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Abstract 
Switching activity on I/O pins of a chip is a 
measurable contributor to the total energy 
consumption of the chip. In this work, we present an 
encoding mechanism that reduces switching activity of 
external address buses by combining an address 
reference caching mechanism with Unit Distance 
Redundant Codes (UDRC). UDRC are codes that 
guarantee a Hamming distance of at most one between 
any pair of encoded symbols. Address reference 
caching exploits the fact that address references are 
likely to be made up of an interleaved set of sequential 
address streams. Reference caching isolates these, 
otherwise interleaved, streams and limits the 
communication to an UDRC encoded message that 
identifies the particular reference, at the cost of at 
most a single bit-transition. Experiments with 14 
embedded system applications show an average of 
60% reduction in switching activity, with the best and 
worse cases being 86% and 36% respectively.  
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1. Introduction 
The energy consumption of electronic devices is 
becoming an increasingly essential concern when 
designing embedded systems, especially mobile 
computing devices [11]. This is because those devices 
draw their current from batteries that place a limited 
amount of energy at the system’s disposal. 
Consequently, the lower the average power 
consumption of those devices, the longer they can 
operate between two recharge phases. Hence, their 
mobility is higher and this is a strong argument for 
preferring such devices to competitive devices.  

Off-chip I/O and the associated buses have been 
shown to be a major contributor to a system’s total 
energy consumption [12]. I/O power consumption is in 
direct proportion to the product of the switching 
activity present at the I/O (i.e., pins and attached bus 
wires) with the average capacitive loads of the 
switching elements. It has been shown that the 
capacitive load of off-chip I/O is orders of magnitude 
larger than that of internal switching nodes (e.g., 

transistors) [3][4][16], and this trend is likely to 
continue [11]. Thus, there exists an opportunity for 
reducing overall energy consumption by 
encoding/decoding the data prior/subsequent to 
transmission, at a small added internal energy cost, for 
a large saving in energy during off-chip transmission. 

In this paper we present an encoding and decoding 
scheme that reduces switching activity of external 
address buses by combining an address reference 
caching mechanism with Unit Distance Redundant 
Codes (UDRC) to exploit the otherwise concealed 
correlation that exists in address streams originated 
beyond the multilevel on-chip caches. 

We introduce a general construction for UDRC, 
which provide multiple redundant encodings of each 
possible symbol, in such a way that any arbitrary value 
can be encoded by a value at Hamming distance at 
most one from each previous codeword. Our 
construction uses an optimal number of bits for a given 
set of symbols. 

Address reference caching exploits the fact that 
address references are likely to be made up of an 
interleaved set of short sequential address bursts. 
Reference caching isolates these streams and limits the 
communication to an UDRC encoded message that 
identifies the particular reference, at the cost of at most 
a single bit-transition. 

The remainder of this paper is organized as 
follows. In Section 2, we summarize related previous 
work. In Section 3, we describe our proposed 
approach. In Section 4, we describe our experimental 
setup and show results. In Section 5, we state our 
conclusion. 

2. Previous Work 
Numerous approaches for reducing I/O energy 
consumption have been presented in the past. These 
approaches fall under two categories. The first 
category consists of techniques that optimize the 
memory hierarchy and data organization in order to 
eliminate the need for I/O in the first place. The second 
category consists of techniques that reduce the 
switching activity on buses by exploiting correlations 
present in streams carried by these buses. Here, we 



summarize related work in the latter category, as our 
approach is one of encoding. Furthermore, the former 
category of approaches can often be combined with 
suitable encoding approaches for added reduction in 
overall I/O energy. 

