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ABSTRACT
Tweening, also known as shape morphing, is an important
concept in keyframe animation wherein an initial shape is
transformed smoothly into a final shape. The huge body
of existing literature in the areas of shape transformations
and tweening in 2D is mostly restricted to transformations
between simple non-self-intersecting polygonal shapes. In
this paper we introduce a robust tweening algorithm which
is capable of creating smooth transformations between non-
simple polygonal shapes that are immersions of a disk. All
the intermediate shapes generated by our algorithm are guar-
anteed to be disk immersions. We achieve this by calculating
high quality triangulations, from given arbitrary triangula-
tions, of the initial and final non-simple polygons and es-
tablishing a homeomorphism between the disks of the two
immersions. If the triangulations of the source and target
shapes are incompatible, we change the geometry as well as
the triangulation smoothly during the morphing process.
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1. INTRODUCTION
Tweening or shape morphing is the process of gradually

transforming one geometric shape into another. The con-
cept of morphing is widely used in the fields of computer
animation and shape modelling wherein intermediate geo-
metric shapes are generated between the source and target
shapes, to give the appearance that the source shape evolves
smoothly into the target shape.

Most of the work in the area of shape morphing in 2D are,
however, restricted to transformations between simple poly-
gons without self-intersections, and the tweening is expected
to guarantee that all the intermediate shapes are also with-
out self intersections. If the polygons are self-intersecting
to start with, there exists no clear metric to evaluate the
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Figure 1: Obtaining a self-overlapping curve from
a disk immersion: A disk painted blue on the front
side and red on the back side is stretched and over-
lapped (from left to right) without twisting such
that only the blue side is always visible. The bound-
ary of the disk is called a self-overlapping curve (ex-
treme right).

quality of an intermediate shape or property that it should
satisfy. But there is an interesting class of self-intersecting
closed curves that are boundaries of an immersed disk in
2D - a disk that is stretched and possibly self-overlapped,
but not twisted. These boundary curves, also called the
self-overlapping curves [24](Figure 1), can theoretically be
morphed to each other with the constraint that all interme-
diate shapes are also boundaries of an immersed disk. In
this paper, we present the first algorithm for such a tween-
ing between boundary curves of immersions of the disk, even
if the curves are self-intersecting.

As Figure 1 suggests, a natural morphing sequence is im-
plied by the process of forming a disk immersion. In order
to compute this sequence, we require a mapping function
between the interiors of the disk and the self-overlapping
curve. A valid triangulation of the interior of the curve and
a compatible triangulation of the disk serves as one such
mapping function. Since there are many such triangulations
possible, our goal is to re-mesh the interior of the curve
from an arbitrary triangulation to one which is intuitive and
suitable for morphing. The triangulation, thus obtained is
used to transform the curve to a circle. This transforma-
tion algorithm can be extended to morph between two self-
overlapping curves with correct vertex-to-vertex correspon-
dence and same triangulation. In this context, we use the
fact that both shapes are deformations of a disk to present a
simple algorithm to find a good vertex-to-vertex correspon-
dence. But if the two curves have different triangulations
even after good vertex-to-vertex correspondence, then the
transformation function becomes non-trivial as the triangu-
lation also has to change during the morph from one shape
to another. Näıve transformation without taking triangula-
tion into account will introduce twists in the intermediate
curves, and they will no longer be boundaries of an immersed
disk.



Main Contributions: We present the first algorithm to
transform between two self-overlapping curves. In order to
achieve this, we design a novel re-triangulation algorithm
specifically for self-overlapping curves that closely follows
the disk deformation pattern and hence is suitable for mor-
phing. Based on interesting observations on the dual graph
of our triangulation, we present a simple algorithm to morph
two compatible triangulations. Using similar observations,
we demonstrate a method to find features in self-overlapping
curves and to align two curves in order to reduce the differ-
ence in their triangulations. Finally, if the triangulations are
incompatible, our transformation algorithm changes both
shape and triangulation topology during the morph from
one self-overlapping curve to another.

