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An Efficient Compression Scheme for Checkpointing of FPGA-Based 

Digital Mockups

Abstract - This paper outlines a transparent and nonintrusive 

checkpointing mechanism for use with FPGA-based digital 

mockups. A digital mockup is an executable model of a physical 

system and used for real-time test and validation of 

cyber-physical devices that interact with the physical system. 

These digital mockups are typically defined in terms of a large 

set of ordinary differential equations. We consider digital 

mockups impelemented on field-programmable gate arrays 

(FPGAs). A checkpoint is a snapshot of the internal state of the 

model at a specific point in time as captured by some controller 

that resides on the same FPGA. We require that the model 

continues uninterrupted execution during a checkpointing 

operation. Once a checkpoint is created, the corresponding 

state information is transferred from the FPGA to a host 

computer for visualization and other off-chip processing. We 

outline the architecture of a checkpointing controller that 

captures and transfers the state information at a desired clock 

cycle using an aggressive compression technique. Our 

compression technique achieves 90% reduction in data 

transferred from the FPGA to the host computer under 

periodic checkpointing scenarios. The checkpointing with 

compression yields 15-36% FPGA size overhead, versus 6-11% 

for checkpointing without compression.    

 

I. Introduction 
 

Cyber-physical systems (CPSs) are systems where 

computational elements closely integrate and interact with 

physical environments. Examples of CPSs include aerospace, 

automotive, and medical systems. The functioning of a cyber 

device within its physical environment creates a challenge 

during the test and validation phase. Specifically, to test and 

validate a cyber device, one may conduct the test within a 

real physical setting, hence losing key debug capabilities 

such as slower/faster than real-time execution, pause and 

resume, step-by-step debugging, and deterministic rewind 

and replay. Alternatively, a cyber device can be tested within 

a simulated environment, where all aspects of the test and 

validation are controllable. This paper focuses on the latter. 

A case for simulating the physical environment for the 

purpose of test and validation of a cyber device is offered by 

Miller et al. using so called digital mockups [7]. These 

digital mockups are fast and accurate models of physical 

systems implemented to execute in real-time (or faster) on 

an FPGA. Similar digital mockups are shown to be feasible 

for the purpose of test and validation of cyber devices, given 

their high degree of configurability, observability, and 

controllability. Works such as that proposed by Pimentel [3] 

and Huang [8] which utilize FPGAs to simulate physical 

models containing large number of ordinary differential 

equations (ODEs) further illustrate the feasibility of using 

digital high-speed models during test and validation phase of 

CPS devices. 

To increase the usefulness of FPGA-based digital 

mockups, we introduce the design and architecture of a 

checkpointing controller, intended to reside on the FPGA 

and transparently capture and transfer checkpoints at a 

desired clock cycle using an aggressive compression 

technique. A checkpoint in this paper is a snapshot of the 

internal state of the model at a specific point in time, 

captured by the checkpointing controller and transferred to a 

host computer for visualization and other off-chip 

processing. A preferred checkpointing mechanism allows the 

model to execute in an uninterrupted manner during the 

checkpointing operation. 

In essence, our problem is that of capturing a selected 

subset of the internal state of the FPGA, including the 

contents of memory blocks and flip-flops. Wheeler [9] and 

Graham [10] have solved the problem of retrieving and 

restoring data in memory blocks and flip-flops through 

design instrumentation. Nevertheless, continuously creating 

checkpoints of digital mockups poses new challenges 

compared to conventional approaches. 

First, FPGA-based digital mockup are compute intensive, 

usually solving a large number (hundreds to thousands) of 

ODEs in real-time for sufficient model accuracy. The 

corresponding state of such complex models may include 

hundreds to thousands of variables, making capture and 

off-chip transfer of the state impractical. Instead, a common 

solution is the use of on-chip memory to hold a checkpoint 

prior to transfer, limiting the number of checkpoints. Second, 

a digital mockup must continue execution during 

checkpointing operations as the mockup is connected to a 

cyber device that is expecting continuous behavior. 

