Pacific Graphics 2009
S. Lee, D. Lischinski, and Y. Yu

Volume 28 (2009), Number 7

(Guest Editors)
Curvature Aware Fundamental Cycles
P. Diaz-Gutierrez* ' and D. Eppstein! and M. Gopi'
University of California, Irvine
Abstract

We present a graph algorithm to find fundamental cycles aligned with the principal curvature directions of a
surface. Specifically, we use the tree-cotree decomposition of graphs embedded in manifolds, guided with edge
weights, in order to produce these cycles. Our algorithm is very quick compared to existing methods, with a
worst case running time of O(nlogn + gn) where n is the number of faces and g is the surface genus. Further, its
[fexibility to accommodate different weighting functions and to handle boundaries may be used to produce cycles

suitable for a variety of applications and models.

Categories and Subject Descriptors (according to ACM CCS):

Generation—Line and curve generation

[.3.3 [Computer Graphics]: Picture/Image

Figure 1. Fundamental cycles generated by our flexible control of
cycle computation on a triangle mesh with 50,000 faces. The six
cycles computed in this genus 3 model were found using a simple
breadth-first construction of the spanning tree to guide our algorithm.
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1. Introduction

There are many applications of algorithms for understand-
ing the topology of geometric models, and they continue to
grow as the field develops. Examples include surface param-
eterization, faithful surface reconstruction, morphing across
arbitrary shapes and even computational chemistry. Among
the most useful topological shape descriptors are the funda-
mental cycles of a surface M — classes of closed paths on M
that cannot be continuously retracted into a point (they are
not trivial in M). These curves provide useful information
that can be used to determine the compatibility of the surface
shape with that of other surfaces; additionally, small cycles
may indicate regions of incorrect surface reconstruction, or
they may represent insignificant details whose elimination
will allow for higher-quality simplification of the model.

A simple flooding algorithm on the faces of a mesh repre-
sentation of the surface can be used to find fundamental cy-
cles, but the cycles found in this way are not well shaped
and not very useful for many applications. On the other
hand, algorithms that find minimum-length fundamental cy-
cles exist but they are more expensive [CMO7], exhibiting
a computational complexity of 0(g3/ 232 4 2yl 2), or
the recent [ZJLGO9] which computes a representative for
each homotopy class. Not much earlier, an elegant algo-
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rithm [DLSCS08] was presented to produce geometrically
aware fundamental cycles. This method can also distinguish
the curves between handles and tunnels, as it tetrahedralizes
the space in which the surface is embedded. However the
tetrahedralization step of this method may itself be expen-
sive, and this method requires the input model to be water-
tight. The method we present does not require information
about the space in which the surface is embedded, and there-
fore is unable to determine whether the cycles produced are
tunnels or handles.

Our intent is to develop algorithms for fundamental cycles
that are highly efficient, that are robust in the face of minor
defects in the model, and that allow the user the flexibility
to specify the desired fundamental curves for any particu-
lar application. We provide a simple mechanism to indicate
the priority of the edges of the shape that are more desirable
to the user. An efficient and robust graph algorithm finds and
evaluates a gamut of solutions and selects those that meet the
given criteria and constraints. Notably, our method can also
handle manifolds with boundaries without any preprocess-
ing. We demonstrate the usability of our approach by effi-
ciently producing fundamental cycles that follow the general
directions of minimum and maximum curvature.

1.1. Main Contributions
The following are the main contributions of this paper:

e We present a method to guide a tree-cotree decomposi-
tion to produce fundamental cycles on manifolds with or
without boundaries following user recommendations.

e We propose an efficient method to evaluate all the possi-
ble fundamental cycles allowed by the algorithm, and to
efficiently pick those that best fit the recommendations.

e We analyze the properties of the possible cycles produced
by the previous algorithm, in order to quickly determine
whether they are contractible, separating or fundamental.

e We demonstrate our method by using an edge weighting
scheme to produce curvature aware fundamental cycles,
naturally producing curves that adapt to the foldings of
the processed shape.

As part of our algorithm, we require a listing of the bridges
of a graph, a problem that can be solved by the classic bi-
connected graph component algorithm [Tar72]. We describe
an easy-to-implement version of this algorithm that lists all
bridges in linear time.

