
From the Browser to the Remote Physical Lab:
Programming Cyber-physical Systems

Steffen Peter, Farshad Momtaz and Tony Givargis
Center for Embedded and Cyber-physical Systems, University of California, Irvine, USA

Email: {st.peter, fdmomtaz, givargis}@uci.edu

Abstract—Cyber Physical Systems (CPSs) integrate networked
embedded computation systems with real-world physical in-
stallations. Programming of CPSs is not trivial, since CPSs
combine traditional programming challenges and real-world
timing, concurrency, and communication. This paper shows how
a programming framework that allows students to implement
and test CPS control programs in their Internet browsers, can
improve both the students’ learning experience and learning
results. Students model and program a CPS application on a
high abstraction level in a web page. This web page, provided
by the instructor, invokes the student’s code either together
with the CPS as functional specification models in a virtual
timing environment, or as component in a real-world system that
interacts with a real remote physical implementation. Using the
provided abstraction, students can incrementally design a CPS
and experience challenges such as channel delays, model uncer-
tainties, and real-time behavior, but without the need for complex
low level programming or tools. For a CPS example system,
we applied the framework in an embedded system design class.
Our results show, the ability of a JavaScript-based programming
and execution environment to design, program, and run CPSs
on different levels of abstraction. Our results also indicate an
increased approval from the students and a significantly improved
understanding of modeling and programming in the class.

I. INTRODUCTION

Cyber Physical Systems are systems that integrate a net-
worked embedded computation subsystem (the cyber system)
with physical subsystems from the mechanic, hydraulic, or
electric domain. Examples are as simple as a garage door
opener to complex systems such as medical robots, self-driving
cars, or the electric grid. Therefore, building cyber-physical
systems requires broad interdisciplinary knowledge, including
appropriate physical models, precise timing, but also correct
programming and implementation skills.

Due to their focus on specific domains, classic domain-
specific curriculums do not support the required overview and
abstraction. As one example, specific technical implementation
details such as memory addresses and port numbers still
dominate the embedded systems education, but are alienating
for non-computer engineers.

In recent years, a range of new colloquiums and courses
were proposed to address the development of cyber-physical
systems [1], [2]. Most of the approaches rely on abstract
simulations in environments like Ptolemy, Matlab, or in virtual
labs that focus on the physical attributes of the system. While
these approaches help to educate the concepts of modeling

and physical integration, the abstraction is very high. Impor-
tant concepts like timing, communication, programming, and
event-handling are abstracted away so that an actual real-life
implementation is not supported. The problem is not new.
Already Vahid [3] described the trade-off between abstraction
and implementation detail in embedded system education,
and proposed a virtual computer system and a time-oriented
programming model, which however only focuses on the
embedded system properties.

In this paper we extend Vahid’s idea to the programming of
CPSs. We propose a framework that allows students to program
the control system of a CPS in an abstracted but real-time
oriented programming language. The programming and model
abstraction is based on Process State Machines (PSMs), which
model concurrent processes, communication and timing on a
high abstraction level without the need to express low-level
implementation details. The student programs are developed
in the JavaScript programming language, which is available on
most state-of-the-art internet devices. Therefore, students can
practically control a virtual or real physical remote system
from their laptop, tablet or even mobile phone. While the
students’ program is implemented and runs in the web browser,
the physical system is executed on a remote location – either
as virtual plant or on a real physical plant. The architecture
facilitates, for instance, to run the program for a simulated
virtual plant in a homework assignment, and execute the same
program on a real physical system in class.

The benefits of our approach are:

1) the availability of a simplified in-browser program-
ming language, which improves the accessibility of
CPS programming,

2) the support of a experiment-driven systematic tran-
sition from PSM models, over abstract simulations
and transaction-level models to an actual physical
experiment,

3) the support for smaller CPS examples that can be
addressed in student’s homework but also in demon-
strations and discussions in class.