Therefore, the clock applied to a physical model cannot be 

suspended for any period of time; instead, the instantaneous 
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Fig. 2(a). Example of instrumentation 
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capture of a consistent checkpoint, namely, the creation of a 

complete copy of all model variables in a single cycle, is 

necessary. Third, a checkpoint must be transferred to the 

host computer in a timely manner. Reducing the minimum 

time interval between two consecutive checkpoints, thus 

increasing the overall checkpointing rate, is desirable [3, 8, 

11]. An aggressive compression method, as proposed in this 

paper, plays an important role in increasing this rate. 

In this paper, we address these challenges using a 

checkpointing controller as shown in Fig. 1. We use 

secondary storages for duplicating the state of the physical 

model. We read data at a certain clock cycle by setting the 

secondary storages to read-only mode while the physical 

model runs normally. If the instrumented storage is of 

memory type (i.e., having an address input), we also insert 

compact controllers for keeping data in secondary storages 

consistent with those in the physical model. The 

check-pointing controller incorporates a compression 

scheme that reduces the size of a checkpoint with minimal 

additional circuit (area) overhead. Compression substantially 

shortens the checkpoint transfer time. To support our scheme, 

we introduce specialized caches called Column Accessible 

Caches (CACs) that can be written as a row addressable 

memory and read as a column addressable memory. We 

demonstrate our technique in a framework that currently 

supports checkpointing on any Xilinx FPGA-based digital 

mockup. The framework consists of a debug soft core 

(namely MicroBlaze provided by Xilinx Inc.) and two 

design templates, which are secondary storage modules and 

compression modules written in VHDL with interfaces as 

shown in Fig. 1. The framework minimizes modifications to 

the original physical model. We use a human lung and a 

medical ventilator cyber device as an example to 

demonstrate our techniques [7]. 

The rest of this paper is organized as follows. Section 2 

describes our checkpoint mechanism, the added logic 

circuits, and secondary storages. Section 3 describes our 

compression scheme and how CACs work. Section 4 

provides the performance of our scheme in terms of 

compression rate. Section 5 concludes. 

 

II. Checkpointing Architecture 
 

The main component of the proposed checkpointing 

mechanism are secondary storage structures to mirror the 

model state variables. Here, the model always executes 

using its primary memories while the debug core strictly 

manipulates the duplicated data in secondary storage. 

Hereafter the original memory blocks of the model are 

called primary memory. The duplicated memory blocks are 

called secondary memory. 

Fig. 2(a) shows an example of design instrumentation on a 

typical memory block with inputs and outputs such as 

data_in, data_out, we (write enable) and addr. The gray 

lines and boxes represent the original model circuit and the 

remaining circuitry represents the new signals added to 

accommodate the debug core. Din_1, Addr_1, Dout_1 and 

WE_1 are input to the original model circuit while the debug 

core uses the control signal Freeze, WB (write back) and 

Mode to execute four operations, as summarized in Table I. 

These four operations, originating from the debug core, use 

Din_2, Addr_2 and Dout_2 to retrieve or restore a 

checkpoint. The status signal Ready reflects whether the 

primary and the secondary memories are consistent. This 

signal is necessary because any write on primary memory 

during a checkpoint operation will make secondary memory 

inconsistent with the primary memory. During a checkpoint 

operation the debug core asserts Freeze to set all secondary 

storages to read-only mode. The timing diagram during a 

checkpoint operation is illustrated in Fig. 2(b). 
Table I 

Checkpointing controller signal description 

Freeze WB*1 Mode* Description 

0 0 0 Normal use. Data at Din_1 are duplicated 

1 0 0 Read data in secondary memory 
1 1 0 Write back using data in secondary memory 