This paper is organized as follows. We begin with a brief
review of the relevant literature. Next we introduce the tree-
cotree decomposition, which forms the basis for our contri-
butions in this chapter, along with the outline of an algorithm
to quickly evaluate the possible fundamental cycles enabled
by a given decomposition. We continue by describing the
techniques that we use to guide the decomposition and hence

to compute the fundamental cycles of the input shape. Fi-
nally, we discuss relevant implementation details and show
the results of our implementation.

2. Previous Work

The potential for topology understanding algorithms is vast
and growing, not only in computer graphics and computa-
tional geometry, but in unrelated areas like computational
chemistry [LEF*98]. A few of the applications and algo-
rithms that analyze and process topology include surface pa-
rameterization [GY 03], generating topologically correct iso-
surfaces from scalar data [Nat92, SV03], simplification of
excess genus [WHDSO04], representation via geometry im-
ages [GGHO2], as well as topology independent morphing
and cross-parameterization [LYC*06]. Fundamental to all
these applications and algorithms is the computation of dif-
ferent topological descriptors. Here we review a few of such
algorithms with a focus on fundamental cycles. We also re-
view the background for the tree-cotree decomposition, the
algorithm on which we base our contributions.

Topological descriptors: One important milestone in com-
putational topology was presented by [DE93], for the com-
putation the Betti numbers of a geometric 3-dimensional
complex, following a more general study [DC91] which
tackles simplicial complexes. Soon, the formalization of the
field [DEG99] encouraged researchers to use similar incre-
mental algorithms for their computation and revisit con-
cepts from graph theory related to topologically embed-
ded graphs. The recent surge of interest in Reeb graphs
[PSBMO7, PSFOS8] since they were first introduced to com-
puter graphics [SKK91] represents a good example. Origi-
nally defined in 1946, Reeb graphs [Ree46] combine funda-
mental cycles with other curves derived from Morse function
analysis, offering a succinct representation of the geometric
and topological structure of a shape. The fundamental cy-
cles of the shape, which are the main topological element
of our interest, can be extracted [CMEH"03] from the Reeb
graph of a shape. However, although some methods exist to
produce a less complex Reeb graph [NGHO04] by modifying
the scalar function that generates the graph, by being tied
to the singular values of a function defined on the surface,
they lack flexibility in the design of these curves. Recent
work [DLSCSO08] uses an incremental algorithm to compute
geometry aware handles and tunnels. For the classification
of the fundamental cycles into handles and tunnels, the ob-
ject and the embedded space have to be tetrahedralized and
analyzed.

From the point of view of graph theory, relevant results have
been known for decades, although variations of the problem
of computing optimal cycles under different measures are
still under active development. Some methods aim at pro-
ducing the generating cycles [Epp03] in a purely combina-
torial way. The problem of finding the shortest set of cuts
to split a closed manifold into a set of topological disks is
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known to be NP-hard [EHP02], and so is the related prob-
lem of finding the shortest splitting cycle on a combinatorial
surface [CCAVE*08]. On the other hand, the complemen-
tary problem of finding the shortest non-separating and non-
contractible cycles is expensive but tractable [CMO07]. For
these reasons, it is common to start with a rough approxi-
mation and then converge to a local minimum in some geo-
metric measure a posteriori, typically geodesic cycle length
[YJGO7,CdVLO7]. A similar approach is to turn the problem
into finding the shortest set of fundamental cycles passing
through one [YJGO7] or several [CCO7] given points in the
surface.

Tree-cotree decomposition: In a planar graph, the comple-
mentary set of edges to any spanning tree forms a spanning
cotree (spanning tree of the dual graph) [KR87]; this fact
was used, e.g., by Von Staudt in 1887 to prove Euler’s for-
mula v — e+ f = 2 [Som58]. Several algorithmic problems
on planar graphs benefit from partitioning the edges of the
graph into a spanning tree and a spanning cotree; these in-
clude dynamic maintenance of minimum spanning trees and
connectivity information [EIT*90], point location data struc-
tures [GT91], and geometric group theory [GROS5,RT06].