Stan and Burleson have introduced a scheme based 
on bus-invert codes to minimize switching activity of 
communication buses [9].  Their approach computes 
the Hamming distance between the current value and 
previously transmitted value and inverts (bit wise 
negates) the current value if the distance is greater than 
½ of the bit-width of the bus. Here, an additional bit 
(i.e., bus wire) is used to signal the inversion to the 
receiver. Their approach works well when the stream 
exhibits randomness, as in data buses. Stan and 
Burleson have introduced a scheme based on limited 
weight codes, which are a generalization of the bus-
invert codes [10]. Here, their approach uses two or 
more additional wires to achieve further reduction in 
the average Hamming distance between consecutive 
pairs of transmitted values. 

When the stream on a bus is made up of sequential 
values (e.g., address buses) Gray encoding [14] can be 
used to reduce the switching activity to exactly one 
bit-transition per transmitted value. To improve upon 
this, when the stream on a bus is made up of sequential 
values, T0 encoding [2] can be used to reduce the 
switching activity to exactly zero bit-transition per 
transmitted value. However, in general, as buses 
exhibit lesser amounts of sequential behavior (e.g., 
off-chip address buses in the present of on-chip 
caches), the overall effectiveness of Gray and T0 
encoding fades away. 

Musoll et al. have proposed a scheme, called 
working zone encoding, where a very small set of 
centerline values that are recently observed on the bus 
are cached on the encoder/decoder ends [8]. 
Subsequently, if the current value to be transmitted is 
within a small range of one of the cached values, than, 
the offset and cache index is transmitted. Their 
approach exploits the locality of reference that is 
associated with locality of reference present at the 
application level, especially those that access multiple 
arrays. However, in the presence of on-chip caches, 
especially multi-level caches, address streams tend to 
be composed of a large number of highly sequential 
and short (corresponding to a cache line) but scattered 

bursts, which exhaust the small set of cashed 
centerlines. 

Benini et al. have proposed an encoding scheme, 
called the beach solution, which is application 
dependent [1]. Here, the address stream of an 
application is statistically analyzed and consequently a 
custom encoder and a custom decoder are synthesized 
that would minimize switching activity when that 
application is executed. Their approach yields good 
results at the expense of being application specific and 
not well suited for systems with dynamic application 
sets. 

Mamidipaka et al. have proposed an adaptive 
encoding scheme that significantly reduces bit-
transition activity on address buses [7]. Their approach 
does not add redundancy in space (e.g. wires) or time 
(e.g., cycles). Here, an adaptive technique is used that 
is based on self-organizing lists to achieve reduction in 
bit-transition activity by exploring the spatial and 
temporal locality of the addresses.  

For brevity, we have only surveyed a small set of 
encoding schemes. In our experimental section we will 
refer back to some of these techniques for further 
comparison and analysis.  

3. Proposed Approach 
3.1 Overview 
A system level architecture of the proposed technique 
is depicted in Figure 1. Here, a processor and one or 
more levels of caches (e.g., instruction/data L1 cashes 
connected to a unified L2 cache) reside on a single 
chip. In turn, the address bus of the lowest level cache 
is connected to an off-chip memory via the encoder 
and decoder. The encoder/decoder transparently 
send/receive the address values generated by the cache 
controller with the objective of reducing bit switching 
activity on the off-chip pins and associated wires. 
Given our system assumption, we note that caches 
serve as filters that impose certain structure to the 
address stream as seen externally. Based on 
experiments and stream analysis we can summarize the 
following behavior: 

1. Repeated access to the same location by an 
application appears as a single transaction on 
the bus. 

2. The stream is composed of interleaved bursts 
of consecutive references. Moreover, the 

 
 
 
 
 
 
 

Figure 1: System architecture. 

Pr
oc

es
so

r 

Processor Chip 

E
nc

od
er

 

D
ec

od
er

 

Memory Chip 

M
em

or
y  

 
 
 

L1 

I$ 

I$ 

 
 
 
 

L2 

U
$ 



distance between consecutive accesses is that 
of the processor’s machine-word size 
(typically 4-bytes). The length of these bursts 
is that of the line size of the lowest level 
cache. 