1 1 1 Write back using data at Din_2 

A data inconsistency between the primary and secondary 

memories triggers the execution of the re-synchronization 

process at the end of the checkpoint operation. The 

re-synchronization controller, dirty indicator, and the 

extended read port of primary memory in Fig. 2(a) are 

inserted to resolve consistency between the primary and 

secondary memories. The dirty indicator is an array of flags 

(one per word) that is set during a checkpoint operation on a 

write to a corresponding primary memory word. Using the 

dirty indicator, the re-synchronization controller copies the 

dirty data from the primary memory to the secondary 

memory using extended read/write ports. Fig. 3 shows the 

pseudo code of the re-synchronization controller. The 

execution time of the re-synchronization controller, at most, 

is equal to the depth (number of words) of the primary 

memory. Moreover, the checkpoint operation is nonintrusive 

as the primary memory is never accessed by the debug core 

or the re-synchronization controller as shown in Fig. 2(b). 

                                                        
1 WB* may be set to (Freeze AND WB) and Mode* may be set to 

(Freeze AND WB AND Mode) in order to eliminate unnecessary 

control signal combinations.  



Fig. 3. Re-synchronization controller algorithm 
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1 FOR addr = 0 to DEPTH_OF_MEMORY
2    IF dirty_indicator[addr] == true AND (ADDR@primary_memory != addr
3        OR WE@primary_memory == false) THEN
4        secondary_memory[addr] = primary_memory[addr]
5    ELSE
6        goto Line 2
7 END IF
8 END FOR

The re-synchronization activity is also nonintrusive, as it 

utilizes the dual port (2W/2R) memory supported by most 

FPGAs. 

 

III. Compression Scheme 

 
Many algorithms have been applied to compress plain text, 

images, video, scientific graphs, and so on. According to the 

pigeonhole principle, no lossless compression algorithm can 

efficiently compress completely random data. In this paper, 

we take advantage of the fact that the state information of a 

digital mockup is comprised of data generated solving a 

large number of ODEs. These ODE circuits output 

continuous time values that drift slightly when sampled 

frequently. Moreover, when digital mockups are used to 

replace physical models, such a human lung or heart, the 

solution of these ODEs is restricted to be within a certain 

range (e.g., the volume and pressure at any branch of a 

human lung can only vary within some narrow range). Based 

on these observations, our compression scheme takes a data 

differencing approach to reduce data transmission to the host 

under periodic checkpointing. Specifically, we outline a 

computationally efficient architecture that supports delta 

(difference between two consecutive samples) encoding 

[15]. 
 

A. Column Accessible Cache 

 

A Column Accessible Cache (CAC) is a memory structure 

containing K rows of N-bit words. As with traditional 

memories, the CAC words are accessed using log(K) row 

address bits.  However, a CAC as proposed in this work 

allows addressing the data using log(N) column address bits 

as well. 

For our application, using a word as the unit for data 

differencing will waste too many bits in common cases. 

Assuming only one nibble (4-bits) changes within a word 

during the time between two consecutive checkpoints, we 

have to encode the changed nibble with seven dummy 

(unchanged) nibbles plus the indexing bits since eight 

nibbles (i.e., a word) should be encoded as a whole. In this 

case, the ratio of indexing bits plus dummy (unchanged) bits 

to data (changed) bits is 8.75 (i.e., (7 + 28) / 4). An 

unrealistic 8.75 bits are needed to encode a single data bit. 

Thus, using a word as the unit of differencing is not efficient. 

Therefore, we choose a nibble to be the unit for data 

differencing. To ideally track the data changes as a function 

of time, eight flags are needed to track the changed nibbles 

in a 32-bits word. With these flags, we place the dirty words 

with fewer than four changed nibbles into a specialized 

cache and then access and encode them using column 

addressing, using CACs. 

