CS 261: Data Structures
Week 8: Navigating in trees

Lecture 8b: Level ancestors and list ordering

David Eppstein
University of California, Irvine

Spring Quarter, 2025

This work is licensed under a Creative Commons Attribution 4.0 International License

The level-ancestor problem

The level-ancestor problem

Data: A tree

Query:
» Given a vertex v and a number k, find the ancestor of v that is k steps higher in
the tree
» Equivalently: Given a vertex v and a number d find the ancestor whose depth
(number of steps from root) is d

We could just follow parent links up the tree in time O(k) but we want small query
time even when k is large

Inefficient solution

Each node v stores O(log n) ancestors, the ones k steps higher for
k=1,2,4,8,...2/ ...

To find the ancestor k steps higher when k is not a power of two:

» Decompose k into a sum of powers of two
(its binary representation)

> Use stored ancestor pointers to jump up by each power

Space O(nlog n), query time O(log k)

We can reduce space but first we need to speed up queries

An easy special case

If the tree is a path, rooted at left end:

» Store an array A of the vertices in the path
» Each node records its position in the array
» If Visin A[f], its k-step ancestor is in A[i — K]

Linear space, constant query time

Decomposition into long paths

Each non-leaf node selects one child,
the one leading to the deepest leaf

The selected edges form a system of
paths covering all non-leaf nodes and
some of the leaves

Remaining leaves form one-vertex paths
But if we use the path solution for

these paths, how do we find ancestors
on different paths?

Extended paths

Instead of disjoint paths, extend each path to be twice as long (or all the way to the
root if there is no ancestor twice as high)

Store each extended path in an array, and for each tree vertex store both which array it
belongs to and its position in the array

Total length of all arrays < 2n = linear space

Can answer some but not all queries: when v is h steps above a leaf, we can find
ancestors h steps above v

Combined data structure

Store both power-of-2 ancestors and extended paths

To find the ancestor k steps higher from v:

» Make one power-of-2 jump, the biggest one that would still be below the ancestor

Jump amount = 2llogz]

» You are now high enough above a leaf to use extended paths
Constant query time but space is still O(nlog n)

(The paths use linear space but the jump tables are too big)
[Bender and Farach-Colton 2004]

Level ancestors and Euler tours

To find the ancestor of v at height d:
> Look in the Euler tour of the tree, starting from the last copy of v in the tour

» The next vertex with height d is the ancestor

(a)
(0) ©)
@/ (&) \©) (9)
™ O \@
®

a,b,d,b,e, b, f,hkhfbacgigjgca

Log-shaving

Structure:
» Break Euler tour into blocks of length b = % log, n
> Within block, depths differ by +1; label each block by its pattern of + choices, a
(b — 1)-bit binary number
> Precompute tables for queries with answer in same block

» Store power-of-two tables only at the last vertex of each block

Query:
> Use table to find answer in v's block (if it is there)
» If not, vertex u at block end has same level-d ancestor as v

> Use the jump table stored at u to find an ancestor w high enough that we can use
the extended paths for w

[Berkman and Vishkin 1994]

The list ordering problem

List ordering vs tree ancestors

Simplification of common ancestor problem:

Test whether one tree vertex is an ancestor of another, or not

(D an
Data structure: 9 6 ﬂ 0 9 @
Number in preorder e 9 e e e e e e
Number in postorder
O, W w O @ ®

preorder postorder

Ancestor = earlier in preorder and later in postorder

Dynamic order comparison

Maintain a collection of elements ordered into a list

Operations:
> Insert x at the start or end of the list
> Insert x immediately before or after another element y
> Find the element immediately before or after x
> Remove x
> Test whether element x is earlier than or later than element y

Most operations can easily be done in constant time,
for example by using doubly linked lists

The only missing one: testing relative ordering

House numbering problem

Typical properties of numbers of buildings in
US streets:

» Ordered: number tells you relative
position along street

» Usually small integers

» Not necessarily consecutive:
there may be gaps in the numbering

» Renumbering is expensive,
so don't do it very often

Intuition: apply similar scheme to list ordering by numbering list elements
and using numbers to test relative position

v

v

Partial history

Dietz [1982]: logarithmic update, O(1) order-comparison
Tsakalidis [1984]: constant amortized update and comparison