2. RELATED WORK
An algorithm to compute an immersion from a self-overlapping

curve was first introduced in [24], wherein an arbitrary tri-
angulation of the curve interior was obtained by means of a
dynamic programming based approach. However, any such
arbitrary triangulation may not necessarily follow the defor-
mation pattern of the disk, and hence may not yield high
quality morphs. Given such a triangulation, we perform a
series of edge swaps maintaining the Delaunay criterion, to
obtain a triangulation which closely follows the deformation
pattern of the disk. We have observed (Figure 6) and also
statistically verified (Table 1) that a triangulation obtained
in such a manner performs much better than an arbitrary
triangulation in producing aesthetically pleasing morphs.

The most popular way of morphing geometric shapes is
object space morphing which involves two important steps.
The first step is to establish a good correspondence between
the primitive objects, e.g. points and triangles, in the source
and target shapes. The second step is to obtain a good
locus for each such object in the morphing process, such
that local deformations and undesired self-intersections in
the intermediate shapes are reduced as much as possible
[21, 20, 18, 25].

Morphing between boundary curves can also be performed
by re-parametrization of one of the curves [5, 19], or by using
implicit functions to represent the curves [26, 27].

While most of the above approaches interpolate between
source and target curves explicitly, they have to take care
of avoiding self-intersections in the intermediate shapes also
explicitly (except when using implicit functions). One way
to ensure suitable properties for intermediate shapes dur-
ing morphing is to map the interiors of the source and tar-
get closed curves, and morph them. Triangulating both the
source and the target shapes with a compatible triangulation
is an example of such a mapping [8, 9, 7, 22]. A compati-
ble triangulation between the source and target shapes can
be obtained by introducing Steiner vertices [2] in the inte-
riors of the shapes. [3] shows that two simple polygons can
be triangulated in a compatible way using at most O(n2)
Steiner vertices, where n is the number of points in each
polygon. The number of Steiner vertices required to obtain
a compatible triangulation depends largely on the geomet-
ric correlation of the source and target shapes making this
method quite complex.

Another approach followed in morphing geometric shapes
and genus 0 polyhedral surfaces is to use frequency domain
analysis [13] or wavelet domain analysis [12].

When the source and target shapes are simple polygons,

both of them can be mapped to a common convex shape,
and the union set of the points in the source and target can
be used for interpolation in morphing. Each point in this
union set will have a representative in both the shapes and
hence vertex correspondence is established [4, 17, 1, 14, 15,
23] Many morphing algorithms also employ user interaction
for specifying certain feature points in the source and target
shapes [10, 16].

The input to our problem is a triangulation of the in-
terior of a self-overlapping curve obtained from [24]. This
triangulation explicitly provides a mapping between the disk
and the curve interior. We reformulate this mapping func-
tion by re-meshing the curve interior, such that the obtained
mapping closely follows the deformation pattern of the disk.
Since the curve is a boundary of an immersion of a disk,
the triangulation of its interior is topologically equivalent to
triangulation of a disk. This forces the dual graph of our
triangulation to be a tree, and specifically with no vertex in
the interior of the shape/disk. Hence in contrast to all the
previous methods, our morphing algorithm does not use in-
ternal Steiner vertices, but re-models the mapping function
itself. Once a good triangulation of the interior of the curve
is obtained, each individual triangle can be morphed from
source to target, using only affine transformations which are
easy to compute and symmetric by construction. We also
present an algorithm that makes use of the tree structure
of the dual graph of our triangulation in order to compute
the prominent features of the curve. These features in two
curves can be aligned to provide us with the vertex corre-
pondence that is required for morphing one self-overlapping
curve into another.

3. ALGORITHM OVERVIEW
In this paper, we present the first algorithm to morph

between two self overlapping curves which are boundaries of
immersions of a disk, such that all the intermediate curves
are also boundaries of immersions of a disk.

