

A Subquadratic Algorithm for the
Straight Skeleton

David Eppstein
Dept. Information and Computer Science

Univ. of California, Irvine

http://www.ics.uci.edu/∼eppstein/

(Joint work with Jeff Erickson, Duke Univ.)

1

Generalized Voronoi Diagrams

We know lots of Voronoi diagram algorithms

Which ones work when we want to construct some-
thing “similar to” a Voronoi diagram?

E.g. “abstract Voronoi diagram” – system of pseu-
dolines behaving similarly to bisectors in VD – has
O(n log n) randomized incremental construction
[Klein et al., CGTA 1993]

But “straight skeleton” [Bookstein, CGIP 1979; Aichholzer

et al., J. Univ. Comp. Sci. 1995] – relative of medial axis
of a polygon, is not an abstract Voronoi diagram.
How quickly can we construct it?

2

Outline

I. Roof design and straight skeletons

(i) Roof design problem

(ii) Straight skeleton definition

(iii) Connections to medial axis

II. Straight skeleton algorithm

III. Collision detection data structure

(i) Data structure definition

(ii) Update operations

(iii) Nearest neighbor searching

IV. Generalizations and conclusions
3

Roof design problem:

Given floor plan of a building

And given style of roof

E.g. hip: all walls support a roof plane, all roof

planes have the same slope

Design the roof

Determine topology of ridge and valley segments

Find coordinates for corners

4

How to fit a roof to these walls?

5

Offset curves and straight skeletons

Consider cutting roof by horizontal planes

Forms offset curves:

Polygons with edges parallel to original edges,
shifted some fixed distance

Corners are mitered (sharp)

Vertices in offset curves trace ridges and valleys of
roof, forming a tree inside the polygon

This tree is known as the straight skeleton

6

Straight Skeleton and Offset Curves

7

Medial axis

Medial axis has multiple definitions

Voronoi diagram of polygon edges

Lower envelope of wedges (above edges)
and cones (above vertices)

Locus of centers of circles tangent to two
points of polygon

Paths traced by vertices of offset curves with
rounded corners

Many applications

Problem: has curved edges

8

Relation to medial axis

Both are one-dimensional retractions of polygon

SS has no curved edges

SS and MA both generated by offset curves

(So both trees coincide for convex polygons)

SS can also be defined as a certain lower envelope

Wedges above edges
and tilted wedges above roof valleys

But where do those valleys end?

9

Straight skeleton algorithm

Continuously shrink offset polygon

At every discrete change in topology, form a straight
skeleton feature

Possible topology changes:

Whole polygon shrinks to nothing

Single edge shrinks to nothing

Reflex vertex collides into opposite edge

First two types easy to maintain in a priority queue;
what about third?

10

Collision detection for offset poly features

Given two sets S and T, undergoing additions, re-
movals, and modifications of objects

and given a binary function f(s, t)

maintain the pair (s ∈ S, t ∈ T)

that minimizes the value f(s, t)

For straight skeleton, S = offset polygon vertices,
T = edges, f(s, t) = time when vertex hits edge

11

Previous approaches I:
Brute force

After each update, compare all pairs (s, t)
to find the pair minimizing f(s, t)

Advantage: no extra storage

Disadvantage: slow (O(n2) per update)

12

Previous approaches II:
Discrete event simulation

Maintain priority queue of all pairs

After update, change n queue entries

Advantage: relatively fast (O(n log n) per update)

Disadvantage: uses too much memory (O(n2))

13

New results

Relatively simple data structure

Reduces collision detection to range searching

(well-studied problem with nearly optimal solutions)

Sublinear update times

Can trade off time and space:

O(n6/11+ε)per update with O(n17/11+ε) space

O(n3/4+ε) per update with O(n1+ε) space

So can compute straight skeleton in O(n17/11+ε)
time, or O(n7/4+ε) with nearly linear space.

Simplified version with naive range searching still
improves previous approaches and may be more
practical.

14

Conga Lines

Choose any object to start the line

End of line chooses its favorite object

among unchosen objects in other set

Lemma: if f(s,t) is minimized, then

either s chooses t or t chooses s

15

Overall Data Structure

Divide S into powers of two

For each subset, form conga line with T

(similarly, divide T and form conga lines)

16

Data structure insertions

To insert an object:

Make new singleton subset

Regroup subsets into distinct powers of two

Recompute conga lines

Analysis:

Each time object is involved in a recompu-
tation, subset size doubles

So at most log n recomputations

Total per insertion:
O(log n) nearest neighbor queries

17

Data structure deletions

To remove an object:

Remove it from O(log n) conga lines
(breaking each line in two)

Treat neighbors at broken ends of lines as
if they were newly inserted objects

Analysis:

Each deletion causes O(log n) insertions

Total time per deletion:
O(log2 n) nearest neighbor queries

18

Nearest Neighbor Queries

Return to 3d view: S = valleys, T = roof planes

Nearest neighbor to valley:

Which plane does this valley hit first?
(Ray shooting)

Nearest neighbor to plane:

Which valley hits this plane first?
(Inverse ray shooting)

In both cases, need to answer queries while
inserting and deleting objects from sets.

Both can be solved efficiently using
standard ε-cutting based algorithms

19

Summary Times for nearest neighbor queries
(and therefore for collision detection):

O(n6/11+ε)per update with O(n17/11+ε) space

O(n3/4+ε) per update with O(n1+ε) space

So can compute straight skeleton in O(n17/11+ε)

time, or O(n7/4+ε) with nearly linear space.

Some improvement when few reflex vertices:
O(n8/11+ε r9/11+ε)

20

Generalizations

Other kinds of roof (mansard, half-hip, gambrel,
gull-wing, gable, etc) give generalized skeletons

No longer a lower envelope, but still generated by
offset curves (with different speeds for different
edges, or change of speed for some edges)

Same algorithm applies, collision detection some-
what slower (O(n3/5) per collision)

Collision detection data structure
has many other applications

Other generalized Voronoi diagrams?
Higher dimensions?

21

	A Subquadratic Algorithm for the Straight Skeleton
	Generalized Voronoi Diagrams
	Outline
	Roof design problem
	How to fit a roof to these walls?
	Offset curves and straight skeletons
	Straight skeleton and offset curves
	Medial axis
	Relation to medial axis

	Straight skeleton algorithm
	Collision detection for offset poly features
	Previous approaches
	Brute force
	Discrete event simulation

	New results
	Conga lines
	Overall data structure
	Insertions
	Deletions
	Queries

	Summary
	Generalizations