In this paper we describe the methodology of our frame-
work and outline the programming model (Section III). In
section IV, we discuss the approach in detail for the educa-
tional cyber-physical system ‘the Falling Ball’ [4]. The results
originating from a graduate system design class indicate the
suitability of our approach to support the education of CPS
design, both technically as well as pedagogically.

978-1-4799-8454-1/15/$31.00 ©2015 IEEE

II. CURRENT CURRICULUMS AND RELATED WORK

The education of CPS has drawn increasing attention in
recent years and has been addressed in a range of dedi-
cated workshops at major conferences. Examples are CPS-
Ed - Workshop on Cyber-Physical Systems Education along
the CPSWeek, and WESE - Workshop on Embedded and
Cyber-Physical Systems Education along the ESWeek. The
workshops produced a range of compelling approaches and
example systems for educational purposes. For instance [5]
proposed a focused programming language for dynamic sys-
tems. The application scenario is the control of a boat in a sea
with currents. The example was discussed and evaluated in
a simulation environment. While relatively simple and easily
understandable, the example is not trivial and reveals a range
of important CPS algorithm challenges, such as the impact of
discretization of continuous systems and computation delays
to the correctness of the system.

One educational system that can be built in practice is the
coupled tank system as discussed by [6] and further applied by
[7]. The idea of the system is to balance the levels in coupled
tanks with a variable inflow and outflow. [6] proposed a web-
based virtual laboratory for the system, but the system can be
modeled and build in practice as well, with design kits such
as [8].

Another popular teaching instrument for control CPSs –
both in practice as well as in simulations – are inverted
pendulum systems as for instance discussed by [9]. In those
systems a pendulum has to be stabilized with appropriate
control mechanisms calculated on a computation platform. The
pendulum systems are well-suited for the education of cyber-
physical control systems. However, the emphasis on control
limits its application as a simple general CPS example.

Other CPS examples include capabilities of mobile phones
into the CPS research. For instance [10] applied Android
platforms to automatically classify human activities based
on models developed in model-based simulation tools. An
extended example that facilitates teaching by sensor-driven
mobile applications was discussed by [11]. However, such
mobile platform is already a complex system for which the
integration in a course is not trivial. Other complex use cases
include the robotic systems discussed in [12], the amphibious
vehicles proposed by [13], or a search and rescue robot
outlined in [14]. Such complex examples are exciting and
motivating for students and researcher to investigate many
interesting details in designing and building CPSs. However,
due to their complexity such project usually forbid a complex
design analysis, and in-depth discussion of design challenges.
In addition, the integration of complex use cases in course
frameworks is questionable in most cases.

Recent proposed CPS courses such as the flipped classroom
course by [1] or the CPS undergraduate in-class courses
introduced in [2] rely on a set of smaller design examples
to demonstrate the variety of CPS design challenges. Due to
its accessibility is our programming framework and the falling
ball example, which is discussed in this paper, a promising
contribution for easy integration in such on-class or flipped
classroom setups.

From the technological perspective, online submission and
assessment tools for programs written by students exist and

Web page

JaveScript editor
programming

window

Cyber-physical Environment:
x Plant
x Channels
x Concurrent processes

Virtual or Real-world
x different timing detail

lib.js
Implements:
Send, channelWait,
getTime, timeWait,
run

RUN

uses

ES

Connect
to

Fig. 1. Architecture of the programming framework: the instructor provides
a web page with instructions and a programming window. Students write the
application code in this programming window using abstract functions for
communication and timing (in lb.js). The run button includes the students
program in a cyber-physical run-time environment

have been reviewed in [15]. These tools, however, do not
provide an interactive programming and experimentation en-
vironment and do not replace the installation of a dedicated
development environment on the student’s computer. Our ap-
proach does not aim at online submission but can be considered
as a CPS run-time environment that can be programmed in
JavaScript.

JavaScript has already been proposed as language to ed-
ucate basic programming concepts [16]. The proposed works
focus on development for web pages or online games. Our
work does not aim for web page programming. Instead we
apply the capabilities of modern browsers to directly execute
JavaScript code that is typed into the editor window of a web
page, which is provided by the instructor of a class.