Triangulating self overlapping curves: Our first goal
is to morph a circle, which is the boundary of a disk to a
self-overlapping curve. Given a self-overlapping curve, there
are many mappings or immersion functions from a disk to
its deformation. The quality of the morph depends on the
uniformity of this mapping in terms of various geometric
parameters like area and distance between points. A direct
approach of obtaining this mapping is to triangulate the disk
and its immersion with a compatible triangulation1. Such
a triangulation of the self-overlapping curve is computed
by [24] in O(n3) time, where n is the number of vertices of
the curve. However, there are many such triangulations pos-
sible, and computing all possible triangulations and choose
the best triangulation for our application is of exponential
complexity and hence prohibitively expensive. So, instead
of computing the best triangulation directly, we start with
an arbitrary triangulation and perform a series of edge swap
operations to change the triangulation to the one that satis-
fies constrained Delaunay properties. We observe that both
qualitatively (Figure 3) and quantitatively (Table 1), such

1Two triangulations are compatible if there exists a bijective
function π between the vertices of the triangulations such
that the vertices ijk form a triangle in the first shape if
and only if the vertices π(i)π(j)π(k) form a triangle in the
second shape (Figure 2).



Figure 2: Compatible and incompatible triangula-
tions. The left and center triangulations are com-
patible. Given a vertex i in the left figure, its
corresponding vertex in center figure is π(i) = (i +
8)mod10 + 1. The right triangulation is incompatible
with the other two. A simple observation is that the
vertex 1 in the right triangulation has degree 5 while
no vertex in the other triangulations have degree 5,
implying that they are incompatible.

Figure 3: The dual graphs and their simplifications
of two different triangulations of the interior of a
self-overlapping curve. The left two figures shows
the dual graph of an arbitrary triangulation. The
right two figures show the dual graph of the tri-
angulation obtained by re-meshing, which gives an
indication of the deformation pattern of the disk.

a triangulation is more suitable for morphing applications
than any arbitrary triangulation.

Morphing compatible triangulations: Once a trian-
gulation is obtained for the deformed disk, the same triangu-
lation is imposed on the (convex shape) disk, thus yielding
a compatible triangulation. If the source and target shapes
are two self-overlapping curves which are triangulated inde-
pendently, a simple O(n2) search can be done to check if the
two triangulations are compatible, and if they are, we find
the vertex-vertex correspondences between two curves that
results in compatible triangulation (Section 5).

As a side note, we would like to mention that without con-
sidering the mapping between the interiors of the curves, no
curve-to-curve morphing algorithm between the self overlap-
ping curves can ensure that all the intermediate shapes are
also self overlapping (Figure 4).

Morphing incompatible triangulations: Since the

Figure 4: Top: Morphing a self-overlapping curve
into another without taking into account their inte-
riors introduces twists. Bottom: Morphing of the
same curves taking into account their interiors pro-
duces a simple rotation.

Figure 5: Edge flipping to attain Delaunay condi-
tion. Left: The sum of the angles α and δ is less
than 180◦. Center: This triangulation does not meet
the Delaunay condition as the circumcircles contain
more than three points. Right: Flipping the com-
mon edge produces a triangulation which meets the
Delaunay condition.

dual graph of the re-triangulation closely follows the disk-
deformation pattern (Figure 3), we use this observation to
identify dominant features of the shape and present a sim-
ple method to align these features in two shapes. This sig-
nificantly reduces the incompatibility in the triangulation
(Section 6.1). The remaining incompatibility is gradually
removed during the morphing process by a series of edge flip
operations(Section 6.2).

