Fast Hierarchical Clustering
via Dynamic Closest Pairs

David Eppstein

Dept. Information and Computer Science
Univ. of California, Irvine

http://www.ics.uci.edu/~eppstein/

My Interest In Clustering

What | do: find better algorithms for previously-
solved problems

(rarely, find algorithms for new problems)

What is a better algorithm?

e Produces better answers than previous solutions
(according to well-defined quality measure)

e Produces the same answers, in less time
(theoretically or in practice)

My Interest In Clustering (continued)

My main interests:

e Graph algorithms
e Computational geometry

e Computational molecular biology

Geometry and biology have both led to clustering

e Biology: motivation (evolutionary trees)

e Geometry: solution techniques

. OVERVIEW OF THE PROBLEM

What is Hierarchical Clustering?

&

&
o) (&

Nested family of sets of data points

Subset relation gives hierarchical structure

Overview of Clustering Techniques

e Top down:
find binary partition of input
recursively cluster each side

e Incremental:
Add points one at a time
Follow hierarchy to good branch point

e Bottom up:
Find points which belong together
Merge them into a cluster
Continue merging clusters until one left

Top-down or incremental ok for search
(test if point exists; find nearby neighbor)

Bottom-up best for cluster analysis
but slow — can’t run on large data sets

My goal: speed up bottom-up clustering

Bottom-up Clustering Algorithm

Given n objects (data points, DNA sequences, etc)
Form n single-object clusters

Repeat n — 1 times:

e Find two “nearest” clusters

e Merge them into one supercluster

Different clustering algorithms
(UPGMA, Ward’s, neighbor-joining etc)

based on different definitions of “nearest”.

Slow part: finding nearest clusters

Formalization

Given set S of objects (or clusters), undergoing
Insertions and deletions of objects, and given a
distance function d(x,y)

As set of objects changes, the pair (x,y) that
minimizes the value d(x, y) will also change

We want a data structure to quickly find this pair

(Then clustering can be performed by a sequence
of n — 1 closest-pair queries, 2(n — 1) deletions of
clusters, and n — 1 insertions of new superclusters)

What Can We Assume About Distances?

Need not satisfy triangle inequality:

Distance between two clusters may be much larger
than sum of distances to third cluster

Not usually monotonic
(closest distance may go up or down over course of algorithm)

But, safe to assume symmetry
(ifd(x,y) # d(y, x), redefined*(x,y) = min(d(x,y), d(y,x)))

How Fast is the Distance Function?

We don’t want our algorithms to make assumptions
about distance function (to keep them as general
as possible)

But, to analyze their running time, we need to
know time per distance function evaluation.

Assumption: distance eval takes constant time

Not true in general!
(e.g. high-dimensional vectors, sequence alignment...)

What if it’s not true?

e Interpret analysis as predicting number of dis-
tance evaluations rather than program runtime

e If enough extra memory available, compute
and store distance matrix, then perform each
distance eval by matrix lookup

10

1. PREVIOUSLY KNOWN SOLUTIONS

11

Brute Force
Just keep list of points in the set
To find closest pair, loop through all pairs

Time per update: O(1)
Time per query: O(n?)

Easy to program but slow

12

Neighbor Heuristic
Each point stores its nearest neighbor

To insert: compute nearest neighbor of new point;
for each old point, check if new point is nearer
than old neighbor.

To delete: for each old point, if deleted point was
neighbor, find new neighbor

To find closest pair: loop through all neighbors

Time per insert: O(n)
Time per deletion: O(nk)
Time per query: O(n)

k = points for which deleted point was neighbor;
k = O(1) expected case, k = min(39, n) worst case.
Worst case: all points have same neighbor.

Not too complicated; ok in practice;
theoretically unreliable and unsatisfactory

13

Priority Queue

Maintain priority queue (e.g. binary heap)
of distance matrix values

Time per update: O(n) PQ changes, O(nlogn) total
Time per query: O(logn)
Space: O(n?)