Fig. 4 shows the CAC architecture and a dedicated cache 

controller that manages the contents of the CAC. A practical 

CAC may be organized as an 8-by-8 two dimensional matrix 

of nibbles. Eight single bit dirty column flags are used for 

tracking changes in each column. Likewise, every eight 

nibbles, within a word, share a dirty column flag. There are 

also dirty row flags but, note that, a dirty row flag is not 

shared by a row of nibbles; a dirty row flag is shared by the 

two nibbles of a column byte, which is a byte in the order of 

column (see the CAC architecture in Fig. 4). Each column in 

the CAC has one column word, four column bytes, or eight 

nibbles. There are 32 dirty row flags in a CAC. The 32 dirty 

row flags are actually the bit map of dirty nibbles. The 8 

dirty column flags together with the 32 dirty row flags are 

used to encode the dirty nibbles. 

The CAC Map in Fig. 4 is used to record the address 

mappings between secondary memory and the CAC. For 

instance, a 7-bits address in a 128-words secondary memory 

is mapped to 3-bits address in a CAC. The size of a CAC 

Map is the logarithm of the memory depth of secondary 

memory multiplied by 8 (i.e., the number of rows in a CAC). 

A CAC Map also has 8 additional bits used to indicate which 

mapping is valid.  

After a checkpoint, data is transmitted to the host using an 

encoding scheme as depicted in Fig. 5. The first data field is 

ValidEntries that indicates which entry is valid. The field is 

8 bits long and mandatory. If there is no valid entry, the 

field’s value is zero. The second field is the 8-bits long 

NewMapEntryTable that indicates which entry has a new 

mapping. If no entry needs update or no entry is valid, this 

field can be omitted. The third field is MapEntries, included 

only when NewMapEntryTable is set. The field contains 

new address mappings as indicated by NewMapEntryTable. 

N is the round up value of the logarithm of memory depth. 

The fourth field is 8-bits long DirtyColumnFlags, indicating 

the dirty columns. The fifth field is DirtyRowFlags. The 

dirty row flags are included only when their corresponding 

dirty column flag is set. The last field is Nibbles and it 

Fig. 4. CAC architecture 
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contains the actual data. A nibble is included only when its 

corresponding dirty row flag is set. Note that the nibbles that 

share the same row dirty flags are included or excluded 

together. M and L are integers reflecting the total number of 

dirty column and row flags that are set. 

Two cases in Fig. 4 are given to illustrate the benefits of 

CACs. In Case A, the dirty nibbles are the gray squares. The 

total encoded size based on the encoding formant in Fig. 5, 

in worst case, will be 188 bits, where we assume all entries 

in the CAC Map are valid and require update. The dirty 

nibbles are the black and gray squares in Case B. The total 

encoded size, in the worst case, will be 212 bits. If a CAC is 

not applied, the total size will be 320 bits, which are eight 

dirty words plus their 8-bit indexing data. In these two 

examples, a CAC yields at least 41% and 34% data size 

reduction. 

A CAC serves as a cache of dirty nibbles of the secondary 

storage. A cache controller is required for choosing 

promising entries (i.e., a word with fewer than four dirty 

nibbles). The cache controller executes a simple but efficient 

periodic procedure. At the beginning of the procedure, the 

controller searches the CAC for entries with more than four 

dirty nibbles and removes them to make room for promising 

entries. If a dirty word has more than four dirty nibbles, 

leaving the dirty word in its original memory block and 

reading it through a row access, as well as encoding it, are 

more efficient. The cache controller also scans the secondary 

memory and adds promising entries into a CAC from top to 

bottom on a first come first serve basis. The periodic cache 

refreshing procedure always keeps a CAC in good condition, 

where all entries in a CAC are very likely to have dirty 

nibbles fewer than four. Furthermore, this periodic 

procedure carried out by the cache controller of each CAC 

offloads (or amortizes) the computation of encoding all dirty 

nibbles and words carried by the debug core. Specifically, 

the cache controller of each CAC reads the secondary 

memory which it attaches to and chooses promising entries 

to put in a CAC during the period of normal execution (i.e., 

the white rounded rectangles in Fig. 2(b)). Without these 

cache controllers, the debug core would choose promising 

entries of each secondary memory in a sequential manner 

during a checkpoint operation (i.e., the light gray rounded 

rectangles in Fig. 2(b)). 