III. JAVASCRIPT-BASED PROGRAMMING OF CPSS

In this section we discuss the technical background of
the applied programming framework. We further outline the
student’s user experience as well as the required steps for the
instructor to set up the educational programming environment.

As introduced, the primary goals of the framework are to
provide

• a well-defined and easily understandable programming
model,

• a clear abstraction from technical details such as
timers or communication channel,

• and the flexibility for instructor to set up the CPS run-
time environments ranging from timeless functional
abstraction models to real-world experiments.

We realize these goals with our educational programming
framework, whose architecture is illustrated in Fig. 1. When
students load the instructions web page in their browser,
they see a page with instructions, an editor window, and a
run button. The editor window allows students to enter their
JavaScript program. In this program students are encouraged to
use a set of abstract platform-independent functions to access
channels and the timing. These abstract high-level functions
are provided by the instructor in a library file (lib.js),
together with the code to access the run-time environment.
Pressing the RUN button, the student’s code will be included

P1

P2

P3 ch1

timech2

Fig. 2. Concurrent Process State Machine as basic model, containing
process states (P1, P2, P3), state transitions (arrows between processes), and
communication channels (ch1, ch2).

in the run-time environment and the system will be executed.
Results of the run will be shown in a text box or graphically.

In the following subsections we discuss the suitability of
JavaScript as a lightweight programming language, process
state machines as the selected programming abstraction for
the students, and the different kinds of cyber-physical envi-
ronments that can be set up by the instructor.

A. Browser execution with JavaScript

As the underlying programming language we selected
JavaScript for a range of reasons: JavaScript is a cross-platform
scripting language and is supported by most operating systems
and web browsers. Therefore, the execution of JavaScript does
not require additional programs, tool chains or plug-ins on
most platforms. While JavaScript code is usually embedded
into the web page, with the eval and globalEval functions
any use-provided code can be executed just in time. Even
though JavaScript is a scripting language with an uncompli-
cated syntax structure, it is still very powerful, so that classes
are available to build online connections or to draw images.

Another advantage of JavaScript is its popularity. Ac-
cording to latest statistics, JavaScript is the most popular
programming language in the web [17]. From teaching per-
spective, the popularity has important benefits, as it results in
existing knowledge and interest in the language. The broad
availability of material and online support on online platforms
like stackoverflow [17] is valuable for instructors and students
as well.

The application of JavaScript requires to consider potential
drawbacks, too. One disadvantage of the browser programming
is the lack of debugging and syntax checking. The interpreter
does not evaluate a line of code until this line actually is
supposed to be executed, so that errors may stay unnoticed
or result in unpredictable behavior. To cope with the syntax
issues, we used the ACE editor [18] which provides syntax
highlighting and live syntax checking. Another potential dis-
advantage is the low and non-deterministic performance of
today’s JavaScript interpreters. Since the intended size of the
projects is rather small, we are convinced that the benefits such
as good usability and easy understanding outweigh the listed
drawbacks.

B. Programming Model and Abstraction

While the browser-based execution environment techni-
cally supports a wide range of structured and unstructured
programming schemes, in our work we focus on a program-
ming model that is based on the concept of process state
machines (PSMs). The construction of a PSM model is widely
considered one important first step in the design of embedded

if (state == 1) {

t1 = getTime();

send("ch1");

state = 2;

}

if ((state == 2) && waitChannel("ch2")) {

print("Round trip time="+(getTime()-t1));

}

Listing 1. Example JavaScript code for channel timing measurement (for
PSM in Fig. 2).

