ATPG for Timing-Indu cedFunctional Err ors on Trigger Eventsin
Hardware-Softvare Systems

SrikanthArekapudi,Fei Xin, JinzhengP?engand lan G. Harris
Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA 01003
E-mail: {sarekapu,frin,jpeng,harris} Qecs.umass.edu

Abstract

We consider timing-induced functional errors in in-
ter process communication. We present an Automatic
Test Pattern Generation (ATPG) algorithm for the
co-validation of hardware-software systems. Fvents
on trigger signals (signals contained in the sensitivity
list of a process) implement the basic synchronization
mechanism in most hardware-software description lan-
guages. Timing faults on trigger signals can have a
serious impact on system behavior. We target timing
faults on trigger signals by enhancing a timing fault
model proposed in previous work. The ATPG algorithm
which we present targets the new timing fault model and
provides significant performance benefits over manual
test generation which is typically used for co-validation.
Keywords: Hardware-software, Co-validation, Auto-
matic Test Pattern Generation, Timing validation

1. Intr oduction

Hardware-software systems are pervasive in the elec-
tronics systems industry. The widespread use of these
systems in cost-critical and life-critical applications mo-
tivates the need for a systematic approach to ver-
ify functionality. Several obstacles to the verification
of hardware-software systems make this a challenging
problem. In order to manage the complexity of the
problem, co-validation techniques in which functional-
ity is verified by simulating (or emulating) a system
description with a given test input sequence are being
considered. Verification techniques which verify func-
tionality by using formal techniques like model check-
ing, equivalence checking etc. have been explored. For-
mal verification techniques can guarantee 100% fault
coverage but are highly complex and often intractable,
whereas co-validation techniques can only provide a de-
gree of certainty which is less than 100%. The complex-
ity of co-validation can be made tractable by using a
test sequence of reasonable length, and the degree of
certainty can become arbitrarily close to 100%.

Hardware-software systems often have inter-process

timing constraints which must be satisfied to ensure
correct operation. Co-validation techniques used with
hardware description languages like VHDL and Ver-
ilog are still developing. Software testing techniques
used with behavioral software languages have been well
known. One might think that previous work done
on software testing may be used to address the co-
validation problem. Behavioral hardware description
languages including VHDL and Verilog support time-
varying signals, and include concurrency constructs
such as the process statement in VHDL.

Previous work [5] considered the timing faults in in-
ter process communication [5] [4]. The Co-design Fi-
nite State Machine (CFSM) model [1] has been used
to capture the system behavior, and to express the in-
teractions between system components. Signals in a
CFSM can be either a trigger signals or a value signals.
Value signals cannot cause the transition, but can be
used to choose among different possibilities involving
the same set of trigger events. Events on trigger signals
form the basic synchronization mechanism in CFSM
because only an event on a trigger signal can cause a
state transition to occur. Timing faults on value sig-
nals are considered in previous work, but timing faults
on trigger signals have not been addressed.

The co-validation process typically requires a time-
consuming manual test generation step. An Auto-
matic Test Pattern Generation (ATPG) tool which can
be used to greatly reduce the time required for co-
validation has been developed. The result of the ATPG
process is a timed sequence of events on the system in-
puts which will detect timing-induced faults based on
an extension to the fault model described in [5]. The
CFSM model has the advantage that it is supported
by the POLIS co-design framework [2], and it can be
constructed directly from reactive languages including
ESTEREL [3].

The paper is organized as follows: Section 2 de-
scribes proposed design fault model for timing-induced
errors of trigger signals. Section 3 outlines the stages of
a test pattern generation technique to target the pro-
posed timing fault model for trigger signals and the
timing fault model for value signals presented in [4].
Results are presented in Section 4 and the work is sum-

marized in Section 5.