 

B. Distributed CACs and Global CAC 

 

Intuitively, we achieve better compression rate if a CAC 

is filled with dirty words that have fewer than four dirty 

nibbles. However, a physical model may have distributed 

memory blocks and the number of dirty words with dirty 

nibbles fewer than four may not be sufficient to fully utilize 

each CAC. Thus, we also propose a global CAC (GCAC), 

which consists of several CACs and a single controller that 

scans all dirty flags of every memory block.  

 

IV. Experimental Results 
 

We use the Weibel lung model as a case study. The 

number of ODEs of a Weibel lung model increases 

exponentially as the number of generations (levels) of the 

lung model increases. Therefore, the amount of data 

presenting states of a Weibel lung model also increases 

exponentionally. 

 

A. Weibel Lung Model 

 

The Weibel lung model was proposed by E. R. Weibel 

[12]. The left part of Fig. 6 depicts a 4-generation lung 

model, including the trachea, the bronchi, and the 

bronchioles lung elements. The accuracy of this model, as 

well as the number of ODEs, increases as the number of 

generations increases. 4-generation, 6-generation, 

8-generation, and 10-generation lung models are represented 

by 56, 251, 1019 and 4091 ODEs, respectively. In Huang’s 

work [8], these ODEs are mapped to several processing 

elements (PEs) that can solve ODEs through the 

Runge-Kutta method. The values of flow, pressure, and 

volume at the joining of two branches are evaluated at one 

millisecond time resolution. To meet this time resolution, 

more processing elements (PE) [8] are required as the 

number of generations increases. 

Fig. 7 shows the architecture of a PE. A PE consists of 

instruction RAM, data RAM, and an ALU. The instruction 

RAM is read only and the values of flow, pressure, and 

volume are stored in the data RAM. d1, d2, and d3 are 

incoming data lines from other PEs. dout is the output data 

line. To checkpoint the lung model and support compression, 

we manually insert the secondary storage, the CAC, the dirty 

flags, and the controller. The wires needed to connect to the 

inserted logic are data, addr and we, as described earlier. 

 

B. Compression Rate Analysis 

 

To explore the benefits of CACs, we built a customized 

simulator that cycle-accurately simulates PEs and their 

network. The simulated lung models include a 4-generation 

Weibel lung mapped to 4 PEs (we4_pe4). weX_peY indicates 

the Weibel lung model of X-generation mapped to Y PEs. We 

also simulate the input pressure ranging from -500 to 500 

mmHg. This range is sufficient to cover possible pressure 

Fig. 6. Weibel lung model 
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values of a human lung. The input pressure oscillates at the 

frequency of around 15 times/minutes, which is the general 

breath rate of an adult. We summarize our simulation 

parameters and their possible values in Table II. 
Table II 

Simulation parameters and possible values 

Input parameter Possible value 

lung model we4_pe4, we6_pe8,  

we8_pe16, we10_pe196 

input pressure -500 ~ 500 mmHg 

input oscillation rate 10 ~ 20 times / minute 
input shape square and sine 

interval between checkpoints 10 ~ 1000 ms 

The size of checkpoints is used to identify the 

performance of our compression method. We compare the 

size of checkpoints of our approaches (CACs and GCAC) to 

four other approaches, which are Raw, Deflate, Dirty Word 

Tracking (DWT) and Dirty Nibble Tracking (DNT). Raw 

represents the size of checkpoints without any compression. 