systems [19]. PSMs allow a designer to model concurrent,
communicating processes with a very concise semantic, con-
sisting of processes (states), state transitions, and commu-
nication channels. As we will discuss later, PSMs are also
suitable tools to model the behavior of the physical part and
the interfaces of CPSs. As example, the PSM shown in Fig. 2
contains three processes: P1 and P2 are executed in sequential
order, and P3 is a concurrent process. Between concurrent
processes we allow communication and synchronization with
abstract directed channels. In Fig. 2, P1 may send data to P2
via channel ch1, while P3 may send data to P2 via ch2. Due to
the importance of timing for CPSs, we explicitly model timing
as separate channel. Details such as the underlying platform
or timing details of the channel are not considered. However,
in the PSM abstraction, the implementation details of timing
and channels are not important. As a result, students can use
a small set of abstract function hubs to implement the PSM
model. Important basic functions are:

• waitChannel(ch): reads from channel ch,
• send(ch, msg): writes optional message msg to

channel ch. send without msg works as synchroniza-
tion mechanism,

• getTime(): returns the time in ms,
• waitTime(t): waits until time t.

These basic functions are part of the library (lib.js), provided
by the instructor. Using these functions, students can imple-
ment the PSM in JavaScript independent from the underlying
system.

As an example Alg. 1 shows the JavaScript code for the
PSM in Fig. 2, as it can be entered in the editor box of the
web page. Alg. 1 implements a round-trip time measurement
between process P1-P2 and the concurrent process P3. Visible
are the two states, as well as the interaction with the channel
(waitChannel and send) and the time (getTime). Alg. 1
may be executed in a virtual environment or in the real world
to measure the channel latency to a remote process. The
environment is invariant to the students, but set up by the
instructor within the instructions web page.

C. Setting up the Environment

One important idea of our architecture is that the applica-
tion program (programmed by the students) is separated from
the cyber-physical environment. Therefore students can use
the same application program and apply it to cyber-physical
environments on different levels of abstraction.

We consider two general run-time environments: the Virtual
timing environment and the Real timing environment.

1) Virtual timing environments: A virtual timing environ-
ment controls the timing and progress of all system entities
within the execution environment. Communication channels
and the physical system are simulated. In our experiments, this
virtual environment will be set up and executed as embedded
JavaScript code in the browser. Both, the physical and the
cyber environment are executed in the browser with the same
virtual time.

In the virtual timing environment, several abstraction levels
are supported. The first is the entirely functional specification
model without any timing for computation and communication.
More detailed transaction-level models separate communica-
tion and computation and facilitate the annotation of timings
for each operation.

Benefits of the virtual timing environment are the easy and
fast execution, the low organizational overhead, and the re-
producible results. Since the timing is virtual, the experiments
result in the very same result in every run on every device.

2) Real timing environments: The second run-time envi-
ronment is the real-world, real-time environment. This envi-
ronment does not simulate the physical part in the browser,
but connects the student’s program to an external physical
system via real communication channels, such as the Internet.
The remote physical system may be implemented either as
remote virtual lab executed on a server computer, or as a real
physical installation. The remote physical lab is an emulation
of the real-world system executed on a powerful server. The
remote lab can be used when repeated runs of an experiment
by many users is not feasible for a real physical installation.
The students program works as real-time control program in
both cases.

For the Falling Ball example, which we discuss next, we
realized both, the virtual plant (Section IV-A5) as well as the
real system (IV-A6).

IV. IN-CLASS EXPERIMENT AND RESULTS

We applied the proposed framework in a graduate level
course in the school of Electrical Engineering and Computer
Science (EECS) at the University of California, Irvine. The
basis for the course is the textbook Embedded System Design
by Daniel Gajski et.al. [19], with extensions towards the design
of CPS. The course has been taught in a regular classroom
setup and included lectures and homeworks.

One of the CPSs that was modeled, programmed, and
analyzed in the class, is the Falling Ball example (FBE) [4],
for which we first outline the setup and the implemented
models, and then discuss the results and the implications of
the experiments.