2. Timing Fault Model

Timing faults exists if the signals are assigned val-
ues at incorrect time even though the values are cor-
rect. There are several signal timing relationships
which must be maintained to guarantee correct com-
munication between the two processes. Dataflow fault
models have been extended to capture timing-induced
functional defects [5]. A timing fault is associated with
the definition and use of a signal in the behavioral de-
scription. A definition of a signal x is an assignment
of a value to z, and a use of x is the assignment of
another signal y which depends on the value of z. For
example, a <= inl is a definition of @ and z <= a is
a use of a. A timing error can occur if a definition-use
pair are executed in the incorrect order. For example,
if signal a should be assigned to a constant before it is
used, but due to a timing problem, a is used before it
is properly assigned. We refer to this type of fault as
a Mis-Timed Event Late (MTEjy.) fault because
the definition occurs later than it should. Conversely,
an MT E,qr1y fault occurs on a definition-use pair if the
definition is executed too early.

The MTE fault model was originally proposed in [5]
and it has been adapted for the CFSM model here. In-
tuitively, a trigger signal is one which is contained in
the sensitivity list of a process. An event on a trigger
signal causes the execution of a process in time. Trig-
ger signals implement the basic synchronization mech-
anism in HDLs including VHDL and Verilog.

A Mis-Timed Event of a Trigger signal
(MTET) fault to be associated with definition and
use statements on a given signal s € S along with the
state either preceding or succeeding the use, where S is
the set of all signals used in the design. The existence
of an MTET fault indicates that the associated signal
definition occurs at the incorrect time and causes the
system to be in a different state. Two types of MTET
faults can exist, MT ET,qy, where the definition occurs
earlier than the correct time, and M T ET},¢. where the
definition occurs later than the correct time.

An early fault on a trigger signal can cause the event
to occur while the receiving CFSM is in a state prior to
the corect state. This can be explained with the help of
an example shown in Figure 1. This example has two
processes X and Y which run in parallel and exchange
data through a FIFO buffer. The read and write signals
are trigger signals because events on these signals cause
the state of the FIFO to change. In order for the system
to operate correctly, an event on the read signal cannot
occur when the FIFO is in the empty state, and an
event on the write signal cannot occur when the FIFO
is in the full state. An MTET fault can cause events
on the read and write signals to occur in the empty

and full states respectively.

in datain dat aout out
—> >
Proc. X wite | o dead Proc. Y
full enpty

Figure 1: Two processes communicating via a FIFO

2.1. Detectionof Timing Faults

The timing fault associated with a signal is detected
only if there is a use of the signal inside the error span
of the fault. The error span extends from the erroneous
time step to the correct time step. Unfortunately, the
precise position of the error span is not known since
simulation of the faulty circuit reveals only the erro-
neous time step. It is clear, however, that the error
span must extend, either forward or backward in time,
from the erroneous time step. In order to ensure that
a use occurrence is within the error span of a fault,
the use occurrence must be “close” to the correspond-
ing definition occurrence in time. We define an error
span threshold, &, a mon-negative integer representing
the maximum time between the definition and use oc-
currence.

3. Automatic TestPattern Generation

Automatic Test Pattern Generation (ATPG) deals
with generating a timed sequence of input vectors which
causes the detection conditions of the timing fault under
consideration to be satisfied. Test generation flow for
the ATPG@ tool is shown in the Figure 2. The process
is started with hardware-software description of the de-
sign under consideration. A fault list is generated. For
each feasible path set, one undetected fault is chosen
at a time. A test pattern to detect the selected fault is
generated if one exists. Foult simulation is performed
to determine whether the generated test pattern detects
any other fault in addition to the foult under consider-
ation. This process of selecting an undetected fault and
trying to generate a test vector is repeated for every
path set. The following sections describe the various
stages of the ATPG tool in detail.

Berkeley’s Software Hardware Interface Format
(SHIFT) which can represent various Co-design Finite
State Machines (CFSMs) is used to specify the system
design to the ATPG tool. SHIFT is one of the interme-
diate formats in Berkeley’s POLIS tool [2]. It can be
obtained directly from the ESTEREL to SHIFT com-
piler which is readily available in POLIS. ESTEREL is
a synchronous programming language, which is devoted
to programming control-dominated software or hard-
ware reactive systems.

