
Tony Givargis and David Eppstein
Department of Information and Computer Science

Center for Embedded Computer Systems
University of California, Irvine, CA 92697

{givargis,eppstein}@ics.uci.edu

Reference Caching Using Unit Distance Redundant
Codes for Activity Reduction on Address Buses

Abstract
Switching activity on I/O pins of a chip is a
measurable contributor to the total energy
consumption of the chip. In this work, we present an
encoding mechanism that reduces switching activity of
external address buses by combining an address
reference caching mechanism with Unit Distance
Redundant Codes (UDRC). UDRC are codes that
guarantee a Hamming distance of at most one between
any pair of encoded symbols. Address reference
caching exploits the fact that address references are
likely to be made up of an interleaved set of sequential
address streams. Reference caching isolates these,
otherwise interleaved, streams and limits the
communication to an UDRC encoded message that
identifies the particular reference, at the cost of at
most a single bit-transition. Experiments with 14
embedded system applications show an average of
60% reduction in switching activity, with the best and
worse cases being 86% and 36% respectively.

Keywords
Bus encoding, embedded systems, low power design

1. Introduction
The energy consumption of electronic devices is
becoming an increasingly essential concern when
designing embedded systems, especially mobile
computing devices [11]. This is because those devices
draw their current from batteries that place a limited
amount of energy at the system’s disposal.
Consequently, the lower the average power
consumption of those devices, the longer they can
operate between two recharge phases. Hence, their
mobility is higher and this is a strong argument for
preferring such devices to competitive devices.

Off-chip I/O and the associated buses have been
shown to be a major contributor to a system’s total
energy consumption [12]. I/O power consumption is in
direct proportion to the product of the switching
activity present at the I/O (i.e., pins and attached bus
wires) with the average capacitive loads of the
switching elements. It has been shown that the
capacitive load of off-chip I/O is orders of magnitude
larger than that of internal switching nodes (e.g.,

transistors) [3][4][16], and this trend is likely to
continue [11]. Thus, there exists an opportunity for
reducing overall energy consumption by
encoding/decoding the data prior/subsequent to
transmission, at a small added internal energy cost, for
a large saving in energy during off-chip transmission.

In this paper we present an encoding and decoding
scheme that reduces switching activity of external
address buses by combining an address reference
caching mechanism with Unit Distance Redundant
Codes (UDRC) to exploit the otherwise concealed
correlation that exists in address streams originated
beyond the multilevel on-chip caches.

We introduce a general construction for UDRC,
which provide multiple redundant encodings of each
possible symbol, in such a way that any arbitrary value
can be encoded by a value at Hamming distance at
most one from each previous codeword. Our
construction uses an optimal number of bits for a given
set of symbols.

Address reference caching exploits the fact that
address references are likely to be made up of an
interleaved set of short sequential address bursts.
Reference caching isolates these streams and limits the
communication to an UDRC encoded message that
identifies the particular reference, at the cost of at most
a single bit-transition.

The remainder of this paper is organized as
follows. In Section 2, we summarize related previous
work. In Section 3, we describe our proposed
approach. In Section 4, we describe our experimental
setup and show results. In Section 5, we state our
conclusion.

2. Previous Work
Numerous approaches for reducing I/O energy
consumption have been presented in the past. These
approaches fall under two categories. The first
category consists of techniques that optimize the
memory hierarchy and data organization in order to
eliminate the need for I/O in the first place. The second
category consists of techniques that reduce the
switching activity on buses by exploiting correlations
present in streams carried by these buses. Here, we

summarize related work in the latter category, as our
approach is one of encoding. Furthermore, the former
category of approaches can often be combined with
suitable encoding approaches for added reduction in
overall I/O energy.

Stan and Burleson have introduced a scheme based
on bus-invert codes to minimize switching activity of
communication buses [9]. Their approach computes
the Hamming distance between the current value and
previously transmitted value and inverts (bit wise
negates) the current value if the distance is greater than
½ of the bit-width of the bus. Here, an additional bit
(i.e., bus wire) is used to signal the inversion to the
receiver. Their approach works well when the stream
exhibits randomness, as in data buses. Stan and
Burleson have introduced a scheme based on limited
weight codes, which are a generalization of the bus-
invert codes [10]. Here, their approach uses two or
more additional wires to achieve further reduction in
the average Hamming distance between consecutive
pairs of transmitted values.