A. The Falling Ball Experiments

1) Use Case: The falling ball example: The architecture
of the Falling Ball example is illustrated in Fig. 3 (A). The
goal of the system is to take a picture when a falling ball
passes a camera mounted on a pole. To determine timings,
the system has two motion sensors. The ball is dropped from
a height initially unknown to the system, while the height of
the sensors and the camera are known. This, in fact simplistic,

Sensor 1

Sensor 2

Ball

control

drop

(A) (B)

Sensors

Camera

Controller
board

Ball

Fig. 3. Setup of the Falling Ball example: (A) as schematics, (B) in practice.

example has some interesting properties of CPSs that refer to
the main challenges of CPSs.

The FBE needs exact timing. The timing relates to the
physical process, which runs completely independent of any
cyber processing. Even though the example can be described in
a physical process, which is well understood by the developer
and can be expressed in well-known mathematical equations,
it is obvious that we will not achieve perfect precision – a
fact that interferes with the needed accuracy requirements. The
system combines various sensors and the actuator. So their
cooperation affects the expected outcome of the system and
needs to be regarded as an important factor.

One beneficial attribute of the Falling Ball example is
the possibility to implement the system with little manual
effort. A practical implementation of the FBE is shown in
Fig. 3(B). The system was realized with on a Raspberry Pi
Model B Revision 2.0 with Debian Linux. We further used two
Honeywell Through Beam Infrared sensors (HOA6299 Series),
which work by detecting an interrupt of the line of light from
the emitter to the detector. The actuator is the Raspberry Pi
Module camera. Two Pyle-Pro Tripod Speaker Stand poles
mount sensors and camera.

We used this setting for local tests (written in ANSI C), but
also as part of the course to connect the student’s JavaScript
programs to the real implementation (see Subsection IV-A6).
Before the real-world test concluded the series of experiments,
we asked the students to model and test the system on different
levels of system detail.

2) PSM modeling: As first development step, before the
control program can be expressed the system has to be modeled
as Process State Machine (PSM). In the class, this modeling
step was given as homework assignment and was later dis-
cussed in class. Fig. 4 shows one correct PSM for the FBE
with concurrent processes in the physical and cyber part as well
as the interfaces. It can be noticed that the system consists of
five concurrent processes: the physical system, the two sensors,
the actuator and the embedded system process. In the PSM
we can already see the boundary of the embedded system,
which eventually should be implemented by the students, and

Cyber Part
(classic Embedded System)InterfacesPhysical

Start

Wait for
sensor1

Wait for
sensor2

Compute t3

Wait until
t3

actuate

Show image

sensor1

sensor2

Drop

fall

camera

s1

s2

act

result

h

ready

time

Fig. 4. Process state machine for the falling ball example: the embedded cyber
system state machine (blue) interacts with the physical system via sensors
and the camera actuator. Communication between the processes is modeled
by directed channels.

the environment, which is provided on the web page by the
instructor. The embedded system in this case consists of six
states, which are implemented next.

3) Functional Model in the virtual timing environment:
The functional specification model allows the students to
implement and test the FBE with ideal (i.e. no) delays and
timing uncertainties in computation and communication. The
functional models of channel and physical model are executed
in a virtual timing environment as invariant JavaScript code
in the student’s browser. The students had to write the control
program, which is an implementation of the ’Cyber Part’ state
machine of Fig. 4.

In the class, students implemented this program together
with an instructor in the editor window of the loaded web page.
Alg. 2 shows one complete functional implementation of the
control part of the PSM. It can be clearly seen how the program
reflects the states, state transition, as well as timing and channel
operations of the PSM. The only complex operation is the
computation of the expected time. The equation was provided
by the instructor. Running the code results in a range of print
outputs and a generated graphic of the ball in front of the
virtual camera (see Fig. 5).

The result of this first executable simulation is that, first,
we successfully translated a PSM into actual code as part of
a simulated CPS, and second, that after few milliseconds the
ball is always caught slightly below the center of the camera.
These observations trigger recommended discussions about the
functional and timely determinism of the result (why is it
always the same on all devices), about the cause why the ball
is caught slightly off center (continuous vs. sampling time),
and the difference between real time and simulation time.