HW-SW Description

{ Generate Fault List }

- Path Identification }

‘{ Select an Undetetcted Fault}

{ Trigger Event Matching }

{ Generate Test Sequence J

{ Timing Resolution }

{ Fault Simulate Test Sequen%e

>

Figure 2: Test Generation Flow

The example in Figure 3 is based on the gas station
problem [6]. The gas station problem is a simulation
of an automated self-serve gas station. Our version of
the gas station consists of three tasks station, customer
and pump. The pump can provide discrete amounts
of gasoline, either 5, 10, or 15 gallons. When a car
arrives, a sensor associated with the xcar signal noti-
fies the station. When the station detects the car, the
station requests money (via the *pay signal) according
to the amount of fuel required. The paykey input is
used to indicate the amount of gasoline required. The
customer pays for the fuel (via the pay signal). After
payment, the pump pumps the appropriate amount of
fuel and notifies the station on completion. The station
then returns the change via the xbill output and goes
to its idle state to await the next car. The CFSMs for
the station, customer and the pump tasks are shown in
Figure 3. Foult list for the trigger signals is generated
based on the fault model explained in Section 2. Fault
list for the value signals is generated based on the fault
model presented in [{]. The number of faults associated
with each signal is shown in the Table 1.

The set of paths selected must satisfy the detection
requirements of a fault, and the paths must be compat-
ible [4]. Two paths are incompatible in a computation
if they cannot both exist in the same computation due
to conflicting edge triggering requirements ,i.e, if the
number of uses of a signal s is greater than the number

S1 C1
*car->*pay *pay, paykey:5\|1u||15->
paid=5]|10||15

S2
*tick, paid=5/|10[|15 -> C3 Cc2
*pump, pump=5||10|15 *change *fill->*done

S3

“done->
“change, *bill

P6 N P4
*tick->*fill

“pump, pump=5,
*tick

Figure 3: The Gas Station Problem, (a) Station CFSM,
(b) Customer CFSM, (c) Pump CFSM

Signal | Early | Late]

paid 3 3
*pay 3 3
*pUMmp 9 9
pump 3 3
* fill 3 1
xchange || 1 3
xdone 3 1

Table 1: Faults in Gas Station Example

of definitions of that signal s in the path set, the paths
are incompatible. Our algorithm for path identification
is enumerative. All sets of paths whose length is less
than o fized limit are explored successively. For exam-
ple if the maximum length is 4, every path in the path
set has a length less than or equal to 4. Path sets which
are infeasible are not explored further.

3.1. TestSequace Generation

Test pattern generation identifies o sequence of
events on input signals which will cause a given
definition-use pair to occur within time 6. A test se-
quence which detects a timing fault on a signal must
trigger the system to perform a computation in which
the signal is defined and used within a fixed time period
0. Test pattern gemeration requires the identification
of a computation which satisfies the detection require-
ments of the fault. A computation of a system can
be defined as the sequence of events resulting from a
gwen input sequence. In a CFSM, the event sequence
produced is determined by the path through the CFSM

oputys Fead-
Station: | [liFear] m

Pump:

Customer: | {1 [U7pay] ;
: : U8:paykey= D

Time

0 1 2 4 5

Figure 4: Trigger event matching and Timing resolu-
tion

which is executed. A computation is referred to as a
timed computation when all of the edges contained in
the computation paths are mapped to time steps. Once
the timed computation is identified, the test sequence
is determined by the set of events associated with input
signals.

Trigger Event Matching - Events which cause
an edge to be traversed in a CFSM must be matched
with the corresponding definition (trigger) event. This
matching is required to emsure that each CFSM tra-
verses the specified paths [4].

Timing Resolution - Fach event which triggers a
CFSM edge must be mapped to a time step. The test se-
quence is the set of events on input signals, so this step
completes the test sequence definition by mapping all
input events to time steps [4]. All signal definitions and
triggers which are matched during trigger event match-
ing must be mapped to the same time step. Restrictions
must be placed on the timing to ensure that unspecified
edges are not traversed.

Figure 4 shows a path set with uses of the sig-
nals matched with the corresponding definitions. The
matched signals are shown with dotted arrows. The
events are placed in time for a delay of 1 and a clock
period of 2. The timing problem is expressed as a linear
program. For example, consider the edge C1 in Figure
4. The timing problem for the edge C1 can be expressed
as C1 > S1 + delay, C1 + delay < S2.