3. Consecutive references are either exactly one 
machine-word apart or very far away, but 
seldom otherwise. 

4. At any given time, there exist a working set of 
these bursts that are interleaved. These burst 
often are continuation of a recently seen burst. 

5. The interleaving behavior is a result of cache 
lines being written back to make room for 
new lines, which interrupts the application 
level sequentially that may exist (e.g., in 
accessing a large array). 

Based on these observations, we propose a reference 
caching scheme that eliminates switching during short 
burst, and separates multiple interleaved streams 
comprising the current working set. 

3.2 Reference Caching 
Reference caching works as follows. We maintain two 
small identical N-element address caches one each on 
the encoder and decoder ends. When transmitting a 
new address value, the encoder compares the new 
address value to each of the N elements in its address 
cache. More specifically, the encoder adds a constant 
offset (e.g., the machine-word size of processor) to 
each cached element prior to the comparison. On a 
match (i.e., hit), the encoder asserts a special control 
signal and sends an index, a number in the range of 0 
… N−1, corresponding to the matched address cache 
location. On a miss, the encoder de-asserts the special 
control signal, sends the actual address value verbatim, 
and stores the new address value into its least recently 
used address cache location. 

On the decoder end, when the special control signal 
is seen asserted, the received index, a number in the 
range of 0 … N−1, is used to fetch the corresponding 
address value from the address cache. This value is 
then incremented by the same constant offset used in 
the encoder and passed to the memory controller. If the 
special control signal is seen de-asserted, the received 
address value is stored into the address cache at the 
least recently used location, and passed verbatim to the 
memory controller. 

For the above scheme to work, both the encoder 
and decoder must use the same algorithm to track the 
least recently used element. Moreover, the two address 
caches must reset to arbitrary but identical states (i.e., 
cache values). To further reduce the switching activity, 
the transmission of the index, a number in the range of 
0 … N−1, is performed in an encoded fashion. We use 
UDRC encodings to accomplish this. These codes are 
further described in the next section. 

3.3 Unit Distance Redundant Codes 
UDRC provide multiple redundant encodings for each 
possible symbol, in such a way that any arbitrary value 
can be encoded by a value at Hamming distance at 
most one from each previous codeword. For example, 
consider the 4 symbols 0, 1, 2, and 3 that would 
normally be encoded in binary as 00, 01, 10, and 11. 
Here, the Hamming distances between pairs are: 
 

 00 01 10 11 
00 0 1 1 2 
01 1 0 2 1 
10 1 2 0 1 
11 2 1 1 0 

 
The total switching is 16 and there are 16 pairs, thus, 
the average switching is 16/16=1, as expected. Now 
consider the following redundant codes for the same 4 
symbols. We encode the symbol 0 as any of {000, 
111}, 1 as any of {100, 011}, 2 as any of {010, 101}, 
and 3 as any of {001, 110}. Here, the minimum 
Hamming distance between pairs of codes, from any 
set representing our symbols, are: 
 

 {000,111} {100,011} {010,101} {001,110} 
{000,111} 0 1 1 1 
{100,011} 1 0 1 1 
{010,101} 1 1 0 1 
{001,110} 1 1 1 0 

 
Here, the total switching is 12, thus, the average 
switching is 12/16=0.75, a reduction of 25%. 

Let us now consider the encoder and decoder 
circuits for the same example. Given a 3-bit UDRC 
encoding X, we can decode it into a 2-bit binary 
symbol Y, as shown in Figure 2. Encoding is slightly 
more complex. Here, we need to consider the last 
symbol that was encoded, and encode the new symbol 
such that to preserve the unit Hamming distance 
property. Given the most recently encoded binary 
symbol Y’ into X’, and the binary symbol Y, we can 
compute X as shown in Figure 2. 