For a graph embedded on a surface of higher genus than the
plane, Eppstein defined and proved the existence of free-
cotree decompositions [Epp03] in which the edges of the
graph are partitioned into three sets: a spanning tree of the
primal graph, a spanning tree of the dual graph, and a small
number of leftover edges. When applied to graphs embed-
ded in orientable surfaces of genus g > 0, the decomposi-
tion leaves exactly 2g edges that do not belong to either
the spanning tree or the spanning cotree. These edges are
the key to producing the fundamental cycles of the embed-
ding surface. Tree-cotree decompositions can be used to ef-
ficiently compute and maintain the generators of dynamic
graphs [Epp03] and to find short generating sets with a fixed
basepoint [EWO05]. As we will see below, fundamental cy-
cles that follow different design criteria can be computed by
appropriately guiding the construction of the spanning tree
and cotree.

3. Computing Fundamental Cycles

In this section we introduce a method for computing the fun-
damental cycles of a manifold with or without boundaries.
We also describe techniques that allow the user to indicate
the desired direction that the cycles ought to follow. Finally,
we present algorithms to efficiently select the shortest among
all the possible cycles satisfying the user requirements.

3.1. The Tree-Cotree Decomposition

A graph formed by all the vertices and edges of the polygo-
nal mesh is called the primal graph. Its dual graph has one
node for each mesh face, and an edge between two nodes
if their associated mesh faces share a mesh edge. We call
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a spanning tree of the primal graph just spanning tree for
simplicity. A spanning tree of the dual mesh graph is called
a spanning cotree.

Definition 1. Tree-cotree decomposition: A tree-cotree
decomposition of a mesh is a partition of the set E of edges
of a mesh into three sets (T,C,E \ (T UC)), where T is the
set of edges in the spanning tree and C is the set of mesh
edges corresponding to the edges of the spanning cotree.

The tree-cotree decomposition can be computed directly
from the definition in linear time on the size of the input
mesh. First a spanning tree 7" is constructed. Every spanning
tree is part of a tree-cotree decomposition [Epp03], so the
remaining part of the decomposition may be found by com-
puting a spanning tree C for the subgraph of the dual graph of
the mesh formed by the edges in E \ T'. Since the tree-cotree
decomposition is a partition of the mesh edges, T NC = (.

Let us briefly analyze the properties of this decomposition.
Let V, E and F be the number of vertices, edges and faces
of the input mesh, respectively. A spanning tree has ex-
actly V — 1 edges, while a spanning cotree contains F — 1
edges. Applying Euler’s characteristic for a genus g surface
(V—-—E+F =2—2g), since the mesh edges correspond-
ing to spanning tree and cotree are disjoint, the number of
leftover mesh edges in the tree-cotree decomposition is 2g.
Each of these leftover edges, when added to the spanning
tree, creates a cycle — a non-separating fundamental cycle.
In Figure 2 we can see a tree-cotree decomposition and the
resulting fundamental cycles.

If the input is a manifold with boundaries, holes are handled
transparently by this algorithm. The above calculations re-
main correct by considering every boundary loop to enclose
a hypothetical face. The geometry of this hypothetical face
does not need to be determined. This is a significant distinc-
tion from other algorithms that require a well defined inside
and outside partition of the embedding space for correctness.

Figure 2. Left: Tree-cotree decomposition of a toroidal triangle
mesh, showing the spanning tree (red) and the spanning cotree
(blue). When added to the spanning tree, each leftover edge (green)
induces a fundamental cycle. Right: Fundamental cycles resulting
from the previous decomposition.

The key new idea behind our method is to assign weights to
mesh edges to guide the spanning tree and spanning cotree
construction. Prominent user criteria are expressed as edge
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weights in order to guide the method to the formation of cy-
cles that are close to the desired curves. In our application
described in Section 5, we use the deviation of the edges
from the minimum or maximum curvature direction on the
mesh as edge weights. The reason for this choice is that the
minimum and maximum curvature directions concisely de-
scribe the folding structure of the shape, and are thus use-
ful for multiple applications where surface cutting needs to
adapt to these features. While those criteria that can be ex-
pressed as edge weights can be taken care of this way, ap-
plying certain global constraints like shortest loops requires
evaluating many cycles to choose the best one. We present
an efficient graph algorithm that uses lowest common ances-
tor queries to measure the length of all possible fundamental
curves within this smaller set of cycles that satisfy the user
criteria. In the process, we also extend the classic algorithm
by [Tar72] to find and eliminate those edges in the dual graph
that do not generate any fundamental cycle in the primal. As
a result we create the best 2g number of fundamental cycles
of the given mesh for a given edge weighting scheme. This
method is explained in detail in Section 3.2.