4. TRIANGULATING SELF-OVERLAPPING
CURVES

Given a self-overlapping curve, an arbitrary triangulation
of its interior can be obtained from [24] in O(n3) time, where
n is the number of points on the curve. Since our morphing
algorithm is based on transforming each individual triangle,
the quality of the morph depends largely on the triangu-
lation. For example, the presence of many sliver triangles
degrades the quality of morph considerably. In order to at-
tain a uniform triangulation by eliminating sliver triangles
as much as possible, we perform a series of edge swaps on
the given triangulation based on the Delaunay criterion (Fig-
ure 5). Note that, any number of valid edge swaps will still
produce a valid triangulation of the interior of the curve.
Effectively, at the end of this step we obtain a Constrained
Delaunay Triangulation (CDT) of the interior of the curve.
Further, note that traditional CDT cannot be performed on
a self-overlapping curve because it is by definition a self-
intersecting polygon. As Figure 3 shows, the triangulation
obtained using the edge-swapping process clearly brings out
the deformation pattern of the disk.

The edge flipping algorithm [6] is summarized in Algo-
rithm 1. Next we verify that the algorithm terminates. Let
A denote a vector of interior angles of all the triangles in an
arbitrary triangulation T , sorted in ascending order, and A′

be the same for a Delaunay triangulation. Since a Delaunay
Triangulation maximizes the minimal angle, A′ is lexico-
graphically larger than A. As each edge flip increases the
minimal angle of the quadrilateral concerned, the new angle
vector is always lexicographically larger, upper bounded by
A′. Hence the algorithm terminates.

4.1 Compatibility of Triangulations
A valid triangulation of the interior of a self-overlapping

curve can be imposed on the disk, which is a convex shape.
While morphing between two self-overlapping curves, we
first introduce vertices on the curves such that both are rep-
resented using the same number of vertices, say n. After



Figure 6: Morphing using a random triangulation (top) shows all the changes happen in a small region, and
using our re-triangulation method (bottom) shows that the morphing among the regions of the curve is more
uniformly distributed.

Algorithm 1 Edge Flipping algorithm

Input: An arbitrary triangulation, T , of the curve interior
Output: CDT, T ′ of the curve interior
S: A stack containing all the edges of T
while S is non-empty do
POP an edge ab from S and mark it
if ab is not locally Delaunay then
FLIP ab to cd
for xy ∈ ac, cb, bd, da do
if xy is marked then
unmark xy and PUSH into S
end if
end for
end if
end while

triangulation, we need to check if their triangulations are
compatible. Since both shapes do not have any internal ver-
tices, and have the same number of vertices on the bound-
ary, there is an implicit ordering of vertices in either of the
curves. Assuming a fixed orientation for both curves, let the
ordering of vertices in sequence be pi and qi, 0 ≤ i < n, on
the first and second curves respectively. Let d(v) denote the
degree of vertex v. We observe that, in our specific problem,
two triangulations are compatible if and only if there exists
a k, 0 ≤ k < n such that d(pi) = d(q(i+k) mod n), ∀i, 0 ≤
i < n. This compatibility can be checked by a simple O(n2)
method. Further the value of k that satisfies the above con-
dition gives the vertex-vertex correspondence between the
curves that is required for morphing between compatible
triangulations.

5. MORPHING COMPATIBLE TRIANGU-
LATIONS

Given compatible triangulations of the interiors of two
self-overlapping curves, we transform each triangle from its
source position in one triangulation to its corresponding tar-
get triangle in the other triangulation. Since the dual graph
of a triangulation of a disk, and hence the interior of a
self-overlapping curve, is a tree, we choose a triangle as a
starting triangle (the root node) to propagate the transfor-
mations through the entire tree. Given such a rooted tree,
every node has a unique parent and hence the transforma-
tion propagation direction is also unique. For every triangle,
we call the edge that is shared by its parent as the base of
that triangle, the vertex not on the base as its third vertex,
and the edge(s) shared by its children as propagation edge(s)
of the triangle. Let the shape interpolation factor t be 0 for

the source shape, 1 for the target shape, and between 0 and
1 for all the intermediate shapes. Given the source triangle,
its corresponding target triangle, and the shape transforma-
tion factor t, the goal is to find the new shape, T of the
source triangle.