3.2. Fault Simulation

Once the test sequence for a timing-induced fault un-
der consideration is detected, this fault is marked de-
tected and all the other faults which are not detected
are checked whether they can be detected by this test
sequence or not. If detected they are marked detected.
A byproduct of the test sequence generation process is
a complete timed computation which contains the time
of each event.

Example # of # of | Fault
CFSMs | faults | Coverage

Gas

Station 3 48 72.92%

Seat Belt

Controller 2 94 62.77%

Traffic Light

Controller 3 30 63.33%

Railroad

Crossing 4 22 81.82%

Lift

Controller 4 313 50.48%

Table 2: Benchmark Examples

4. Results

A version of the Automatic Test Pattern Generation
(ATPG) tool has been developed. The ATPG tool is
tested to observe the variation in complexity and fault
coverage with different parameters. The variation of
CPU time per fault with delta (error span) is analyzed.
Fault coverage is not 100% due to the inclusion of re-
dundant faults in the fault list. The effect of redundant
faults is discussed.

Figure 2 shows the stages involved in the ATPG
tool. Five examples have been used to test the ATPG
tool. The linear programming formulation in timing
resolution stage was solved using the mathematical tool
Ip_solve. The ATPG tool has been used to detect each
of the MTE faults. Each ATPG run varied on at least
one of four parameters: ML - Mazimum length of the
path, CLK - the period of the clock, § (delta) - the er-
ror span limit, and delay - the delay associated with
each CESM edge. For simplicity we assume that each
edge has the same delay. Table 2 shows the charac-
teristics of the benchmark examples and faoult coverage
for ML=6, CLK=2, delta=10, delay=1. The results
are presented in the form of plots showing the varia-
tion in CPU time, fault coverage with varying param-
eters. Section 4.1 discusses redundant faults. Section
4.2 summarizes the results.

Figures 5, and 6 show how the CPU time and fault
coverage vary with varying parameters for the gas sta-
tion example. It is shown that fault coverage becomes
constant as the maz path length becomes large. Maz
path length limits the ATPG search of the solution
space by restricting the search to short computation se-
quences. Maz path length is needed to limit CPU time,
just as CPU time and backtracking limits are used to
restrict ATPG for stuck-at faults. As max path length
is increased, the ATPG search becomes more complete
and more faults are detected. The fault coverage be-
comes constant when all non-redundant faults are de-

tected. Figures 7 and 8 show how the CPU time and
fault coverage vary with varying parameters for the traf-
fic light controller example.

140

T ;

Clock=2 Delay=1 Delta=2 —

Clock=2 Delay=1 Delta=5 IV

Clock=2 Delay=1 Delta=10 e
=

120 | Clock=2 Delay=2 Delta=2

100 |

80 |

60 [

CPU Time (sec.)

40 -

o bk i

"
1 2 3 4
Maximum Path Length

Figure 5: Gas Station: CPU Time Vs Maximum Path
Length

©
3

T T T T T
Clocks2 Delay=1 Delta=2 e L o }
Clock=2 Delay=1 Delta=5 x| g
Clock=2 Delay=1 Delta=10 e

[Clack=2 Delay=2 Delta=2, 2}

@
3

~
=]

@
3
T
3

@
3
T

Fault Coverage (%)
IS
38
T

w
]
T

N
S

H
)
T

.
1 2 3 4 5 6 7
Maximum Path Length

Figure 6: Gas Station: Fault Coverage Vs Maximum
Path Length

4.1. Redundant Faults

Fault coverage as can be seen from the above tables
is not 100%, this is because of the way the fault list is
generated. All the combinations of definitions and uses
of the signal are considered. But some definition-use
combinations can never occur. This can be shown with
an example in figure 9. Definition D2 and use U5 of
the signal xpump can never occur together as definition
D2 occurs with definition D3 (pump = 5) and use Us
occurs with use U6 (pump = 10) and as can be seen
use U6 and definition D3 are incompatible.