Complicated; ok in theory, but uses lots of space
Probably slower than neighbors in practice

14

[11. NEW SOLUTIONS

15

Quadtree
Create lower triangular distance matrix

Overlay with coarser lower triangular matrix

value in coarse cell = min of four distances
11
N

1T
17 | 10
9 ['7 131

\) .L3
12 | 5 21 | 24
29 | 31 ||18 | 16 || 3
2 1A ’%
y ARy 4 i B N
26 | 22 ||14 | 15 || 6 8

Treate coarse matrix as set of distances on half as
many points, maintain closest pair recursively

16

Quadtree Analysis

Insertion

Compute n — 1 new distances
Recompute distances in n/2 coarse matrix cells

then n/4 cells at next level, etc. Total: 2n — 1 dis-

tance computations

Deletion

Recompute distances in n/2 coarse matrix cells
then n/4 cells at next level, etc. Total: n — O(1)
distance computations

Closest Pair Lookup

Find closest pair at base of recursion
At each level, find which value gives min
Total: O(logn)

17

Conga Line Data Structure
Partition points into log n subsets

For each subset S;, maintain digraph G;
with edges connecting S; and rest of points

(initially S; i1s a path, becomes a set of paths as
points are deleted and edges get removed)

Closest pair will be guaranteed to form an edge in
one of these graphs (O(n) time per query)

[Simplified from geometric bichromatic closest pair data
structure in Eppstein, Disc. & Comp. Geom. 1996, by remov-
ing the geometry and the colors and relaxing conditions on

the sizes of the subsets.]

18

Conga line for a subset

Given subset of some of the objects,
choose any object to start the path

End of path chooses its favorite unchosen object
(if not in subset, must choose within subset)

Lemma: if d(s,t) is minimized, and one of s or t is in the

subset, then either s chooses t or t chooses s.

19

Conga line insertions

To insert an object:

Make new singleton subset

If too many subsets, merge two that are
closest in size

Recompute conga lines

Analysis:

Each time object is involved in a recompu-
tation, subset size increases by a constant
factor, so O(log n) recomputations

Each time object is involved in a recompu-
tation, takes O(n) time to find its neighbor

Total per insertion: O(nlogn)

20

Conga line deletions

To remove an object:
Remove it from O(log n) conga lines
(breaking each line in two)
Treat neighbors at broken ends of lines as
If they were newly inserted objects

Analysis:

Each deletion causes O(log n) insertions

Total time per deletion: O(nlog?n)

21

Modified Conga Lines
Multi-Set Conga: never merge subsets

FastPair: when deletion would create a subset of k
points, instead create k singleton subsets

(FastPair is very similar to neighbor heuristic, but
creates initial neighbor values differently, and
Insertion never changes old neighbor values)

Insertion time: O(n)
Deletion time: O(n) expected, O(n?) worst-case
Query time: O(n)

(Similar analysis to neighbor heuristic; which is
best needs to be determined empirically.)

22

V. EXPERIMENTAL RESULTS AND
CONCLUSIONS

23

Hierarchical Clustering in R%0

BruteForce Neighbors Quadtree CongalLine Multiset FastPair

n = 250 5.76s 0.60s 0.36s 1.09s 0.38s 0.36s
500 53.80s 2.48s 1.71s 5.98s 1.65s 1.52s
1000 456.98s 10.24s 7.94s 28.17s 7.10s 6.75s
2000 4145.91s 46.41s 154.25s 35.35s 31.88s
4000 204.14s 785.14s 165.58s 148.76s
8000 841.34s 3644.60s 747.80s 659.85s
16000 3337.03s 3051.22s 2709.94s

Clusters are combined by unweighted medians.
Points placed uniformly at random in the unit hypercube.

Times include only the construction of the closest pair data
structure and algorithm execution (not the initial point
placement) and are averages over ten runs.

The quadtree data structure was only run on data sets of 1000
or fewer points due to its high storage requirements.

Code was written in C++, compiled and optimized by
Metrowerks Codewarrior 10, and run on a 200MHz PowerPC
603e processor (Apple Powerbook 3400c).