When the stream on a bus is made up of sequential
values (e.g., address buses) Gray encoding [14] can be
used to reduce the switching activity to exactly one
bit-transition per transmitted value. To improve upon
this, when the stream on a bus is made up of sequential
values, T0 encoding [2] can be used to reduce the
switching activity to exactly zero bit-transition per
transmitted value. However, in general, as buses
exhibit lesser amounts of sequential behavior (e.g.,
off-chip address buses in the present of on-chip
caches), the overall effectiveness of Gray and T0
encoding fades away.

Musoll et al. have proposed a scheme, called
working zone encoding, where a very small set of
centerline values that are recently observed on the bus
are cached on the encoder/decoder ends [8].
Subsequently, if the current value to be transmitted is
within a small range of one of the cached values, than,
the offset and cache index is transmitted. Their
approach exploits the locality of reference that is
associated with locality of reference present at the
application level, especially those that access multiple
arrays. However, in the presence of on-chip caches,
especially multi-level caches, address streams tend to
be composed of a large number of highly sequential
and short (corresponding to a cache line) but scattered

bursts, which exhaust the small set of cashed
centerlines.

Benini et al. have proposed an encoding scheme,
called the beach solution, which is application
dependent [1]. Here, the address stream of an
application is statistically analyzed and consequently a
custom encoder and a custom decoder are synthesized
that would minimize switching activity when that
application is executed. Their approach yields good
results at the expense of being application specific and
not well suited for systems with dynamic application
sets.

Mamidipaka et al. have proposed an adaptive
encoding scheme that significantly reduces bit-
transition activity on address buses [7]. Their approach
does not add redundancy in space (e.g. wires) or time
(e.g., cycles). Here, an adaptive technique is used that
is based on self-organizing lists to achieve reduction in
bit-transition activity by exploring the spatial and
temporal locality of the addresses.

For brevity, we have only surveyed a small set of
encoding schemes. In our experimental section we will
refer back to some of these techniques for further
comparison and analysis.

3. Proposed Approach
3.1 Overview
A system level architecture of the proposed technique
is depicted in Figure 1. Here, a processor and one or
more levels of caches (e.g., instruction/data L1 cashes
connected to a unified L2 cache) reside on a single
chip. In turn, the address bus of the lowest level cache
is connected to an off-chip memory via the encoder
and decoder. The encoder/decoder transparently
send/receive the address values generated by the cache
controller with the objective of reducing bit switching
activity on the off-chip pins and associated wires.
Given our system assumption, we note that caches
serve as filters that impose certain structure to the
address stream as seen externally. Based on
experiments and stream analysis we can summarize the
following behavior:

1. Repeated access to the same location by an
application appears as a single transaction on
the bus.

2. The stream is composed of interleaved bursts
of consecutive references. Moreover, the

Figure 1: System architecture.

Pr
oc

es
so

r

Processor Chip

E
nc

od
er

D
ec

od
er

Memory Chip

M
em

or
y

L1

I$

I$

L2

U
$

distance between consecutive accesses is that
of the processor’s machine-word size
(typically 4-bytes). The length of these bursts
is that of the line size of the lowest level
cache.

3. Consecutive references are either exactly one
machine-word apart or very far away, but
seldom otherwise.

4. At any given time, there exist a working set of
these bursts that are interleaved. These burst
often are continuation of a recently seen burst.

5. The interleaving behavior is a result of cache
lines being written back to make room for
new lines, which interrupts the application
level sequentially that may exist (e.g., in
accessing a large array).

Based on these observations, we propose a reference
caching scheme that eliminates switching during short
burst, and separates multiple interleaved streams
comprising the current working set.

3.2 Reference Caching
Reference caching works as follows. We maintain two
small identical N-element address caches one each on
the encoder and decoder ends. When transmitting a
new address value, the encoder compares the new
address value to each of the N elements in its address
cache. More specifically, the encoder adds a constant
offset (e.g., the machine-word size of processor) to
each cached element prior to the comparison. On a
match (i.e., hit), the encoder asserts a special control
signal and sends an index, a number in the range of 0
… N−1, corresponding to the matched address cache
location. On a miss, the encoder de-asserts the special
control signal, sends the actual address value verbatim,
and stores the new address value into its least recently
used address cache location.

On the decoder end, when the special control signal
is seen asserted, the received index, a number in the
range of 0 … N−1, is used to fetch the corresponding
address value from the address cache. This value is
then incremented by the same constant offset used in
the encoder and passed to the memory controller. If the
special control signal is seen de-asserted, the received
address value is stored into the address cache at the
least recently used location, and passed verbatim to the
memory controller.

