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Problem

We want to solve (k, 2)-CSP; that is, we are given a set of n variables xi (1 ≤ i ≤ n), each of which can be
given one of k values. We are also given a set of constraints; each constraint specifies a pair of values from
different variables. The goal is to find an assignment of values to all the variables, such that no constraint
has both its specified values used.

Tomás Feder and Rajeev Motwani of Stanford Univ., in an unpublished manuscript dated September
1998, gave a very simple randomized algorithm for this problem. Its analysis, however, is not so simple.
Their algorithm is still the best known when k is sufficiently large (k ≥ 11).

It is open, and would be of interest, to find a way of derandomizing their algorithm, giving a deterministic
algorithm with a similar running time. The set cover based methods we’ve seen for derandomizing other
randomized generate-and-test algorithms don’t seem to work here.

Algorithm

Like the simple randomized (3, 2)-CSP algorithm we saw last time, this algorithm combines ideas from both
generate-and-test and backtracking algorithms. The outer loop is like a generate-and-test algorithm, repeat-
ing an inner loop enough times to make up for the low probability of finding an answer. The inner loop is
similar to a recursive backtracking search, but only follows a single randomly chosen path through the search
tree.

Repeat K times:

1. Choose a random permutation of the variables

2. For each variable (in the random order) choose randomly a value consistent with the previous choices

Analysis

All logs in this section should be assumed to be base 2.

Lemma 1 Let a and b be nonnegative integers. Then log(a + b− 1) ≤ log(a) + log(b).

Proof: Taking powers of two on both sides, the inequality becomes a + b − 1 ≤ ab. If a or b is one, both
sides are equal; otherwise, assume without loss of generality that a > b ≥ 2. Then the left side is less than
2a while the right side is at least 2a. 2
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Given a solution x to the given CSP problem, let poss(i, x) denote the number of different values which
we could assign to variable xi (leaving the other variables fixed) and still come up with a correct solution.
Also define

value(x) =
∏

i

1
poss(i, x)

so in some sense value(x) is a measure of how isolated the solution is – a single isolated solution will have
value(x) = 1 while a solution in which most of the variables are free to change will have a very small value
of value(x). If x is not a valid solution, we define value(x) to be zero.

Lemma 2 ∑
x

value(x) ≥ 1.

Proof: Consider the search tree used in the algorithm, and prune the tree so that the only remaining leaves
are the actual solutions to the CSP.

Consider assigning weights to nodes in the tree as follows. Initially, we assign unit weight to the root and
zero weight elsewhere. Then, whenever there is a nonzero weight at a non-leaf node, we divide that weight
equally among the node’s children. Thus, the weight all ends up at the leaves, and the total weight remains
equal to one.

At any leaf, the assigned weight is
∏

1/di, where di is the degree of the ancestor corresponding to variable
xi. But di ≥ poss(i, x) so the leaf’s weight is at least value(x). Thus

∑
value(x) ≥∑∏

1/di = 1. 2

Lemma 3 Let F(x) denote the expected value of− log P(x), where P(x) is the probability that CSP solution
x is found by an iteration of the algorithm, and the expectation is over the choice of random permutations.
Then

F(x) ≤ n log(k!)
k

+ log(value(x)).

Proof:

F(x) = −E(log(Pr(correct value chosen for each xi)))
= −E(log(

∏
i

Pr(correct value chosen for xi)))

= −E(
∑

i

(log(Pr(correct value chosen for xi)))

= −
∑

i

(E(log(Pr(correct value chosen for xi)))

= −
∑

i

(E(log(
1

number of choices for xi
)))

≤
∑

i

1
k + 1− poss(i, x)

k∑
j=poss(i,x)

log(j)

≤
∑

i

1
k

k∑
j=1

log(j− 1 + poss(i, x))

≤
∑

i

1
k

k∑
j=1

(log(j) + log(poss(i, x)))

=
n log(k!)

k
+ log(value(x)).
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Here the first inequality comes from the worst case when all the values not in poss(i, x) are eliminated
by single constraints to distinct variables. A value eliminated by multiple constraints, or two values elimi-
nated by the same variable, only decrease the expectation. The second inequality comes from an averaging
argument (we are taking a weighted average of terms like log(j), and throwing in some extra larger terms).
The third inequality is Lemma 1. 2

Lemma 4 Let X be a nonnegative random variable. Then the probability that X ≤ E[X] + 1 is at least
1/(E[X] + 1).

Proof: Suppose to the contrary that X > E[X] + 1 with probability at least 1− 1/(E[X] + 1). Then

E[X] > (1− 1
E[X] + 1

)(E[X] + 1) = E[X],

a contradiction. 2

Theorem 1 If there is a solution to a CSP problem, then with constant probability such a solution will be
found within O(k!n/k n log k) iterations of the given algorithm

Proof: We have seen that

−E[log P(x)] ≤ n log(k!)
k

+ log(value(x)).

Also note that −E[log P(x)] ≤ max− log P(x) ≤ n log k, so, by Lemma 4, the probability of choosing
a permutation for which log P(x) is within one of its expectation is at least 1/(n log k + 1). Putting these
two facts together and exponentiating, we find that the probability of reaching solution x on any particular
iteration is at least k!−n/kvalue(x)/(n log k+1). Summing over all x, and using the fact that

∑
value(x) ≥ 1,

gives probability at least k!−n/k/(n log k + 1) of reaching any solution in a given iteration. If the number
of iterations is inverse to this probability, we will have a constant probability of seeing a solution in some
iteration. 2

The same analysis technique can be used to show, more generally, that if variable xi has ki possible values,
then with constant probability the algorithm finds a solution within O(

∏
i ki!1/ki

∑
i log ki) iterations.
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