We transform the source triangle such that the vertices
on the base of the source and target triangles align with
each other. Let this transformation be D. Then we move
the third vertex of the source toward the third vertex of the
target as much as dictated by t, to get the intermediate tri-
angle. Moving of the third vertex from source to target can
follow any reasonable path and this path affects the quality
of morphing. We discuss more about this path later in this
section. This movement of third vertex is followed by the in-
verse transformation D−1 of the intermediate triangle to get
the desired morphed triangle. This process is repeated for
every triangle from the root triangle to all the leaf triangles
in the tree in order to get the intermediate deformed shape
of the source curve corresponding to t. The above morphing
is repeated in sequence for discrete values of t from 0 to 1
to get the entire morphing sequence.

Note that during the transformation of one triangle, the
two vertices of the base edge are not moved at all. With
the transformation D−1, the vertices of the base edge trans-
forms back to their original positions. Only the third ver-
tex is moved in the process. But when the third vertex is
moved, the edges incident on it, which may be propagation
edges, change, thus affecting the base edges of the children of
this triangle. Thus the transformation implicitly propagates
through the tree through the movement of just one vertex
(namely, the third vertex) for every triangle. This simple
procedure also converges to the target shape when t = 1,
despite the intermediate transformation D. In other words,
the transformation D for all triangles (except for the root
node) also converge to an identity matrix when t = 1. At
the end of the morphing process, the entire source and tar-
get self-overlapping curves differ only by transformationD of
the root node, which is also smoothly interpolated through
the morphing sequence in order to become the target root
triangle.

As is clear from the above procedure, interpolation of the
third vertex for each triangle is critical in arriving at a good
morphing. A simple procedure is to linearly interpolate the
position of the third vertex from its source and target po-
sitions. However, the position of the third vertex dictates
the length of the propagation edge, if any, of the triangle,
and hence the base edge of its children, say Tc. Ideally, for
a smooth morph, the base length of Tc should increase or
decrease monotonically during the morph, which cannot al-
ways be guaranteed by a linear interpolation (Figure 7). So,



Figure 7: Transforming a source triangle ABC1 to
the target triangle ABC2. BC1 and BC2 are the
propagation edges in the source and target respec-
tively . In the left figure, a simple sliding of the
propagation edge will first reduce its length, and
hence the area of the child triangle (shown in grey)
and then increase it. So a rotate and slide mecha-
nism is used (center figure) to calculate the length of
the propagation edge at an intermediate stage. The
propagation edge retains its length from the source
triangle upto the point Ck and then starts increas-
ing monotonically. The right figure shows the sit-
uation when the propagation edge is monotonically
decreasing from the source to target, and hence a
simple sliding of the third vertex from C1 to C2 is
sufficient.

instead of simply sliding the third vertex from its source to
target positions, we use the following approach that ensures
that the length of the (propagation) edge that is the base
edge of a child is always between the lengths of the corre-
sponding source and target edges.

Let l1 and l2 be the lengths of the corresponding propaga-
tion edges of the source and target triangles, and lt be the
same in any intermediate shape. We use linear interpolation
between the third vertices of source and target triangles, if
during this process lt increases or decreases monotonically.
Otherwise, a part of this path is replaced by a circular curve
segment with radius min(l1, l2), while the rest remains a
line segment (Figure 7). The comparison of the results of
the morphing process, one using linear transformation and
the other using our new slide-and-rotate method is shown in
Figure 8.

The above method works even if both edges incident on
the third vertex are propagation edges. In this case, at most
one of these edges will have non-monotonic changes in its
length during linear morph, and the above algorithm has to
be applied to that edge. Our method not only makes the
length variation monotonic for the propagation edge that it
is applied to, but also preserves monotonicity of the length
of the other propagation edge.

While a linear interpolation of the third vertex is bet-
ter at preserving or smoothly interpolating the areas of the
triangles, it can adversely affect the transformations of its
children. Our above modified path is better at achieving
predictable variations of the edge lengths, and thus isolates
the side-effects of transformation of the parent from propa-
gating to the children (Figure 8).