Deflate stands for the famous data compression algorithm 

used in zlib [14] and gzip [13]. We serialize the data in 

memory blocks and feed the result into Deflate. DWT and 

DNT are the basic data differencing techniques using dirty 

flags to track dirty words or nibbles. As a unit of 

differencing, DWT-approach uses a word whereas DNT- 

approach uses a nibble. In order to have a fair comparison, 

we include complete indexing bits for each approach. The 

calculation of the size of each approach is listed as follows. 
Raw=∑(NumberPEWidth+PEDataRAMSize) 

Deflate=∑(NumberPEWidth+PEDataRAMComressedSize) 

DWT=∑(NumberPEWidth+MaxNumberDirtyWordWidth+ 

(WordEncodingWidth × NumberDirtyWord)) 

DNT=∑(NumberPEWidth+MaxNumberDirtyNibbleWidth+ 

(NibbleEncodingWidth × NumberDirtyWord)) 

CACs=∑(NumberPEWidth+CACEncoding+ 

MaxNumberDirtyWordWidth+ 
(WordEncodingWidth × NumberDirtyWordInRAM)) 

GCAC=GCACEncoding + 

∑(NumberPEWidth+MaxNumberDirtyWordWidth+ 

(WordEncodingWidth × NumberDirtyWordInRAM)) 

Here, NumberPEWidth is the logarithm of the number of 

PEs. For a lung model mapped to 256 or fewer PEs 

(common case), an 8-bit byte is used. PEDataRAMSize 

presents the size of the data RAM of a certain PE. 

PEDataRAMCompressedSize presents the compressed data 

size of the data RAM of a certain PE based on the Deflate 

algorithm. MaxNumberDirtyWordWidth is the logarithm of 

maximal number of dirty words, which is the size of a data 

RAM block. For PEs having data RAM up to 256 words 

(32-bits), a byte is used. WordEncodingWidth is 

MaxNumberDirtyWordWidth plus 32 (i.e., the size of a 

word). The calculation for MaxNumberDirtyNibbleWidth is 

similar to MaxNumberDirtyWordWidth. The length of 

CACEncoding and GCACEncoding are calculated based on 

the encoding format in Fig. 5. 

Fig. 8 shows the average size of a checkpoint for different 

intervals between checkpoints. Results are obtained from 

averaging the size of 800 checkpoints under these 

parameters: the lung model is we6_pe8 and input oscillation 

rate is 15 times per minute; the intervals between two 

successive checkpoints are 10, 50, 100, 500, and 1000ms 

and the interval between cache refreshing is set to tenth of 

the interval between checkpoints. The average size of 

checkpoints generated by each approach increases as the 

interval between checkpoints increases; intuitively, data is 

more likely to be modified over larger time intervals. We 

observe that differencing techniques, including CACs-, 

GCAC-, DWT- and DNT-approach, outperform the Raw- 

and Deflate-approach in the majority of cases. Hence, we 

conclude that for FPGA-based mockups of physical systems, 

data differencing techniques can reduce the size of a 

checkpoint by 90%. 

We also compare the performance of the CACs-approach 

with that of the GCAC-approach. Here, the compression rate 

is defined as the size of checkpoints generated by CACs- 

and GCAC-approach divided by the size of checkpoints 

generated by the DWT-approach. We further define the 

cache fill rate to be the ratio of the number of entries inside 

CACs or GCAC to the maximal number of entries they can 

hold. A CAC fully filled with valid entries has cache fill rate 

equaling to one. We perform exhaustive search on input 

parameters and get thousands of checkpoints for analysis. 

Fig. 10(a) and 10(b) shows the relations between the 

compression rate and cache fill rate. The black line in Fig. 

10, generated by linear line-fitting, indicates the trend of 

data. As the cache fill rate increases, the compression rate 

drops. The slopes of the black lines in Fig. 10(a) and 10(b) 

are -0.24 and -0.36, respectively. Generally, GCAC- 

approach yields lower compression rate than CACs- 

approach at the same cache fill rate. Statistically, we can 

conclude that GCAC-approach works better than CACs- 

approach. Another observation from Fig. 10(a) and 10(b) is 

that most points have a compression rate smaller than one, 

indicating that the size of checkpoints generated by the 

CACs/GCAC-approaches is smaller than that of the 

Fig. 8. Average size of checkpoints 
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DWT-approach in the majority of cases. 