3.2. Candidate Connection Detection

Given a set of edge weights that express the preferred di-
rection of the fundamental curves, we compute a minimum
spanning tree 7 on the mesh graph and a maximum span-
ning tree C on the dual graph of the mesh; these two trees
are known to be disjoint [Epp03]. The complexity of this
part of the algorithm, using simple and easy to implement
minimum spanning tree algorithms such as Kruskal’s algo-
rithm, is O(nlogn) where n is the number of faces (or edges)
in the input triangular mesh; even linear time algorithms ex-
ist for cases with low genus. Faster time bounds may be
achieved by using more complex minimum spanning tree al-
gorithms [KKT95]. The edges left over from both the span-
ning tree and cotree, when added to the spanning tree will
form the desirable fundamental cycles. Each cycle is formed
by one of these leftover edges together with the path in the
primal spanning tree connecting the edge’s two endpoints.

The above algorithm, although guaranteed to produce topo-
logically correct cycles, can produce fundamental cycles of
vastly different geometric shapes with a small change in
the location of the chosen leftover edges (see Figure 3). In
other words, the edge weights alone, though they help steer
the direction of the fundamental cycles locally, cannot opti-
mize a global criterion to produce geometrically well shaped
curves. To produce cycles of better shapes, we modify the
decomposition, keeping the minimum spanning tree 7' but
replacing C by a different cotree. In this, we diverge from
previous works like [Epp03, EWO05], which explicitly com-
pute the maximum spanning cotree. In the process, we eval-
uate all the fundamental cycles that could be created as part
of a tree-cotree decomposition involving 7. Every edge in
E\ T will create a cycle in the spanning tree, but only some

of them will create fundamental cycles; our goal is to quickly
find the mesh edges (also called candidate connections) that
create fundamental cycles, evaluate those cycles, and choose
the best cycle.

Figure 3. A given spanning tree (blue) in the tree-cotree decomposi-
tion can form very different fundamental cycles (red) with the choice
of even adjacent candidate connections (green).

Definition 2. Cograph: A subgraph of the dual graph that
does not include the dual edges corresponding to the edges
of the spanning tree.

In other words, the cograph is the spanning cotree along with
the edges corresponding the the leftover edges in the tree-
cotree decomposition.

Definition 3. Candidate connection: Given a mesh M and
a spanning tree T, a mesh edge e is called a candidate con-
nection if T U {e} produces a fundamental cycle in M.

Specifically, any mesh edge whose corresponding dual edge
is not a bridge edge of the cograph is a candidate connection
and would induce a non-separating fundamental cycle in the
primal graph. Bridge edges of graph G are those which, if
removed, would split G into disjoint components; a bridge
edge must belong to any spanning tree of G, so the bridge
edges of the dual graph must belong to the cotree C and
cannot be used to generate fundamental cycles in our tree-
cotree decomposition. Bridge edges can be of two types,
as illustrated in Figure 4: Dangling bridges are the edges
which are removed if we iteratively “shave” all the degree-1
vertices. All other bridge edges are called internal bridges.
This classification has interesting implications. Mesh edges
corresponding to dangling edges in the co-graph induce con-
tractible cycles in the primal graph, while those of internal
bridges induce non-contractible, but separating cycles. Nei-
ther of them are desirable to use as fundamental cycles. The
following algorithm identifies all the bridge edges and re-
moves them. Once these edges have been removed, the re-
maining edges are our desired candidate connections.

(© 2009 The Author(s)
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Figure 4. Dangling bridges (blue) and internal bridges (red) on the
cograph of a tree-cotree decomposition. Unlike the candidate con-
nections (yellow), bridge edges do not induce fundamental cycles.
Instead, they induce contractible and separating cycles, respectively.

In order to find the bridge edges, we extend a classic bicon-
nected graph components algorithm [Tar72] which can also
be used to find the graph articulation points (a concept anal-
ogous to bridge edges, but with vertices). We begin by com-
puting a graph G’ derived from the original cograph G. Each
edge in G produces a node in G’, and two nodes in G’ share
an edge if their corresponding edges in G share a common
node. In this derived graph G’, the articulation points corre-
spond to bridge edges in G. This algorithm for the identifi-
cation of all the bridge edges in the cograph has O(n) time
complexity with linear memory requirement.