We can show that UDRC encodings exist for any 
number of symbols. The proof is by construction. If we 
have 2k binary symbols (i.e., k-bit binary values), we 
use (2k−1)-bit UDRC encodings. Clearly, when the 
number of symbols is a power of two, we cannot do 
any better than that, since each encoding must have 

 
 
 
 
 
 

 
Figure 2: Decoder (left) and encoder (right) circuits. 
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2k−1 distinct neighbors. If the number of symbols is 
not a power of two, we round up to the next power of 
two, and are at most a factor of two away from the 
optimal number of bits needed to encode a given set of 
symbols. 

Let us first consider the construction of the 
decoder. Suppose that we want to decode the 7-bit 
UDRC encoding X6X5X4X3X2X1X0 back to the 3-bit 
binary symbol Y2Y1Y0. We compute over the two-
element Galois field GF21: 
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This produces a 3-bit binary symbol for each 7-bit 
UDRC encoding. More generally, in the case of k-bit 
binary symbols, the first matrix would have (2k−1) 
columns, k rows, and its elements would be 1, 2 … k−1 
in binary down each column. This matrix multiplied by 
the UDRC (2k−1)-bit encoding X would yield the k-bit 
binary symbol Y.  

Now we consider the encoder. To get a one-bit 
change from an UDRC encoding X’ representing the 
binary symbol Y’ to another UDRC encoding X 
representing the new binary symbol Y, we invert the 
(Y’ ⊕Y)th bit in X’ if (Y’ ⊕Y)≠02. 

For example, consider the UDRC encoding 
X=0001001. The binary symbol is Y=101 as computed 
over GF2: 

                                                           
1 GF2 is a finite field of integers (modulo 2) standing for the 

Galois filed of order 2 [15]. 
2 Note that, here, the least significant bit is the first bit, and 

the most significant is the 7th bit. 
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Now suppose we like to encode a new binary symbol 
Y=110. We compute 101⊕110=011. Thus, we invert 
the third bit in X’=0001001 to get X=0001101. The 
following table gives short stream of values in binary 
and UDRC, along with associated Hamming distances. 
 

Symbol Binary UDRC Hamming 
Binary 

Hamming 
UDRC 

5 101 0001001 - - 
6 110 0001101 2 1 
2 010 0000101 1 1 
5 101 1000101 3 1 
1 001 1001101 1 1 
7 111 1101101 2 1 
4 100 1101001 2 1 

 

3.4 Architecture 
The hardware architecture for the proposed encoder 
and decoder is relatively simple and efficient in terms 
of size and critical-path delay. The block diagram of an 
encoder with a 4-element address cache is depicted in 
Figure 3. The corresponding decoder is depicted in 
Figure 4. The UDRC decoder circuit was previously 
explained and shown in Figure 2. Likewise, the UDRC 
encoder was previously explained and shown in Figure 
2. The particular UDRC encoder used in the 
architecture of Figure 3 takes as input a one-hot 
encoding3 instead of the binary representation of the 
previous value.   For brevity, we have omitted the 
                                                           
3 One-hot encoding uses a dedicated line for each symbol it 

encodes to reduced the switching activity to 2 transitions 
per transmission. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Encoder architectures. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Decoder architectures. 
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circuit, as it is a simple modification of the encoder 
shown in Figure 2. 

We have omitted the hardware necessary to 
implement the replacement policy. For this, schemes 
commonly used in cache design can be adopted [13]. 
Also, in our design, the address caches are accessed in 
parallel for added performance. Furthermore, the cache 
elements are pre-incremented by the offset value 
eliminating the adders from residing on the 
critical-path. 

4. Experiments 
For our experiments, we have used 14 typical 
embedded system applications that are part of the 
PowerStone benchmark [6]. Among others, the 
applications include a JPEG image decoder called 
jpeg, a modem protocol processor called v42, a 
compression engine called compress, a CRC checksum 
algorithm called crc, an encryption algorithm called 
des, an engine controller called engine, an FIR filter 
called fir , a fax decoder called g3fax, a sorting 
algorithm called ucbqsort, and an image rendering 
algorithm called blit.  