4) Transaction-Level Model in the virtual timing: The
transaction-level model (TLM) extends the functional model
with a decoupled channel model. Thus, timing properties of
computation and communication can be expressed separately,
and can be modeled in more detail. Therefore, in the instruc-
tion web page students have the opportunity to parametrize
the channels. The channel model uses the same syntax and
semantic as the computation model, so that, as example, the

if ((state==0) && waitChannel("S1")) {

t1 = getTime();

state = 1;

}

if ((state==1) && waitChannel("S2")) {

t2 = getTime();

state = 2;

}

if (state==2) {

t_diff = 0.001

*

(t2-t1);

velocity = (h2-h1)/(t_diff) + (g

*

(t_diff)/2);

exp = (-V+Math.sqrt((V

*

V)+(2

*

g

*

(h3-h2))))/g

*

1000;

state = 3;

}

if ((state==3) && (wait_until(s2+exp))) {

send("act");

state = 4;

}

if ((state==4) && (result=waitChannel("result"))) {

print("result ="+ result);

}

Listing 2. JavaScript implementation of the FBE (see PSM Fig. 4).

S2 channel with a 2ms delay can be expressed as
if (waitChannel("S2.in")) {

waitTime(2);

send("S2.out");

}

Each computation and communication operation can be
annotated with a time this operation needs, by adding the
waitTime statement. This allows students to express a timed
model of the system and experience the effect to the outcome
of the simulation and need adaptations of the control program.
Students have to understand the source and quantity of delays
and anticipate the delays in the control program. Advanced
design options include the dynamic measurement of the round
trip time of the channel (see Alg. 1).

5) Remote Virtual Plant Real-world model: The virtual
plant model is a model of the falling ball executed on a remote
server. While the actual plant model is still idealistic (i.e. it
does not consider air resistance or material), we see two major
differences to the previous TLM example: First, real timing,
and second, the use a real Internet communication channel.

Fig. 5. Result after a successful run in the functional model: The simulated
ball is caught by the camera.

lib.js

Real Internet (TCP/IP)

JS CODE

Web Page

RUN

REAL TIME
Server

simulation of
the falling Ball

Fig. 6. Architecture of the FBE experiment with a virtual plant: the lib.js
connects the student’s code to a server computer, that emulates the falling ball
in real time, via the Internet.

The server was implemented on an Intel Xenon machine
running ASP.NET. After the server receives the signal from
the ’drop’ channel (compare Fig. 4), the simulator waits for a
random time before simulating a drop from a random height.
We included the randomness to avoid deterministic behavior
that could be exploited. In the physical simulation, the server
program updates the velocity and position of the ball as fast as
possible (tens of microseconds resolution) in real time. Sensor
signal s1 and s2 are sent to the controller, which has to process
the signals and send the actuation signal at the right time
under consideration of the channel delays. After receiving the
’actuate’ signal, the server generates a picture of the ball at
the simulated position.

While the complexity of the simulation is substantially
increased, the student’s control program remains unchanged.
All platform-dependent code was added in the lib.js, and
remains invariant to the students. The actual control program
still expresses the small PSM, only with added timing antici-
pation.

We conducted this experiment in class to control the virtual
plant, which runs on a server in another building on campus.
Since we use an actual Internet connection, the experiment
outcome is less deterministic. In more than half of the cases,
the ball could not be caught by the camera. The result is not
surprising and motivated discussion on the suitability and the
need for detailed modeling of communication channels for
reliable CPSs.

6) Real-world system: In the final experiment of this series,
we replaced the virtual plant with the Raspberry Pi that
accesses the sensors and the camera. In the classroom students
were able to execute their JavaScript code, expressed in the
web page, to control the physical system in the lab, few
buildings away from the class room. This experiment required
assistance in the lab. We needed to actively drop the ball. The
practical part was recorded on video and projected in the class.
Due to the nature of the experiment only one student at the
time could run the experiment. The outcome was very similar
to the virtual plant setup, since in many runs the ball could not
be caught. In a successful case, however, the student received
a photo of the actual ball, as shown in Fig. 7.