 

 

C. FPGA Area Overhead Analysis 

 

To further validate our architecture and evaluate the area 

overhead in terms of FPGA resources, we implemented 

checkpointing and synthesized it using the Xilinx ISE 13.2 

tool chain. Table III lists the FPGA resources taken by the 

original design (2nd and 4th columns) and resources taken 

by our chekcpointing module (3rd and 5th columns). 

RAM128X32S refers to the checkpointing module used to 

instrument a 128-words memory block. The other modules 

are also named similarly. The resource overhead includes 

secondary storages, dirty indicators, and all the controllers. 

We see that the module used to instrument bigger memory 

blocks has smaller overhead since the overhead of a 

controller is nearly constant while the overhead of the dirty 

indicators and the secondary memory are proportional to the 

size of the corresponding memory block that is instrumented. 

Table III also lists the FPGA resources consumed by a CAC 

and compression engines (i.e, CAC_32X1, CAC_64X1 and 

CAC_128X1). CAC_32X1 includes a CAC, the cache 

controller, the CAC Map and the dirty flags attached to 

32-words secondary memory. CAC_64X1 and CAC_128X1 

are named literally. The required resources do not increase 

excessively when compared to a CAC.  

Table III 

FPGA area overhead of checkpointing and compression engine 

 LUTs LUTs (modified)  Slice Slices(modified) 

BRAM36 0/1 200/2 0 72 

RAM128X32S 100 434 (334%) 31 170 

RAM64X32S 66 319 (383%) 21 112 

RAM32X32S 16 177 (1006%) 4 57 

RAM32X16S 8 119 (1387%) 2 54 
CAC 320 - 87 - 

CAC_32X1 457 - 138 - 

CAC_64X1 476 - 147 - 
CAC_128X1 484 - 144 - 

Table IV 

FPGA area of Weibel lung models 

 LUTs Slices BRAM 

we4_pe4 7317 2832 52 
we4_pe4_D 7779(6%) 3132 52 (0%) 

we4_pe4_DC 8408(15%) 3363 52 (0%) 
we6_pe8 8769 3720 56 

we6_pe8_D 9875(13%) 3841 56 (0%) 

we6_pe8_DC 11235(28%) 4505 56 (0%) 
we8_pe16 12963 4747 64 

we8_pe16_D 14431(11%) 5459 64 (0%) 

we8_pe16_DC 17621(36%) 6656 64 (0%) 

Table V summarizes the resource overhead on different 

generation Weibel lung models. weX_peY stands for the 

X-generation lung model mapped to Y PEs. The suffix _D 

refers to the version with instrumentation of checkpointing 

mechanism. The suffix _DC refers to the version with 

checkpointing mechanism and compression support. The 

resource overhead is mostly LUTs and slices with minimal 

BRAM requirements. 
 

V. Conclusions 
 

In this paper, we presented a transparent checkpointing 

mechanism and an application-specific compression scheme, 

targeting FPGA digital mockups of physical systems. We 

proposed a Column Accessible Cache (CAC) to support the 

compression scheme. We evaluated the size reduction of 

checkpoints through distributed CACs and global CAC 

(GCAC). We observed that a compression approach based 

on GCAC works better than CACs. Statistically, both 

schemes provide an additional compression rate of 5% to 

20% using our proposed data differencing approach. Data 

differencing combined with GCAC achieves 90% reduction 

in the size of periodic checkpoints. We evaluated the 

resource overhead of our checkpointing architecture using a 

digital mockup of a human lung mapped to a Xilinx Virtex5 

FPGA. We observed a reasonable 6% to 11% increase in the 

FPGA area utilization. When compression support was 

included, we observed a 15% to 36% resource overhead in 

terms of FPGA area utilization. This additional overhead 

may be justified in applications where transparent, high 

frequency checkpointing is required. 
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