4.2. Summary

60 —

Ci
Cl

Ci lay=1 Delta=:
<l lay=2 Delta=2

50
a0l

30 -

CPU Time (sec.)

20 -

10 -

Maximum Path Length

Figure 7: Traffic Light: CPU Time Vs Maximum Path
Length

70 —

60 |-

50 - /

40+ /

Coverage (%)

30 -

Fault

20 -

10

Maximum Path Length

Figure 8: Traffic Light: Fault Coverage Vs Maximum
Path Length

The ATPG tool developed is tested with five exam-
ples. Different results have been obtained by varying
the parameters clock period, delay, delta and mazimum
path length. The results are summarized as follows,

o Fault coverage increases with maximum path
length and becomes constant after a particular
mazimum path length. This is also the case with
increasing delta when other parameters are kept
constant. The increase in fault coverage is due to
the increase in number of path sets traversed which
in turn increases the probability of the faults being
detected. After a particular max path length the
fault coverage becomes constant as the faults left
are redundant faults and are anyway undetectable.

e CPU time increases with mazimum path length.
This is due to the exponential increase in number
of feasible path sets traversed.

o CPU time decreases significantly in most of the
cases as delta increases with other parameters kept
constant. The decrease in CPU time is due to the
decrease in time taken by the linear program solver

E\%ﬁts } *;;alr(ptz_ay{ey=5 *tick *tick *tick
i i : | :
Uz+tick |} (D2pum | |
ion: Ul:*car D1:*pa - X |
Station: i:l pay U3:paid=50l p3:pump=5 !
; i : b
U4:*tick
Pump: ‘ [U5*pumg
' U6:pump=1
; 1 : ;
Customer: | U7rpay B Da:paid=5| |
i U8:paykey=5| i
Time Con 1 © 1 B “

Figure 9: Example for a Redundant Fault

as the constraints become more relaxzed increasing
delta.

e CPU time changes slightly in some cases as the
time taken by path identification and time taken
by trigger event matching dominate the time taken
by the linear program solver.

o Fault coverage decreases as the value of clock pe-
riod and delay become closer.

e CPU time per faults detected in most of the cases
decreases with increasing delta.

5. Conclusions

We present an automatic test pattern generation
technique for the co-validation of hardware-software
systems. A new foult model specifically targeted
towards the CFSM model is used. Timing faults
inwolving trigger signals which are ignored previously
are considered. An unique ATPG tool which targets
the timing-induced functional errors at behavioral level
is developed. One of the key features of this ATPG
tool is its interface to Berkeley’s POLIS [2] SHIFT
format. An heuristic in the form of maximum path
length © s given as an input to the system to make
the complexity tractable in the average case. Efficient
techniques have been used to prune out infeasible path
sets restricting the search space.

6. References

[1] M. Chiodo, P. Giustg A. Jureska, H. Hsieh, A. Sangiwanni-
Vincenteli, and L. Lavagno, “Hardware-software codesgn of em-
beddel systemg, IEEE Micro, pp.26-36,August1994.

[2] F Balarin, M. Chiodo, P. Giusto,H. Hsieh,A. JurecskalL. Lavagro,
C. PasseroneA. Sangiwvanni-incenelli, E. Sentwich, K. Suzuki
andB. Tabbara, Hardware-Software Co-Design of Em-
bedded Systems: The POLIS Approach, Kluwer Aca-
demicPublishers;1997.

(3]

(4

(5]

(6]

F. BoussinotandR. deSimone “The esteré language, Proceed-
ings of the IEEE, vol. 79, no. 9, pp. 1293-B04, Septembe
1991.

S. Arekapudj F. Xin, J. Peng,and |. Harris, “Test Pattem Gen-
eration for Timing-Induced Funcional Errorsin Hardwere-Software
Systems, IEEE International High Level Design Val-
idation and Test Workshop, 2001.

Q. Zhangandl. Harris, “A validation fault modelfor timing-induced
functionalerrors; International Test Conference, 2001.

D. HelmboldandD. Luckham, “Debugging adatasking programs,
in IEEE Software, March1985,pp.47-57.