24

Sierpinski Tetrahedron

r\

=
SW o NAN-AN
20N AN A
YA AN AN
NN AA SEE \‘v\,“\\: v'\\f\\ B
ARERINAN ATANN
A2\ DASEANRRAA SR DA IS
YWY AN v \\v v
O\ SSUAS AN NI A W
NN A

\\\V . \\\" N\ A\
RSN ARSI
RN A AN
\ :

TP N
S " S \w\\\W\y'
AL ‘7\ \r\w‘\w N

AN/ NANYY

v

25

Hierarchical Clustering ina31l-dimensional
Fractal

BruteForce Neighbors Quadtree CongalLine Multiset FastPair

n = 250 12.71s 0.67s 0.52s 2.05s 0.68s 0.59s
500 107.90s 3.18s 2.51s 10.79s 3.03s 2.72s
1000 926.06s 14.38s 11.18s 55.67s 13.62s 12.41s
2000 61.26s 278.97s 64.07s 56.79s
4000 244.23s 1227.56s 269.56s 233.05s
8000 1014.02s 5354.00s 1128.76s 972.92s
16000 4492.64s 4624.10s 4152.42s

Clusters are combined by unweighted medians.

Points placed uniformly at random in the 31-dimensional
generalized Sierpinski tetrahedron (formed by choosing 5
random binary values and taking bitwise exclusive ors of
each nonempty subset)

Times include only the construction of the closest pair data
structure and algorithm execution (not the initial point
placement) and are averages over ten runs.

The quadtree data structure was only run on data sets of 1000
or fewer points due to its high storage requirements.

Code was written in C++, compiled and optimized by
Metrowerks Codewarrior 10, and run on a 200MHz PowerPC
603e processor (Apple Powerbook 3400c).

26

Analysis of Experimental Data

Brute Force

Theoretically and in practice, takes time O(n?)
Never the best choice

Quadtree

Theoretically and in practice, takes time O(n?)
Computes few distances but high overhead
Good for small n, expensive distance computations

Conga Line

Theoretically takes time O(n?log? n)
In practice, time seems to be O(n?logn)
Good for wierd distances when other methods fail

Neighbors, Multiset, FastPair

Theoretically, worst case O(n?)
In practice, time seems to be O(n?)
FastPair is generally best of these three

27

Other Applications

Traveling Salesman Problem heuristics

Multi-Fragment: find shortest edge between
endpoints of two different paths

Cheapest Insertion: find pair (edge xy in tour, ver-
tex z not in tour) minimizing Xz + yz — xy

Greedy matching

Computational symbolic algebra?
Grobner Basis algorithm repeatedly interacts pairs
of polynomials; use data structures to find best pair

Building roof design

(Joint work with J. Erickson)

28

How to fit a roof to these walls?

29

Future Work

More experiments

Real data?

Account for cache size effects

At certain problem sizes, runtime jumps
probably due to data exceeding cache size

All methods repeatedly scan memory
Instead, process memory in cache-sized chunks

Neighbor-Joining

Clustering method used in computational biology
Distances are linear functions: d(i, j) = a;n + bj;

Typical impl. O(n*) but easily improved to O(n3)

Maintain convex hull of points (a;j, bjj)
Minimum distance = binary search in hull
Total time: O(n?logn)

Implementation and experimentation needed

30

	Fast Hierarchical Clustering via Dynamic Closest Pairs
	My interest in clustering
	Overview
	What is hierarchical clustering?
	Overview of clustering techniques
	Bottom-up clustering
	Formalization
	What can we assume about distances?
	How fast is the distance function?

	Previous solutions
	Brute force
	Neighbor heuristic
	Priority queue

	New solutions
	Quadtree
	Conga line
	Modified conga lines

	Results and conclusions
	Hierarchical clustering in R^20
	Sierpinski tetrahedron
	Clustering in a fractal
	Analysis of data

	Other applications
	Future work