3.3. Candidate Connection Evaluation

The candidate connections in the cograph as found above in-
duce fundamental cycles in the primal. Our measure of eval-
uating each of these fundamental cycles is its hop-length.
We use the the lowest common ancestor (LCA) algorithm to
measure the length of all fundamental cycles. Let a candi-
date connection e connect two nodes e, and e, of the span-
ning tree T. There is a unique path p(eq,ep) in T from e,
to ep. If we pick an arbitrary vertex r to be the root of
T, then the LCA of two nodes, denoted by Ica(a,b) is the
root of the smallest subtree that contains both e, and ep,.
The path p(eq,ep) goes up from eq to Ica(eq,e;) and back
down to ej,. The fundamental cycle induced by edge e is
plea,ep) U{e}, and its total length, measured as the number
of edges it contains, is given by 1 +depth(eq) +depth(e,) —
2depth(lca(eq,ep)). Each query for LCA of two nodes can
be answered in a constant time using an appropriate data
structure [BFC00, GT83,HT84, SV88] that is constructed in
linear time in the size of the tree, which in our case is O(n).
Furthermore, the length of the fundamental cycles corre-
sponding to each candidate connection can be precomputed
and stored, since this value is fixed.

This method evaluates the length of a graph cycle as the
number of edges it contains. If the length of the edges is
uniform, this is a good approximation of the total geodesic
length. Otherwise, we can incorporate geodesic distance to
the LCA algorithm by replacing the node depth in the com-
putations of cycle length by the distance from the root of the
tree, at no additional cost in asymptotic time complexity.
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Finally, cycles can be further shortened using a simple local
optimization. If a cycle goes through two edges of a triangle,
it can be modified to pass through the third edge of the trian-
gle. Wider searches can be applied if desired, always looking
for a shorter way to connect two near points along the curve.
This method can be modified to locally re-route cycles along
lower cost paths, as per by the user given weights, instead of
just shorter paths.

3.4. Candidate Connection Selection

All candidate connections, when added to the spanning tree,
produce fundamental cycles. But only 2g of them belong to
distinct homotopy classes. The rest are topologically equiv-
alent to these 2g cycles, or to combinations of these cycles.
The goal is to find these best 2g candidate connections and
hence the best 2g fundamental cycles.

We perform this selection using a greedy algorithm, as fol-
lows. We choose the best candidate connection as evaluated
in Section 3.3 as our first connection and remove it from
the cograph. This removal might cause many others of the
candidate connections to become bridge edges. These newly
formed bridge edges are exactly the candidate connections
that would induce fundamental cycles of the same homo-
topy class as the chosen candidate connection. We then run
the modified Tarjan’s bi-connected graph component algo-
rithm (Section 3.2) to remove these new bridge edges too.
We repeat the above process of selection of candidate con-
nection and removal of bridge edges, exactly 2g times, at
which point there will be no more candidate connections to
be considered. The result is a tree-cotree decomposition in
which we have selected the tree T first, the 2g generating
edges E \ (T UC) second, and in which the cotree C con-
sists of any remaining edges not selected to generate cycles,
in contrast to the previous method of finding 7' and C first.
Performing the choices in this order gains us greater con-
trol over the shapes of the cycles we find. The time com-
plexity of this entire method is O(gn) since we have to run
the linear-time biconnected graph component algorithm 2g
times. When taken as a whole, our algorithm produces non-
optimal results in terms of cycle length, unlike methods like
[EWO05]. On the other hand, our method has an easy imple-
mentation and performs asymptotically faster. Furthermore,
as shown in Section 4, it produces cycles that in practical sit-
uations can be paired as complementary, in a way similar to
that of [DLSCSO08].

4. Extensions

Our main algorithm, presented in earlier sections, is based on
the tree-cotree decomposition, and inherits all of its proper-
ties. In this section we present extensions to our algorithm
that, although they are not theoretically proven to work all
the time, we could not find a practical case when they failed.
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4.1. Complementary Cycles

The above method produces the required 2g fundamental cy-
cles for a specific edge-weighting scheme. We can process
these cycles to pair ‘complementary’ cycles, under certain
situations, for their further use in merging of two sets of fun-
damental cycles produced under different edge-weighting
schemes.