For bus stream generation, we have used a 
simulation model [5] of a chip based on the system 
architecture depicted in Figure 1. The target processor 
of this simulator is a 32-bit MIPS R3000. The caches 
are organized into an 8K byte, 2-way, 16-bytes/line 
instruction cache, a 16K byte, 2-way, 16-bytes/line 
data cache, and a 32K byte, 2-way, 16-byte/line unified 
cache. A summary of the address trace sizes and the 
total number of binary bit transition for each 
application is shown in the following table. 
 

Application Stream length Bit transitions 
adpcm 1076 2689 
bcnt 300 757 
blit 2196 5460 
des 1968 4954 
compress 7872 17160 
crc 444 1165 
engine 412 1007 
jpeg 157700 283498 
fir  520 1267 
g3fax 1336 3015 
pocsag 884 2098 
qurt 304 792 
ucbqsort 764 1840 
v42 24348 59320 

 
We have implemented models of the proposed 

encoder and decoder and have simulated the 
application traces to obtain the total switching activity. 
Our encoder and decoder have address caches of size 4 
and use the least recently used (LRU) replacement 
policy. 

In addition we have implemented bus-invert, 
Gray, T0, UDRC, and one-hot encoders and decoders 
for comparison purposes. Note that both UDRC and 

one-hot encoding for 32-bit buses is prohibitive in 
practice, as the number of wires needed would be 232. 
They are shown for evaluation proposes only. 

The switching activity reduction, as a percentage, 
for a number of encoding approaches is summarized in 
Figure 5. As shown, on the average, our approach 
reduced switching activity by 60%, UDRC by 58%, T0 
by 34%, one-hot by 17%, and bus-invert by 3%. On 
the average, and based on published results, the beach 
solution approach reduced switching activity by 42% 
while the working zone approach reduced switching 
activity by 30% [1].  

In the case of blit, our approach reduced the 
switching activity the most, namely, 86%. In the case 
of engine our approach reduced the switching activity 
the least, namely 36%. The best and worse cases are 
explained as follows. The engine example is not a 
memory intensive application. Instead, it is highly 
control dominated with many branches and jumps, 
thus, much of the memory access is dominated by 
instruction fetches with little access pattern 
correlations. In contrast, blit is dominated by memory 
accesses that are exploited by our approach. 

We have also created synthesizeable RTL models 
of the encoder and decoder architectures depicted in 
Figure 3 and Figure 4. We have synthesized these 
models using Synopsys synthesis tools and measured 
the area as well as the critical-path delay. The 
maximum performance penalty (i.e., critical-path 
delay) for the encoder and decoder is 16 and 14 gates, 
respectively. The area overhead for the encoder and 
decoder is equivalent to 2033 and 1858 2-input NAND 
gates respectively. We have experimented with larger 
address caches for the encoder and decoder 
architectures. Our experiments show that the area and 
delay increase is proportional to the encoder/decoder 
address cache size (i.e., doubling the size of the 
address cache approximately doubles the area and 
critical-path delay.) 

5. Conclusion 
We have presented an encoding and decoding scheme 
for address buses to minimize the switching activity at 
the I/O pins and associated off-chip wires. Our 
approach caches memory references in order to isolate 
multiple interleaved sequential streams that make up 
the majority of data transmitted over an address bus of 
a system with on-chip caches. Furthermore, UDRC 
encodings are used to reduce the small amount of 
switching overhead necessary for reference indexing. 
Experiments with 14 typical embedded system 
applications show an average of 60% reduction in 
switching activity, with the best and worse cases being 
86% and 36% respectively. The maximum 
performance penalty (i.e., critical-path delay) for the 
encoder and decoder is 16 and 14 gates, respectively. 



The area overhead for the encoder and decoder is 
equivalent to 2033 and 1858 2-input NAND gates 
respectively. 
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Figure 5: Summary of experimental results. 