For the above scheme to work, both the encoder
and decoder must use the same algorithm to track the
least recently used element. Moreover, the two address
caches must reset to arbitrary but identical states (i.e.,
cache values). To further reduce the switching activity,
the transmission of the index, a number in the range of
0 … N−1, is performed in an encoded fashion. We use
UDRC encodings to accomplish this. These codes are
further described in the next section.

3.3 Unit Distance Redundant Codes
UDRC provide multiple redundant encodings for each
possible symbol, in such a way that any arbitrary value
can be encoded by a value at Hamming distance at
most one from each previous codeword. For example,
consider the 4 symbols 0, 1, 2, and 3 that would
normally be encoded in binary as 00, 01, 10, and 11.
Here, the Hamming distances between pairs are:

 00 01 10 11
00 0 1 1 2
01 1 0 2 1
10 1 2 0 1
11 2 1 1 0

The total switching is 16 and there are 16 pairs, thus,
the average switching is 16/16=1, as expected. Now
consider the following redundant codes for the same 4
symbols. We encode the symbol 0 as any of {000,
111}, 1 as any of {100, 011}, 2 as any of {010, 101},
and 3 as any of {001, 110}. Here, the minimum
Hamming distance between pairs of codes, from any
set representing our symbols, are:

 {000,111} {100,011} {010,101} {001,110}
{000,111} 0 1 1 1
{100,011} 1 0 1 1
{010,101} 1 1 0 1
{001,110} 1 1 1 0

Here, the total switching is 12, thus, the average
switching is 12/16=0.75, a reduction of 25%.

Let us now consider the encoder and decoder
circuits for the same example. Given a 3-bit UDRC
encoding X, we can decode it into a 2-bit binary
symbol Y, as shown in Figure 2. Encoding is slightly
more complex. Here, we need to consider the last
symbol that was encoded, and encode the new symbol
such that to preserve the unit Hamming distance
property. Given the most recently encoded binary
symbol Y’ into X’, and the binary symbol Y, we can
compute X as shown in Figure 2.

We can show that UDRC encodings exist for any
number of symbols. The proof is by construction. If we
have 2k binary symbols (i.e., k-bit binary values), we
use (2k−1)-bit UDRC encodings. Clearly, when the
number of symbols is a power of two, we cannot do
any better than that, since each encoding must have

Figure 2: Decoder (left) and encoder (right) circuits.

X1

X0

X2

Y1

Y0

Y1
Y’1
Y0
Y’0

X0

X1

X2

X’2 X’1 X’0

2k−1 distinct neighbors. If the number of symbols is
not a power of two, we round up to the next power of
two, and are at most a factor of two away from the
optimal number of bits needed to encode a given set of
symbols.

Let us first consider the construction of the
decoder. Suppose that we want to decode the 7-bit
UDRC encoding X6X5X4X3X2X1X0 back to the 3-bit
binary symbol Y2Y1Y0. We compute over the two-
element Galois field GF21:

.

1010101

1100110

1111000

0

1

2

6

5

4

3

2

1

0
















=





























×
















Y

Y

Y

X

X

X

X

X

X

X

This produces a 3-bit binary symbol for each 7-bit
UDRC encoding. More generally, in the case of k-bit
binary symbols, the first matrix would have (2k−1)
columns, k rows, and its elements would be 1, 2 … k−1
in binary down each column. This matrix multiplied by
the UDRC (2k−1)-bit encoding X would yield the k-bit
binary symbol Y.

Now we consider the encoder. To get a one-bit
change from an UDRC encoding X’ representing the
binary symbol Y’ to another UDRC encoding X
representing the new binary symbol Y, we invert the
(Y’ ⊕Y)th bit in X’ if (Y’ ⊕Y)≠02.

For example, consider the UDRC encoding
X=0001001. The binary symbol is Y=101 as computed
over GF2:

1 GF2 is a finite field of integers (modulo 2) standing for the

Galois filed of order 2 [15].
2 Note that, here, the least significant bit is the first bit, and

the most significant is the 7th bit.

.

1

0

1

0

0

0

1

0

0

1

1010101

1100110

1111000
















=





























×
















Now suppose we like to encode a new binary symbol
Y=110. We compute 101⊕110=011. Thus, we invert
the third bit in X’=0001001 to get X=0001101. The
following table gives short stream of values in binary
and UDRC, along with associated Hamming distances.