Dietz and Sleator [1987]: maintain ordered numbering, all numbers polynomially
large, constant amortized update, complicated

Bender et al. [2002]: simplification of same results
Bender et al. [2017]: worst case rather than amortized

Devanny et al. [2017]: few relabelings per element

We will follow Bender et al. [2002]

Application of house numbering:
Dynamic arrays, revisited

Dynamic arrays with insertion and deletion

Suppose we want to maintain a sequence of values with the following operations:
» Look up the value at position i in the sequence
» Change the value at position / in the sequence
> Add a new value at position i in the sequence, shifting all later values to higher
positions
> Remove the value at position / in the sequence, shifting all later values to earlier
positions

Dynamic arrays allow only the first two operations, and add/remove at the end of the
array; adding and remove fast lookup of the element at position /, and fast insertion or
deletion at the end of the array

What if we want to extend arrays to allow insertion or deletion at other positions?

Dynamic arrays from augmented trees

Store the sequence in a binary search tree augmented for ranking and unranking

(The sequence order is the left-to-right tree order; we don't need to store keys with the
tree nodes, only the associated array values, so house numbering not needed.)

To find or change the value at position i: use unrank to find its tree node

To add or remove a value: standard binary search tree insertion/deletion operations

Dynamic arrays from house numbering

Maintain:
» House-numbering solution for sequence of elements
» Dictionary mapping house numbers to linked list nodes

» Structure for ranking and unranking house numbers with O(log n/ log log n) time
per operation (mentioned briefly last week)

To find or change the value at position i: use unrank to find its house number and then
use that number as a dictionary key

To add or remove a value, update the house numbers and propagate any changes in
numbering to the ranking/unranking structure

House numbering solution

Terminology

We will store a doubly linked list, whose elements are called keys

Because it's stored as a linked list, we can quickly find adjacent keys

The two adjacent keys are the predecessor and successor

We wish to assign numbers to the keys to allow fast comparisons of their positions;
these numbers are called tags

We want to maintain a correspondence keys — tags so that the numerical ordering of
tags = the list ordering of keys

Main idea

Delete a key = do not renumber other tags

If we insert key x, and there is any available tag i between tags of its predecessor and
successor, set tag(x) =i

Remaining case: Partition possible tag values recursively into ranges of tags with
power-of-two sizes

Find the smallest range of tags (size 2¥) surrounding new element location that is used
by few keys: fewer than c*

Renumber the keys evenly within this range (including x)

Main idea implementation details

The parameter ¢ can be any fixed number in range 1 < ¢ < 2 (smaller ¢ = bigger
tags; larger ¢ = more renumberings)

To find a range of tags that is used by few keys: scan left and right from x in the
sequence, finding increasingly large ranges in hierarchical partition of tags, until finding
a range with few keys

Let k = log. n, and let o = log, 2. If max tag > n®, then range of all tags is bigger
than 2% and holds only n = c* keys, so 3 range with few keys and search terminates

When search terminates, time it took to find the range and renumber its elements are
both proportional to # keys in it

Main idea analysis

When we renumber a range of size 2/, left or right half-range is full.

(If both half-ranges had few elements, we would have renumbered one of them before
getting to the larger range.)

Therefore, when we renumber a range of size 2, we renumber between ¢! and c*
keys and it takes total time ©(c)

After renumber, each half-range has < $c5~1 keys, below full by a factor of ¢/2 =
cannot fill up again before we do another Q(c*) insertions = amortized time for ranges
of size 2/ is O(1)

The same analysis holds separately for each choice of 7, but there are O(log n) choices
= total amortized time per update is O(log n)

Log-shaving

To achieve constant instead of logarithmic amortized time per update, again use a
blocking strategy:

» Group keys into dynamic blocks of logarithmic
length

» Split block when it gets too long; merge pairs of
consecutive blocks when total length small enough