B. Results and Discussions of the Experiments

Admittedly, the organizational and building efforts for the
final experiment are considerable. This observation increases
the importance of the virtual plant setup, which already

Fig. 7. Resulting picture of the falling ball. The ball appears crushed due to
the slow vertical sampling (bottom to top) in the camera sensor.

includes all the timing and programming properties the stu-
dents are supposed to experience. The virtual remote physical
setup contains real timing of control and physical system,
communication over the network, and timing uncertainties in
computation and communication – all at student’s hand in the
Internet browser, without additional tools.

However, the practical setup adds additional benefits: First,
the real experiment is a special event in usually less eventful
programming and design class. In addition, the experiment
gave practical closure to the design flow that started with a
PSM model and which then developed to a real-world cyber-
physical system that can be controlled in real time by a mobile
device in the classroom. In this development process, each
design step is incremental and seems very little, and therefore,
is be easy to understand. We studied this hypothesis in a short
sentiment study. In the survey 82% of the students agreed that
they understand all design steps, while the biggest challenge
was the development of the PSM. Even though the real-
timing experiments failed in many cases due to the unreliable
communication properties, in this survey 86% of the students
agreed that this particular misbehavior helped them understand
the importance of good modeling and the purpose of the design
flow. On a broader question, 96% of students agreed that
the falling ball example helped to understand modeling or
programming of embedded systems in general.

In addition to the student sentiment, we also analyzed the
learning results. We compared the results of weekly graded
quizzes to the results of earlier classes on the same subject.
Compared to earlier classes without the new programming
framework, the amount of correct answers related to model
abstraction and the CPS programming improved from 80.7%
to 95.3%. One particular result is an improved understanding
of abstraction and the impact of channel uncertainties. As com-
parison, the average percentage of correct answers between
the two groups for all other questions increased from 83.0%
to 87.5%. The results indicate that the modeling and timing
abstraction, which was a relative weakness in earlier years,
now is a relative strength of the students.

One additional observation from this class was the in-
creased number of practical student’s projects that investigated
the effect of communication timing and uncertainties. For
instance students applied functional modeling and TLM-based
time sensitivity analysis for an electric circuit breaker in the
smart grid, the control of a quadcopter drone, and the control
of the security and safety system in a smart building.

V. CONCLUSIONS

This paper discussed a browser-integrated development
approach for the education of modeling and programming
of Cyber-Physical Systems. Following our experiments in an
Embedded System Design class class, we can draw three
conclusions:

First, we got confirmation that teaching techniques that
include active programming and experiment-driven analysis
are well received by students. The idea to control a real
physical system from a mobile phone, a tablet or the laptop
in the classroom is appealing to students and instructor. As
a result, not only the student’s approval improved, but also
their results in quizzes on modeling-related questions improved
from 80 to 95%.

The second conclusion addresses JavaScript as a suitable
programming language for the instructor as well as for the
students. JavaScript is a programming language with low
organizational and programming overhead, as it does not
need the setup of error-prone and platform-dependent tool
chains. Applying JavaScript, the proposed framework runs the
program, which student enter in a web page, as part of a virtual
or real CPS.

Finally we can conclude that the education of CPS pro-
gramming and design is feasible with smaller examples and
just within an Internet browser. On different levels of abstrac-
tion and detail, students could run their program, first, as part
of a CPS simulation with entirely virtual timing, then, in real-
time using a virtual remote physical lab, as part of a real
physical setup. The technical interfaces to the environments
in all cases are provided by the instructor and hidden from the
students, who can concentrate on the modeling, programming
and running the experiments.

Based on these results we consider the proposed ap-
proach as promising contribution to programming exercises
for embedded and cyber-physical systems in traditional class
setups, but also to online classes, for which we consider an
implementation in near future.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under NSF grant number 1136146.

REFERENCES

[1] P. Marwedel and M. Engel, “Flipped classroom teaching for a cyber-
physical system course-an adequate presence-based learning approach
in the internet age,” in Microelectronics Education (EWME), 10th
European Workshop on, 2014.