Symbol Binary UDRC Hamming
Binary

Hamming
UDRC

5 101 0001001 - -
6 110 0001101 2 1
2 010 0000101 1 1
5 101 1000101 3 1
1 001 1001101 1 1
7 111 1101101 2 1
4 100 1101001 2 1

3.4 Architecture
The hardware architecture for the proposed encoder
and decoder is relatively simple and efficient in terms
of size and critical-path delay. The block diagram of an
encoder with a 4-element address cache is depicted in
Figure 3. The corresponding decoder is depicted in
Figure 4. The UDRC decoder circuit was previously
explained and shown in Figure 2. Likewise, the UDRC
encoder was previously explained and shown in Figure
2. The particular UDRC encoder used in the
architecture of Figure 3 takes as input a one-hot
encoding3 instead of the binary representation of the
previous value. For brevity, we have omitted the

3 One-hot encoding uses a dedicated line for each symbol it

encodes to reduced the switching activity to 2 transitions
per transmission.

Figure 3: Encoder architectures.

Figure 4: Decoder architectures.
out

+ + + +

in [31..0]

[31..0]

= = = =

UDRC
Encoder [2..0]

[31..3]

4 4 4 4

ctr

R0 R1 R2 R3

Out

0 1

in

out [31..0]

[31..0]

+ + + +

UDRC
Decoder [2..0]

4 4 4 4

ctr

R0 R1 R2 R3

0 1

0 0 1 1
0 1 0 1

[1..0]

circuit, as it is a simple modification of the encoder
shown in Figure 2.

We have omitted the hardware necessary to
implement the replacement policy. For this, schemes
commonly used in cache design can be adopted [13].
Also, in our design, the address caches are accessed in
parallel for added performance. Furthermore, the cache
elements are pre-incremented by the offset value
eliminating the adders from residing on the
critical-path.

4. Experiments
For our experiments, we have used 14 typical
embedded system applications that are part of the
PowerStone benchmark [6]. Among others, the
applications include a JPEG image decoder called
jpeg, a modem protocol processor called v42, a
compression engine called compress, a CRC checksum
algorithm called crc, an encryption algorithm called
des, an engine controller called engine, an FIR filter
called fir , a fax decoder called g3fax, a sorting
algorithm called ucbqsort, and an image rendering
algorithm called blit.

For bus stream generation, we have used a
simulation model [5] of a chip based on the system
architecture depicted in Figure 1. The target processor
of this simulator is a 32-bit MIPS R3000. The caches
are organized into an 8K byte, 2-way, 16-bytes/line
instruction cache, a 16K byte, 2-way, 16-bytes/line
data cache, and a 32K byte, 2-way, 16-byte/line unified
cache. A summary of the address trace sizes and the
total number of binary bit transition for each
application is shown in the following table.

Application Stream length Bit transitions
adpcm 1076 2689
bcnt 300 757
blit 2196 5460
des 1968 4954
compress 7872 17160
crc 444 1165
engine 412 1007
jpeg 157700 283498
fir 520 1267
g3fax 1336 3015
pocsag 884 2098
qurt 304 792
ucbqsort 764 1840
v42 24348 59320

We have implemented models of the proposed

encoder and decoder and have simulated the
application traces to obtain the total switching activity.
Our encoder and decoder have address caches of size 4
and use the least recently used (LRU) replacement
policy.

In addition we have implemented bus-invert,
Gray, T0, UDRC, and one-hot encoders and decoders
for comparison purposes. Note that both UDRC and

one-hot encoding for 32-bit buses is prohibitive in
practice, as the number of wires needed would be 232.
They are shown for evaluation proposes only.

The switching activity reduction, as a percentage,
for a number of encoding approaches is summarized in
Figure 5. As shown, on the average, our approach
reduced switching activity by 60%, UDRC by 58%, T0
by 34%, one-hot by 17%, and bus-invert by 3%. On
the average, and based on published results, the beach
solution approach reduced switching activity by 42%
while the working zone approach reduced switching
activity by 30% [1].

In the case of blit, our approach reduced the
switching activity the most, namely, 86%. In the case
of engine our approach reduced the switching activity
the least, namely 36%. The best and worse cases are
explained as follows. The engine example is not a
memory intensive application. Instead, it is highly
control dominated with many branches and jumps,
thus, much of the memory access is dominated by
instruction fetches with little access pattern
correlations. In contrast, blit is dominated by memory
accesses that are exploited by our approach.