6. MORPHING INCOMPATIBLE TRIANGU-
LATIONS

Let us now consider incompatible triangulations of two self
overlapping curves. We first insert vertices on the curve to
ensure both curves have the same number of vertices. Then
we identify a single vertex per shape that in some sense rep-
resents an important feature of that shape. These vertices,

Figure 8: Top: Morphing with linear interpolation
of the third vertex. Bottom: Interpolation with ro-
tation and sliding. The shrinkage in shape in the
top row is highlighted with red circles, showing that
rotation and sliding is better than simple interpola-
tion.

called the pivot vertices, are aligned between shapes and the
vertices are re-indexed. This alignment of features improve
the quality of the morph. Since the number of vertices are
the same in both self-overlapping curves, one triangulation
can be transformed to another through a sequence of edge
flips, and be made into compatible triangulations. The only
problem is that not all edge flips are valid in the presence
of concavities in the curve. We perform edge flips gradually
when the shape morphs and becomes more and more con-
vex. Once the triangulation of the other shape is reached,
they become compatible triangulations, morphing between
which can be done as described in Section 5.

6.1 Vertex correspondence by Pivot Triangle
Matching

Given a self-overlapping curve, we present a simple algo-
rithm to identify its visually prominent vertex. Since the
triangulation of the interior of self-overlapping curve is just
a triangulation of a disk, its dual graph is a tree. The tri-
angles corresponding to the leaf nodes of the dual graph
represents visually important features of the shape, and the
path between the two farthest leaf nodes of the graph would
represent the ‘spine’ of the deformation. The algorithm to
find the ‘spine’ in the tree proceeds as follows. Let the nodes
in the dual graph with degree 1 be called leaf nodes, with de-
gree 2 be called path nodes and others, internal nodes. First
a leaf node that is closest (in terms of number of hops) to an
internal node is identified. This leaf node and all the edges
in its path to the internal node are removed. This reduces
the degree of that internal node, and in the dual graph of
a triangulation, this internal node will become a path node.
The above process is repeated until there are only two leaf
nodes left, and we define the path between them as the spine
of the shape. We choose one of the two end triangles of the
spine, and label it a pivot triangle, and the vertex of the
pivot triangle that is not shared by its neighboring trian-
gle as the pivot vertex. We align the pivot vertices of the
two shapes and reindex their vertices in order to achieve the
required alignment of features.

The alignment of pivot vertices helps significantly during
the morphing process. Figure 9 shows the morphing between
two shapes with and without this alignment. Pivot vertices
are marked in the last two rows in Figure 11. Pivot triangles
capture in some sense, the semantics of the shape and hence
has proved critical for morphing.

6.2 Edge Flips between two Triangulations
Section 5 describes an algorithm to morph between shapes



Figure 9: Morphing with (bottom) and without(top)
matching stable triangles.

with compatible triangulations. Two triangulations of the
same point set can be transformed from one to another, and
made compatible by applying a finite number of edge-flip
operations [11].

Let us now consider two triangulations of a disk with the
same point set. In general, computing the minimum num-
ber of edge flips to convert one triangulation to another is
not trivial. As [11] has shown, the upper bound of the num-
ber of such edge flips required is the number of intersections
between the edges of the source and target triangulations.
However, the complexity of the algorithm to compute such
a minimum sequence of edge flips is unknown, even for a
convex polygonal shape. We follow a simple algorithm to
determine a sequence of edge flips, which may not be mini-
mum, but guarantees the conversion of one triangulation to
another. The algorithm is based on reducing the number
of intersections between the edges of the two triangulations.
First, we sort the edges in the target triangulation of the
disk in an increasing order of the number of its intersections
with the edges in the source triangulation of the same disk.
Then, for each edge in this sorted sequence, we flip all the
edges in the source triangulation that intersect it.