[2] A. M. Cheng, “An undergraduate cyber-physical systems course,” in
Proceedings of the 4th ACM SIGBED International Workshop on
Design, Modeling, and Evaluation of Cyber-Physical Systems, 2014.

[3] F. Vahid and T. Givargis, “Timing is everything–embedded systems
demand early teaching of structured time-oriented programming,” Pro-
ceedings of WESE, pp. 1–9, 2008.

[4] S. Peter, F. Vahid, D. D. Gajski, and T. Givargis, “A ball goes to school -
our experiences from a cps design experiment,” in First NSF Workshop
on CPS Education (at CPSWeek 2013), 2013.

[5] K. Bauer and K. Schneider, “Teaching cyber-physical systems: A pro-
gramming approach,” in Workshop on Embedded and Cyber- Physical
Systems Education (WESE), 2012.

[6] C. C. Ko, B. M. Chen, J. Chen, Y. Zhuang, and K. Chen Tan,
“Development of a web-based laboratory for control experiments on
a coupled tank apparatus,” Education, IEEE Transactions on, vol. 44,
no. 1, pp. 76–86, 2001.

[7] P. Derler, E. Lee, and A. Vincentelli, “Modeling cyber–physical sys-
tems,” Proceedings of the IEEE, vol. 100, no. 1, pp. 13–28, 2012.

[8] QUANSER, Coupled Tanks, 2014,
http://www.quanser.com/products/coupled tanks.

[9] M. Demirtas, Y. Altun, and A. Istanbullu, “Virtual laboratory for
sliding mode and pid control of rotary inverted pendulum,” Computer
Applications in Engineering Education, vol. 21, no. 3, pp. 400–409,
2013.

[10] K. Damevski, B. Altayeb, H. Chen, and D. Walter, “Teaching cyber-
physical systems to computer scientists via modeling and verification,”
in Proceeding of the 44th ACM technical symposium on Computer
science education, 2013, pp. 567–572.

[11] H. Chen and K. Damevski, “A teaching model for development of
sensor-driven mobile applications,” in Proceedings of the 2014 con-
ference on Innovation & technology in computer science education.
ACM, 2014, pp. 147–152.

[12] K. Huang, H. Shah, K. Savant, D. Chen, G. Chen, S. Klose, and
A. Knoll, “A lego/fpga-based platform for the education of cyber-
physical/embedded systems,” in Workshop on Embedded and Cyber-
Physical Systems Education (WESE), 2013.

[13] T. Withrow, M. R. Myers, T. Bapty, and S. Neema, “Cyber-physical ve-
hicle modeling, design, and development,” in ASME 2013 International
Mechanical Engineering Congress and Exposition. American Society
of Mechanical Engineers, 2013.

[14] O. Lawlor, M. Moss, S. Kibler, C. Carson, S. Bond, and S. Bo-
gosyan, “Search-and rescue robots for integrated research and education
in cyber-physical systems,” in e-Learning in Industrial Electronics
(ICELIE), 2013 7th IEEE International Conference on, 2013.

[15] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä, “Review of
recent systems for automatic assessment of programming assignments,”
in Proceedings of the 10th Koli Calling International Conference on
Computing Education Research. ACM, 2010, pp. 86–93.

[16] Q. H. Mahmoud, W. Dobosiewicz, and D. Swayne, “Redesigning
introductory computer programming with html, javascript, and java,”
in ACM SIGCSE Bulletin, vol. 36, no. 1, 2004, pp. 120–124.

[17] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers
talking about? an analysis of topics and trends in stack overflow,”
Empirical Software Engineering, vol. 19, no. 3, pp. 619–654, 2014.

[18] Ace, Ace - The High Performance Code Editor for the Web, 2015,
http://ace.c9.io/.

[19] D. D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner, Embedded System
Design: Modeling, Synthesis and Verification. Springer Science &
Business Media, 2009.