Many simple models may be formed by attaching disjoint
handles and tunnels to a sphere, such that the pair of fun-
damental cycles describing each feature are disjoint from
the other cycles describing the other features, as shown in
Figure 5; such a family of cycles is known as a canonical
schema [LPVVO01], and it exists for any closed 2-manifold.

When the cycles we find form a canonical schema, we may
determine which pairs of cycles are mutually complemen-
tary (informally, they are the tunnel and handle of the same
topological feature), by counting the number of times a pair
of fundamental cycles cross each other: if they intersect
an odd number of times, then they can be complementary
[DLS07] (see Figures 1 and 5). The simple case, a canoni-
cal schema, can be detected as the situation in which each
fundamental cycle intersects an odd number of times with
exactly one other fundamental cycle. It is true in general that
not all sets of fundamental cycles can be paired up by this
odd cross-count measure. But our algorithm, directly derived
from the tree-cotree decomposition, only generates cycles
which are indeed paired in such way, and hence we have not
found practical cases where the algorithm fails.

p ? ‘)\\\/

S —

Figure 5. Fundamental cycles paired by a relationship of comple-
mentarity. Cycles colored the same way are complementary handles
and tunnels. Without considering the embedding space, it is not pos-
sible to tell which one is which.

To test quickly whether two cycles intersect an odd num-
ber of times, and to properly handle the situation in which
two cycles overlap in a set of edges rather than crossing at
a finite vertex set, we take advantage of the fact that our cy-
cles all have the form of a single candidate edge added to a
path in a common spanning tree 7. To do so, we form the
preorder and postorder vertex sequences of T (in both cases
traversing the children of each vertex in 7 in clockwise or-
der according to the local orientation of the model). A cy-
cle formed by the candidate edge (u,v) and a second cycle
formed by the candidate edge (w, x) necessarily cross an odd
number of times if and only if these four vertices occur in
the same sorted order in both preorder and postorder, and

this sorted order interleaves the endpoints of the two edges;
for instance, if the vertices appear in the order u, w, v, x in
both preorder and postorder. If the sorted order of the ver-
tices is different in preorder and postorder, then there is an
ancestor-descendant relationship among two of the vertices,
and the cycles may be perturbed so that they cross an even
number of times. And if the sorted order of the vertices is
the same in preorder and postorder, but not interleaved, then
the cycles necessarily cross an even number of times.

Thus, after O(n) preprocessing (computing the preorder and
postorder numberings) we may detect whether any two cy-
cles intersect an odd number of times in constant time. We
may then test all pairs of cycles, and detect the situation in
which each cycle intersects an odd number of times with ex-
actly one other cycle, in a total of O(gz) time, smaller than
the O(gn) time taken by our algorithm for finding the set of
fundamental cycles. This method successfully pairs cycles of
the canonical schema into complementary cycles since each
cycle has a unique pair with which it has an odd intersection.

For more complicated models and sets of fundamental cy-
cles that cannot be uniquely matched in this way, we may
nevertheless partition the cycles into complementary pairs,
as follows. Form a graph (not necessarily bipartite) in which
the vertices represent fundamental cycles and the edges rep-
resent pairs of cycles that intersect each other an odd number
of times, and match cycles into complementary pairs by find-
ing a perfect matching in this graph. Using the same preorder
and postorder numbering technique described above to test
the number of crossings of each pair of cycles, we may con-
struct the graph in time O(g? + n). Finding a perfect match-
ing in the resulting unweighted non-bipartite graph may be
performed in time 0(g5/2) [MV80] (or in time O(g*) using
easier to implement methods such as Edmonds’ blossom-
contraction algorithm [Edm65, Gal86]). Therefore, includ-
ing the time to construct the tree-cotree decomposition, this
algorithm takes a total time of O(gn+nlogn+g° / 2). Unless
the genus is very large (g > n*/3 for the o(g’ / 2)-time match-
ing algorithm, or g > n'/? for the cubic-time algorithm), the
time for the matching step is dominated by the time for our
tree-cotree decomposition algorithm.

