ICS 280e, Fall 2000

Lecture Notes for November, 2000

Schoning’s random-restart hill-climbing k-SAT algorithm

David Eppstein, ICS, UC Irvine

The Algorithm

Schoning [2] considered the following very simple algorithm for k-SAT (i.e. boolean formula satisfiability,
in which the formulais a disjunction of k-variable clauses):

Repeat K times:
1. Choose arandom assignment of truth values for all variables
2. Repeat 3n times:

(@) Find an unsatisfied clause for the current truth assignment

(b) Choose randomly one of the k variables from the clause and change its assignment from true to
false or vice versa

If this sequence of random experiments ever finds a satisfying assignment, we know that the formulais
satisfiable and can halt. Each trial can be performed in time O(mn), where mis the number of clausesand n
the number of variables, so the overall running timeis K times a polynomial. The question is, how big does
K need to be to have high probability of finding a satisfying assignment?

To analyze this agorithm, assume that the formulais satisfiable, and let A* be some particular satisfying
assignment (choose one arbitrarily if there is more than one). Then, for any other truth assignment A, define
d(A) to be the Hamming distance from A to A*; that is, the number of variablesthat would have to be flipped
to get to the satisfying assignment A*.

What happensto d(A) in the inner loop of the algorithm? At each step, we pick an unsatisfied clause of
theformula. Sincethisclauseissatisfied by A*, we know that A and A* differ on at |east one of thek variables
of thisclause. By flipping arandomly chosen variable, we know that with probability at least 1/k we choose
one of the variables where they differ, and reduce d by one. With probability at most (k — 1) /k, though, we
canincrease d by one.

Drunkard’s Walk

So, the behavior of d intheinner loop can be described by arandom walk, in which we start at some positive
integer i and step to i — 1 with probability 1/k or toi + 1 with probability (k — 1) /k. If we ever get to zero,
we succeed. What is the probability that, starting from i, we ever get to zero?



Let's let p(i) denote this probability. We have a nice recurrence: if we're at position i, then we have
probability 1/k of movingtoi— 1 (with probability p(i — 1) of continuing from there to zero) and probability
(k—1)/k of moving toi + 1 (with probability p(i + 1) of continuing from there to zero). So,

pli) = 7p(i — 1) + < L+ 1)

Turning this around, we see that

: k 1
p(i+1) = mp(') - mp(' -1),
arecurrence similar to that for the Fibonacci numbers. We could solve this easily if only we knew the base
cases. Obviously, p(0) = 1, but we still need to calculate p(1).

Consider what can happen if the random walk reaches position one. With probability 1/k, it movesim-
mediately to position zero and halts. But with probability (k — 1) /k, it moves to position two. From there, it
might continue to remain forever at positions greater than one, or it might (with probability p(1)) eventualy
return to position one. If we ever do return to position one, we again have probability p(1) of ever reaching

zero. Thus 1 Kk_1
p(1) =+~ (P(D).

Thisisaquadratic equation, with two roots. We can either use the quadratic formulaor direct substitution to
see that the roots are actually 1/(k — 1) and 1. The root we want turnsout tobe 1/(k — 1).

Lemmal

Proof: We have seen that this holds for the base casesp(0) = 1and p(1) = 1/(k — 1). Theresult follows
by induction, since plugging in this value for p(i) and p(i — 1) in the recurrence gives

k . 1

pi+1) = —P@)——pi-1)
_k 1 1 1
T k=1 (k=1 k-1 (k—1)-1
B k k—1
T (k—1)+1 N (k—1)i+1
B 1
T k-1t

Algorithm Analysis

There are two ways in which the random walk above is not an accurate model of the behavior of d(A) in
Schoning’s algorithm. First, if we ever find a clause containing two or more variables for which A differs
from A*, then the probability of stepping to d(A) — 1 grows and the probability of stepping to d(A) + 1
shrinks, but this can only increase the overall probability of finding a satisfying assignment.

More importantly, we terminate the random walk after 3n steps, instead of alowing it to continue ad
infinitum. Schoning goes through a more careful analysis than the one above, showing that this early termi-
nation reduces the probability of reaching zero by a negligable amount.

2



So, what isthe probability that a single iteration of the outer loop reaches a satisfying assignment? After
we have selected our initial assignment A, the probability is (modul o the inaccuracies noted above) p(d(A)),
so the overall probability isjust the average of this quantity over all possible sets. Any symmetric difference
A @ A*isequally likely, so we get the formula

| 1 2
Zz<>k o~ @™

For instance, for 3-SAT, we get probability (3/4)" of finding asatisfying assignment in asingleiteration,
so the number of iterations we need overall isroughly (4/3)".

More generally we can apply thistechniqueto any (k, d)-CSP problem, by finding unsatisfied constraints
and finding a random new value for a random variable in the constraint. We get probability 1/(d — 1)k of
reducing the Hamming distance by this random choice, and the same analysis above shows that we need
roughly (d(1 — 1/k))" iterations to find a satisfying assignment.

Theorem 1 Schoning’s algorithmfinds a solution to any satisfiable (k, d)-CSP problem, with high probabil -
ity, intime (d(1 — 1/k))"n®D,

Although better algorithms are known for k = 2, this approach provides the best known algorithms for
k-SAT (d = 2), aswell asfor other CSP problems where both k and d are greater than two.

It would be of interest to find problems other than CSP for which this random-walk approach is useful.
Another direction of research is derandomization — the best known deterministic algorithm for k-SAT can be
viewed as a derandomized version of Schoning’s agorithm [1] but its time bounds are not as good.

References

[1] E. Dantsin, A. Goerdt, E. A. Hirsch, and U. Schoning. Deterministic algorithms for k-SAT based on
covering codes and local search. Proc. 27th Int. Coll. Automata, Languages and Programming, 2000.
http://logic.pdmi.ras.ru/~hirsch/abstracts/ical p00.html.

[2] U. Schoning. A probabliistic algorithm for k-SAT and constraint satisfaction problems. Proc. 40th Symp.
Foundations of Computer Science, |EEE, October 1999, pp. 410-414.