» Use main idea to number blocks

v

Allocate polynomially many tags within each block

> New key in a block gets average of predecessor
and successor

» Renumber all keys in a block when block structure
changes or when a new element has no tag; this
happens only O(1) times per O(log n) insertions

Summary

v

vvyyywy

Summary

Representation of trees and binary trees with 2n bits

Blocking and table lookup strategy for saving logarithmic factors in the space
bounds for many data structures

Common ancestor problem and its applications to shortest paths and bandwidth
maximization

Equivalence between common ancestors and range minima
Common ancestors in O(n) space and O(1) query time
Maintaining order in a list in O(1) amortized time

Level ancestors in O(n) space and O(1) query time

References and image credits, |

Michael A. Bender and Martin Farach-Colton. The level ancestor problem simplified.
Theoretical Computer Science, 321(1):5-12, 2004. doi: 10.1016/j.tcs.2003.05.002.

Michael A. Bender, Richard Cole, Erik D. Demaine, Martin Farach-Colton, and Jack Zito. Two
simplified algorithms for maintaining order in a list. In Rolf H. M&hring and Rajeev Raman,
editors, Algorithms — ESA 2002, 10th Annual European Symposium, Rome, lItaly, September
17-21, 2002, Proceedings, volume 2461 of Lecture Notes in Computer Science, pages
152-164. Springer, 2002. doi: 10.1007/3-540-45749-6 17.

Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, Tsvi Kopelowitz, and Pablo Montes. File
maintenance: When in doubt, change the layout! In Philip N. Klein, editor, Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017,
Barcelona, Spain, Hotel Porta Fira, January 16—19, pages 1503—-1522. Society for Industrial
and Applied Mathematics, 2017. doi: 10.1137/1.9781611974782.98.

Omer Berkman and Uzi Vishkin. Finding level-ancestors in trees. Journal of Computer and
System Sciences, 48(2):214-230, 1994. doi: 10.1016,/S0022-0000(05)80002-9.

References and image credits, ||

William E. Devanny, Jeremy T. Fineman, Michael T. Goodrich, and Tsvi Kopelowitz. The
online house numbering problem: Min-max online list labeling. In Kirk Pruhs and Christian
Sohler, editors, 25th Annual European Symposium on Algorithms, ESA 2017, September
4-6, 2017, Vienna, Austria, volume 87 of LIPIcs, pages 33:1-33:15. Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik, 2017. doi: 10.4230/LIPIcs.ESA.2017.33.

P. Dietz and D. Sleator. Two algorithms for maintaining order in a list. In Proceedings of the
19th Annual ACM Symposium on Theory of Computing (STOC '87), pages 365-372. ACM,
1987. doi: 10.1145/28395.28434.

Paul F. Dietz. Maintaining order in a linked list. In Proceedings of the 14th Annual ACM
Symposium on Theory of Computing (STOC '82), pages 122-127. ACM, 1982. ISBN
978-0897910705. doi: 10.1145,/800070.802184.

Infrogmation. 2825 Bell Street, New Orleans. CC-BY-SA image, February 27 2019. URL
https://commons.wikimedia.org/wiki/File:
Bell_Street_2800_Block_New_Orleans_Feb_2019_09. jpg.

liempdma. Cutting lumber with a swingblade sawmill. CC-BY-SA image, September 4 2018.
URL https://commons.wikimedia.org/wiki/File:
Cutting_lumber_with_a_swingblade_sawmill. jpg.

Athanasios K. Tsakalidis. Maintaining order in a generalized linked list. Acta Informatica, 21
(1):101-112, 1984. doi: 10.1007/BF00289142.

https://commons.wikimedia.org/wiki/File:Bell_Street_2800_Block_New_Orleans_Feb_2019_09.jpg
https://commons.wikimedia.org/wiki/File:Bell_Street_2800_Block_New_Orleans_Feb_2019_09.jpg
https://commons.wikimedia.org/wiki/File:Cutting_lumber_with_a_swingblade_sawmill.jpg
https://commons.wikimedia.org/wiki/File:Cutting_lumber_with_a_swingblade_sawmill.jpg

	References