4.2. Merging Sets of Fundamental Cycles

In some applications, the two cycles in each pair of funda-
mental cycles may be required to follow two contradictory
goals. In order to satisfy them, the algorithm for generat-
ing sets of fundamental cycles can be run for two different
edge weighting schemes (for example, once using a weight-
ing scheme that forms a tree 7 with edges in the direction
of minimum local curvature, and a second time using a dif-
ferent weighting scheme that forms a tree 7 with edges in
the perpendicular direction of maximum local curvature). In
each run we get 2g fundamental cycles. We would like to
pick 2g out of the total of 4g cycles with the following goal:
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In the chosen 2g cycles there are exactly g complementary
pairs and in each of the complementary pairs, one cycle fol-
lows one weighting scheme (say, minimum curvature direc-
tion) while the other cycle follows the other scheme (say,
maximum curvature). A simple example of this operation is
illustrated in Figure 6.

Figure 6. Cycles generated along maximum (left) and minimum
(middle) curvature directions, respectively. Among each set of cycles,
those highlighed in color are picked by the cycle merging algorithm
(right).

To see why this problem is, in general, difficult, consider the
simplest case, the torus with g = 1. Any cycle in the torus
may be represented by a pair of integers (a,b), where a de-
scribes the number of times the cycle wraps around the han-
dle of the torus and b describes the number of times the cy-
cle wraps around the tunnel. This representation describes an
equivalence between the fundamental group of the torus and
the additive group of two-dimensional integer vectors. Two
vectors (a,b) and (c,d) generate the entire two-dimensional
integer lattice if and only if the determinant ad — bc is £1;
geometrically, this corresponds to the two corresponding cy-
cles having signed crossing number £1, where the signed
crossing number of one oriented cycle with respect to the
other is determined by adding +1 for each left-to-right cross-
ing and —1 for each right-to-left crossings. Thus, for in-
stance, if one pair of fundamental cycles is represented by
the numbers (1,0) (a handle) and (0,1) (a tunnel), while the
second pair of fundamental cycles is represented by the num-
bers (2,3) (a curve that spirals around the torus wrapping
twice around the handle and three times around the tunnel)
and (3,4), then there can be no way of choosing one cycle
from the first pair and one cycle from the second pair in order
to form a combined basis, because each of the four determi-
nants of one vector from {(1,0), (0,1)} and one vector from
{(2,3),(3,4)} is too large.

In cases when complementary pairs do not exist across two
different sets of cycles as explained above, either one of the
two sets of 2g cycles is still a valid solution. In common
cases, given two sets of 2g cycles, we may group them into
complementary pairs (as in the previous section), and form
a bipartite multigraph G with one node per complementary
pair. We include an edge between two nodes of G’ when
there is a way of choosing a cycle from each of the two cor-
responding complementary pairs in such a way that the two
chosen cycles have signed crossing number +1. In this case,
we use the sum of the lengths of the two cycles as the weight
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of the edge in GP. A minimum weight perfect matching in
GP will give us a collection of g complementary pairs of cy-
cles from the 4g cycles of the union of the two sets. Comput-
ing each crossing number takes O(n) time, and the graph G*
has O(g) vertices and O(g?) edges, so the total time for this
matching algorithm is O(g*n+g>) = O(g*n). We get a com-
plete set of 2¢g fundamental cycles when each cycle chosen
by this algorithm has zero signed crossing number with each
other cycle except the one to which it is matched. Thus we
can merge the cycles found by two different edge-weighting
schemes, into a single set of complete fundamental cycles.

5. Curvature Aware Fundamental Cycles

The entire algorithm explained in Section 3 requires a
weighted mesh as input. In this section we explain our
method for assigning edge weights to find curvature aware
fundamental cycles. First we compute the principal direc-
tions at every vertex on the mesh, and use these directions to
assign edge weights.

‘We estimate the principal direction vector field via principal
component analysis of quadric matrix constructed at every
mesh vertex [GH97]. More sophisticated methods exist, but
we pick this one for its simplicity. Given a polygon normal
Np = (a,b,c)7, its associated 3 x 3 quadric matrix is defined
as the product Q) = N,,N; . A quadric matrix at a vertex v
is given by the sum of the quadric matrices of all its inci-
dent polygons Q" = ¥, Op. The first two eigenvectors of 0"
indicate the directions of minimum and maximum surface
curvature, respectively. Then we smooth this vector field us-
ing Laplacian filtering to minimize the effect of the inherent
unstability of the principal curvature on a surface. The con-
straint that minimum and maximum curvature vector fields
are mutually orthogonal is imposed to prevent inconsistent
vector drift across the two fields. We then weight each edge
by the average angle the edge makes with one of the vector
fields (say, minimum) at its incident vertices. For our pur-
poses, the sign of the vector field is irrelevant in angle calcu-
lation. This weighted mesh is used in our algorithm to find
the fundamental cycles. A second set of fundamental cycles
is computed by assigning edge weights based on the maxi-
mum curvature direction vector field. Cycles can be chosen
from either set to produce a final set of fundamental cycles
as needed by the application at hand.