Consider two self overlapping curves S1 and S2 with same
number of points, and their triangulations T1 and T2. Us-
ing the algorithm described in Section 5, we can impose the
triangulation T1 on a disk with same number of points and
morph S1 to disk. At the end of the morph sequence, we can
change the triangulation of the disk to T2 with the index-
aligned set of vertices between S1 and S2. With this new
triangulation T2 of the disk being compatible with the tri-
angulation of S2, we can again morph between this disk to
S2, thus achieving a sequence of morph between S1 and S2.

Let the intermediate shapes of morphing S1 to a disk be
S1(u), and that of morphing from S2 to disk be S2(v). In-
stead of performing all the edge flips only after S1 is fully
morphed to a disk, we propose to do the edge flips during the
morphing process as and when it is allowed by the convexity
of S1(u) (Figure 10). When the edge flips are done to S1(u),
the corresponding edge flips are also performed on the disk
to which it is morphing, in order to maintain the compati-
bility of the triangulations. Once the triangulation of T2 is
reached on S1(u), for some u ≤ 1, since it now has a com-
patible triangulation with S2, instead of morphing to a disk,
S1(u) can be directly morphed to S2. A similar value for v
can be found at which S2(v) allows T1, the triangulation of
S1.

Ideally, we would like the morphing function to be sym-
metric. In other words, if M(S1, S2) gives all the intermedi-
ate shapes when morphing from S1 to S2, then we would like
M(S1, S2) = M(S2, S1). So we compute both u and v and
choose the minimum of u and v. Without loss of generality,
let v be the minimum. We use all the sequence of shapes
between S1 to S2(v) and from S2(v) to S2 to be the total
sequence of shapes for morphing between S1 and S2.

Figure 10: Morphing two shapes through a sequence
of edge-flips. Shape 1 has a triangulation T1 and
shape 2 has a triangulation T2 to start with. Each
shape is morphed to a disk with gradual edge flips,
such that the triangulation of the shape and the cor-
responding disk changes at every step. At position
u, the morphed shape 1, S1(u) has attained the trian-
gulation T2, and at v, the morphed shape 2, S2(v) has
attained the triangulation T1. Assuming v < u, S2(v)
is morphed to shape 1, each intermediate morphing
having the triangulation T1.

7. EXTENSION, ANALYSIS AND DISCUS-
SION

Evaluation: The quality of the morphing is dependent
on the triangulation of the deformed disk. We would like to
quantitatively evaluate the quality of the triangulation for
its suitability to morphing application. Second, we have ob-
served that if in different geometric parameters (like area),
the different triangles vary uniformly throughout the morph
sequence, then we get a smooth morph. Based on this ob-
servation we construct a matrix of triangle areas where each
row of the matrix denotes the area of each triangle in the
triangulation, and each column denotes a morph sequence
or frame. The rank of this matrix gives us a measure of the
uniformity of areas of different triangles over different morph
frames. If the areas of the triangles vary perfectly uniformly
over the morph sequence, which is characteristic of a good
morph, the columns of this matrix will be linearly dependent
upon one another, and we will get a very low rank of the ma-
trix. We also compute the absolute change in area of each
triangle between every two adjacent frames i and i+1. This
gives us an n vector of differences for every frame, where n
is the total number of triangles. The length of this n-vector
gives the magnitude of the difference between frames i and
i + 1. For a uniform morph, we can expect this magnitude
to be the same between any two adjacent frames. Variance
in this magnitude should be minimum for a smooth morph.
Results show that our triangulation quantitatively produces
a much better morph when compared to the those produced
by an arbitrary triangulation (Table 1).

Discussion: As discussed earlier, the dual graph of a
triangulation of a self-overlapping curve is a tree, and the
transformation propagation of the triangles for morphing
begins by selecting a node of this tree as a the root. We
have observed that different choices of the starting triangle
have an effect on the quality of morphing. Experimentally,
we have chosen the starting triangle to be the one which
lies closest to the center of the disk. This has the effect of



Figure 11: Morphing two self-overlapping curves using our re-triangulation method. The last four rows show
the results of morphing between incompatible triangulations. The blue dots in the source and target shapes
denote the matched pivot vertices.