We have also created synthesizeable RTL models
of the encoder and decoder architectures depicted in
Figure 3 and Figure 4. We have synthesized these
models using Synopsys synthesis tools and measured
the area as well as the critical-path delay. The
maximum performance penalty (i.e., critical-path
delay) for the encoder and decoder is 16 and 14 gates,
respectively. The area overhead for the encoder and
decoder is equivalent to 2033 and 1858 2-input NAND
gates respectively. We have experimented with larger
address caches for the encoder and decoder
architectures. Our experiments show that the area and
delay increase is proportional to the encoder/decoder
address cache size (i.e., doubling the size of the
address cache approximately doubles the area and
critical-path delay.)

5. Conclusion
We have presented an encoding and decoding scheme
for address buses to minimize the switching activity at
the I/O pins and associated off-chip wires. Our
approach caches memory references in order to isolate
multiple interleaved sequential streams that make up
the majority of data transmitted over an address bus of
a system with on-chip caches. Furthermore, UDRC
encodings are used to reduce the small amount of
switching overhead necessary for reference indexing.
Experiments with 14 typical embedded system
applications show an average of 60% reduction in
switching activity, with the best and worse cases being
86% and 36% respectively. The maximum
performance penalty (i.e., critical-path delay) for the
encoder and decoder is 16 and 14 gates, respectively.

The area overhead for the encoder and decoder is
equivalent to 2033 and 1858 2-input NAND gates
respectively.

6. References
[1] L. Benini, G. De Micheli, E. Macii, M. Poncino,

S. Quer. Power Optimization of Core-Based
Systems by Address Bus Encoding. IEEE
Transactions on Very Large Scale Integration
Systems, December 1998.

[2] L. Benini, G. De Micheli, E. Macii, D. Sciuto, C.
Silvano. Address Bus Encoding Techniques for
System-Level Power Optimization. Design
Automation and Test in Europe, February 1998.

[3] J.H. Chern et al. Multilevel Metal Capacitance
Models for CAD Design Synthesis Systems. IEEE
Electron Device Letters, January 1992.

[4] T. Givargis, F. Vahid. Interface Exploration for
Reduced Power in Core-Based Systems.
International Symposium on System Synthesis,
December 1998.

[5] T. Givargis, F. Vahid, J. Henkel. System-Level
Exploration for Pareto-Optimal Configurations in
Parameterized Systems-on-a-Chip. International
Conference on Computer-Aided Design,
November 2001.

[6] A. Malik, B. Moyer, D. Cermak. A Lower Power
Unified Cache Architecture Providing Power and
Performance Flexibility. International Symposium
on Low Power Electronics and Design, June 2000.

[7] M. Mamidipaka, D. Hirshberg, N. Dutt. Low
Power Address Encoding using Self-Organizing

Lists. International Symposium on Low Power
Electronics and Design, August 2001.

[8] E. Musoll, T. Lang, J. Cortadella. Exploiting the
Locality of Memory References to Reduce the
Address Bus Energy. International Symposium on
Low Power Electronics and Design, August 1997.

[9] M.R. Stan, W.P. Burleson. Bus-Invert Coding for
Low Power I/O. IEEE Transactions on Very Large
Scale Integration Systems, March 1995.

[10] M.R. Stan, W.P. Burleson. Limited-Weight Codes
for Low Power I/O. International Workshop on
Low Power Design, April 1994.

[11] National Technology Roadmap for
Semiconductors. Semiconductor Industry
Association, 2001.

[12] A. Raghunathan, N.K. Jha, S. Dey. High-level
Power Analysis and Optimization. Kluwer
Academic Publishers, Norwell, MA, 1998.

[13] J. Smith, J. Goodman. Instruction Cache
Replacement Policies and Organizations. IEEE
Transactions on Computers, 1985.

[14] C.L. Su, C.Y. Tsui, A.M. Despain. Saving Power
in the Control Path of Embedded Processors. IEEE
Design and Test of Computers, October 1994.

[15] I.M. Vinogradov. Elements of Number Theory.
Dover Publishing, 1954.

[16] N.H.E. Weste, K. Eshraghian. Principles of
CMOS VLSI Design. Addison Wesley, 1998.

% Switching Activity Reduction

0

10

20

30

40

50

60

70

80

90

100

ad
pc

m
bc

nt bli
t

de
s

co
m

pr
es

s
cr

c

en
gin

e
jpe

g fir

g3
fa

x

po
cs

ag qu
rt

uc
bq

so
rt

v4
2

Proposed

BusInvert

Gray

T0

LERC

One-Hot

Figure 5: Summary of experimental results.

