduralsoftware
programs,we have useda subsetof thesoft-
waremutationoperationspresentedin [6] as
thecoreof our initial defectmodel. We have
slightly modifiedthesemutationoperatorsto
matchthe syntaxof behavioral VHDL. The
mutationoperationswhich we are currently
usingare describedbelow, andTable I con-
tainsexamplesof eachoperationappliedto a
line of VHDL code.

� Arithmetic Operator Replacement (AOR)
Eachoccurrenceof oneof theoperators+, � ,� and/ is replacedby eachof theotheroper-
ators.In addition,eachis replacedby theop-
eratorsLEFTOPandRIGHTOP. LEFTOPre-
turnsthe left operand;RIGHTOPreturnsthe
right operand.� Logical Operator Replacement (LOR)
Eachoccurrenceof one of the logical oper-
ators (and, or, xor) is replacedby eachof
the other operators;in addition, eachis re-
placedby FALSEOP, TRUEOP, LEFTOPand
RIGHTOP.� Relational Operator Replacement (ROR)
Eachoccurrenceof oneof therelationaloper-
ators(� , � , ��� . ��� , =, /=) is replacedby
eachoneof the otheroperators.In addition,
the expressionis replacedby FALSEOPand
TRUEOP.� Variable Replacement (VR)
Eachvariablein aprogramunit is replacedby
everycompatiblevariablein theprogram.

Types GoodMachine Mutant
AOR x : � x � y x : � x � y
LOR x and y x or y
ROR rst � true rst 	
� true
VR y : � h y : � x

TABLE I

EXAMPLES OF MUTANTS

We have developeda softwaretool which
parsesa behavioral VHDL descriptionand
automaticallygeneratesall mutants.By simu-
latingthemutantsandtheoriginalcodewith a
setof testpatterns,wecandeterminethecov-
eragefor eachclassof mutants.By compar-
ing themutantcoverageto thecoveragepro-
vided by a functional fault coveragemetric,
wecanevaluatetheaccuracy of thefault cov-
eragemetric.Wecanalsodiagnosetheweak-
nessesin anexistingmetricby identifyingthe
classof mutantsin whichtheaccuracy is most
degraded.

I I I . PRELIMINARY RESULTS

As aninitial explorationinto thisapproach,
we have generatedall mutantsof the GCD
VHDL benchmarkexample. The total num-
ber of mutantsfor the GCD exampleis 81,
andthebreakdown accordingto operatortype
is shown in Table II. The mutant opera-
tor VR � c � includesV R mutantsin conditional
statements,whileV R � s � includesVR mutants
in non-conditionalstatements.The original
GCDcodeandall mutantversionsof thecode
weresimulatedwith a setof pseudo-random
testpatternsto determinethecoverageof each
classof mutants.The statementcoverageof
theoriginalcircuit wasalsocomputed,andall
coverageresultsareshown in Figure1.

AlthoughtheGCD is a singleexample,its
validation results reveal a weaknessin the
statementcoveragemetric. Notice that the
accuracy of the statementcoveragemetric is
worst for theLOR mutants.Theonly line in

Type Numberof Mutants
AOR 3
VR(c) 12
VR(s) 46
ROR 15
LOR 5

TABLE II

GCD, NUMBER OF MUTANTS OF EACH TYPE

0

0.2

0.4

0.6

0.8

1

statement AOR VR(c) VR(s) ROR LOR

co
ve

ra
ge

statement coverage vs. mutant coverage

Fig. 1. GCD,statementcoveragevs. mutationcover-
age

the GCD descriptionwhich involvesa logic
operationis the following conditionalstate-
ment:

if (x /= 0) and (y /= 0) then

The else clauseof this conditionaldoesnot
containany statements.As a result, the fact
that the elseclauseis never executedis not
reflectedin thestatementcoveragemetric. A
solution to this problem would be to use a
branchcoveragemetric in addition to state-
mentcoverage.

IV. FUTURE WORK

Weintendto useourmutationanalysistool
to evaluatestatementcoverage,branchcov-
erage,andotherfunctionalfault models.We
will usea largenumberof high-level synthe-
sisbenchmarksto allow our resultsto begen-

eralizedmorebroadly. Becausethemutation
operationsarelocal, we expectthat thenum-
berof mutantswill increaselinearly with the
numberof linesin thebehavioral description.
This will allow us to usemuchlargerbench-
mark exampleswith relatively low computa-
tionaleffort.

REFERENCES

[1] B. Beizer. Software Testing Techniques,
Second Edition. VanNostrandReinhold,
1990.

[2] J. T. deSousa,F. M. Goncalves, J. P.
Teixeira, C. Marzocca, F. Corsi, and
T. W. Williams. Defect Level Evalua-
tion in anIC DesignEnvironment. IEEE
Transactions on Computer-Aided Design,
15(10):1286–1293,October1996.

[3] F. Fallah,P. Ashar, andS.Devadas.Sim-
ulationVectorGenerationfrom HDL De-
scriptions for Observability Enhanced-
StatementCoverage. In Proceedings of
the 36th Design Automation Conference,
pages666–671,June1999.

[4] G. Al HayekandC. Robach.FromSpec-
ification Validationto HardwareTesting:
A Unified Method. In International
Test Conference, pages885–893,October
1996.

[5] S.KangandS.A. Szygenda.DesignVal-
idation: ComparingTheoreticalandEm-
pirical Resultsof Design Error Model-
ing. IEEE Design & Test of Computers,
11(1):18–26,Spring1994.

[6] K. N. King andA. J. Offutt. A Fortran
Language System for Mutation-Based
SoftwareTesting. Software Practice and
Engineering, 21(7):685–718,1991.