Table 1: Comparison of the quality of morph, based
on statistical parameters of triangulations. The first
row shows the curves for which these parameters
are evaluated. The third row gives the rank of the
matrix of areas (AR), and the fourth row gives the
variance of difference in areas of the triangles for
a given shape between successive frames. The Y
column under each shape gives the results from an
arbitrary triangulation and the X column gives the
same for the morph obtained by re-meshing.

Curve
Re-meshed/arbitrary X Y X Y X Y X Y
AR 7 31 17 42 10 13 23 36
Var 0.01 0.11 0.01 0.02 .007 0.008 0.007 .03

uniformly propagating the transformation in all directions.
Deeper investigation is required to find the best possible
starting triangle for the best morphing results.

When the triangulations of the two shapes are not com-
patible, we perform a sequence of edge flips to convert the
triangulation of one to another. Since the edge flips are in se-
quence, certain edge flips cannot be performed until an edge
flip appearing earlier in the sequence has been performed.
Since an edge flip is possible only if the corresponding vertex
is convex, it may so happen that most of the edge flips are
possible when a shape is very near to a circle in the morph-
ing sequence. Ideally, we would want all the edge flips to be
complete as early as possible to produce a smooth morph.
Although it may not be theoretically possible to compute
the minimum number of edge flip sequence, more investiga-
tion is required for ordering of given set of edge flips (not
necessarily minimum) such that all the edge flips can be
completed as early as possible in the morphing process.

Feature alignment of the two shapes while morphing is
also an important factor which affects the smoothness of
morph. The alignment produced by our pivot triangle match-
ing discussed earlier assumes that with one feature align-
ment, all other features (leaf triangles) may also get aligned.



We need a better method to align multiple features, and re-
triangulate the curve based on this alignment. We believe
that this method can produce better morphing results. We
are also working on alternative structures for representing
self-overlapping curves that may be suitable for morphing.

8. SUMMARY
Our core contribution of this work is a new morphing al-

gorithm for a class of self-intersecting curves that are im-
mersions of a disk. Our morphing algorithm ensures that
all the intermediate shapes during the morph are also self-
overlapping. Our algorithm is also extended to handle self-
overlapping curves that have incompatible triangulations.
We have presented a progressive edge flip based algorithm,
that converts both the geometry and the triangulation dur-
ing morphing, in order to achieve compatible triangulation.
This algorithm is guaranteed to terminate as any self-overlapping
curve can be morphed to a circle and this circle, being con-
vex, can allow the triangulations of both the source and the
target self-overlapping curves.
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P. Schröder. Multiresolution mesh morphing. In Proc.
of the 26th annual conference on Computer graphics
and interactive techniques, SIGGRAPH, pages
343–350, 1999.

[17] A. Lerios, C. D. Garfinkle, and M. Levoy.
Feature-based volume metamorphosis. In Proc. of the
Computer graphics and interactive techniques,
SIGGRAPH, pages 449–456, 1995.

[18] L. Liu, G. Wang, B. Zhang, B. Guo, and H.-Y. Shum.
Perceptually based approach for planar shape
morphing. In Pacific Conf. on Computer Graphics and
Applications, pages 111 – 120, oct. 2004.

[19] T. Samoilov and G. Elber. Self-intersection
elimination in metamorphosis of two-dimensional
curves. The Visual Computer, 14:415–428, 1998.

[20] T. W. Sederberg, P. Gao, G. Wang, and H. Mu. 2-d
shape blending: an intrinsic solution to the vertex
path problem. In Proc. of the 20th annual conference
on Computer graphics and interactive techniques,
SIGGRAPH, pages 15–18, 1993.

[21] T. W. Sederberg and E. Greenwood. A physically
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