Figure 7 shows the two vector fields on the mesh, the edge
weighting scheme for minimum curvature direction, and the
fundamental cycles chosen by our algorithm.

One of the most important complications of fair vector field
design on surfaces is dealing with twirls and other singu-
lar points in the field. Their potential effect in our algorithm
would be that of randomly redirecting fundamental cycles
that enter the twirls. To prevent this, we first detect these
singular vector field regions by measuring the vector field
distortion with respect to adjacent mesh vertices, and thresh-
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Figure 7. Smoothed minimum (blue) and maximum (red) curvature direction vector fields. The middle image shows the edge weights with
respect to the minimum curvature direction. Higher priority is shown in yellow and lower priority in blue. The detail of the tail region shows that the
edge weights are well aligned with the intended curvature direction. Finally, the figure on the right show a yellow cycle coming from a maximum
curvature optimization, whereas the red cyle is the result of a minimum curvature weighing. The mesh contains 22,000 faces.

olding them. High turbulence regions are given the highest
priority to be included in any spanning tree. This effectively
makes the twirl regions “hubs” of the spanning tree, thus
removing their influence in the general direction of the fun-
damental cycles. In Figure 7, these hub regions are shown in
yellow.

6. Results

We tested our algorithm in several models with wide vari-
ety of geometric and topologic complexity. The results are
shown in Figures 7 through 11. An experimental implemen-
tation running on a low end laptop (Intel Centrino 1.66 GHz,
512MB RAM) took less than two minutes to finish process-
ing the largest model shown, with 480,000 faces. That in-
cludes all the preprocessing steps such as model loading,
vector field estimation and smoothing. This is a substantial
improvement over the state of the art, with algorithms often
requiring several hours to finish.

Edge weights were the angle between the direction of the
edge with the value of an underlying tangent vector field.
Though there is no restriction on the type of vector field
used for this purpose, we chose a smooth curvature frame
in order to produce pleasant curves. On one hand, we have
a spanning tree that connects edges along a pre-determined
general direction, and on the other hand we pick the shortest
cycle that can be generated using this spanning tree. These
apparently conflicting goals produce results that wrap natu-
rally around the folds of the shape. In summary, the compu-
tational aspects of our algorithm are entirely flexible. They
are flexible in terms of the edge weighting scheme and also
the way we build the spanning tree in an unweighted case.
For example, a simple breadth-first construction of the tree
has produced the results shown in Figure 1. All these aspects
of weight computation are transparently replaceable compo-
nents of our algorithm.

Figure 8. Left: Fundamental cycles on a screw model (10,000
faces), following the direction of minimum curvature. Notice how the
curves snap to the edges, where the orientation of the curvature di-
rections is more sharply defined. Right: Cycles on the wrench model
(8,000 faces) using just one weighting scheme followed by simple
tightening of the cycles (a curve that passes through two edges of a
triangle is made to pass through only the third edge).

7. Conclusion

We have introduced the use of the tree-cotree decomposi-
tion for the guided computation of the fundamental cycles
of a manifold with or without boundaries. This method can
be driven to produce cycles that satisfy any user require-
ments, as long as they can be expressed as a set of edge
weights in the graph embedded in the surface. We demon-
strate our method by designing a weighting scheme that pro-
duces curves following the principal curvature directions.
Finally, our method is very easy to implement and it can be
extended using edge weighting schemes suitable for other
applications.
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Figure 9. The elk (left, 10,000 faces) and fertility (right, 480,000
faces) models feature cycles from two different executions of our al-
gorithm: once for edge weights favoring minimum curvature direc-
tion, and once for the maximum curvature direction.

Figure 10. Left: Fundamental cycles on a manifold with boundaries
(12,000 faces). Boundaries are shown in red. No special precau-
tions are necessary to handle them. Right: Fundamental cycles on
genus 3 Neptune model (34,000 faces).
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