
CS 261: Data Structures

Week 6–7: Binary search

Lecture 7a: Augmented search trees

David Eppstein
University of California, Irvine

Spring Quarter, 2025

This work is licensed under a Creative Commons Attribution 4.0 International License



Ranking and unranking



In sorted arrays

Rank(x) = the position of x in the array
(or the position it would go if added to the array)

Can be found by binary search

Unrank(i) = the element at position i in the array

Trivial to compute as Array[i ]

For example, Unrank(n/2) is the median

They are inverse operations:
▶ Rank(Unrank(i)) = i , if i is in the range of array indexes
▶ Unrank(Rank(x)) = x , if x is one of the values stored in the array



In dynamic binary search trees

Rank and Unrank are well defined as the position of a given value in the sorted order,
and the value at a given position

But it’s not obvious how to compute them quickly!
It doesn’t work to translate array search directly to trees
▶ In array binary search for Rank(x), we know the rank of each array cell
▶ In binary search trees, we cannot store a rank in each tree node, because each

update would cause all later ranks to change, too many for fast updating
▶ There is no way to translate the trivial array Unrank algorithm into a tree algorithm



Augmented binary search trees

Store relative rank in each node: its position among it and its descendants = number of
left descendants

35, 10

11, 2

9, 1 27, 5

5, 0 22, 3 30, 0

17, 1

15, 0 19, 0 43, 0 50, 0

79, 0

86, 023, 0

39, 0 57, 3

48, 1 65, 0

36, 0 68, 5

42, 2

“x, y” means
key value is x
relative rank is y

Key 68
has 5 nodes
in left subtree



Maintaining relative rank

On insertion or deletion: add or subtract one to all right ancestors

On rotation:

x

y x

y

rr(x) stays unchanged
rr(y) += rr(x) + 1

rr(y) –= rr(x) + 1



Ranking using relative ranks

Call the following recursive search with node = tree root:

def rank(x,node):
if node == None:

return 0
else if x <= node.key:

return rank(x,node.left)
else:

return rank(x,node.right) + node.relrank + 1

(In splay trees, add splay from last internal node on search path)



Unranking using relative ranks

Call the following recursive search with node = tree root:

def unrank(i,node):
if i == node.relrank:

return node.value
else if i < node.relrank:

return unrank(i,node.left)
else:

return unrank(i - node.relrank - 1, node.right)

(In splay trees, add splay from last internal node on search path)



Ranking and unranking summary

By adding extra information (relative rank) to each node of a binary search tree, we can
still update the tree in O(log n) time, and answer rank and unrank queries in the same
time

Works with any rotation-based balanced binary search tree

Related recent research: Ranking and unranking dynamic sorted sets of n integers in
the range [0, nc ] can be done slightly faster: O(log n/ log log n) per update or query

Pătraşcu and Thorup, “Dynamic Integer Sets with Optimal Rank, Select, and Predecessor
Search”, FOCS 2014, https://arxiv.org/abs/1408.3045



Range searching



Range searching

Find aggregate information about data elements within a query range [low,high] of
values

(or within higher-dimensional regions)

▶ Range counting: Number of elements in range

Compute ranks of left and right range endpoints and subtract

▶ Range reporting: List all elements in range

▶ Range minimum: Find minimum priority value in range
(not minimum value – trivial as successor of left endpoint)

▶ Other more complex queries e.g. do a recursive range search on another attribute
for elements within range



Range reporting

Call with node = tree root:

def report(low,high,node):
if low < node.value:

report(low,high,node.left)
if low <= node.value <= high:

output node.value
if node.value < high:

report(low,high,node.right)



Analysis of range reporting

Whenever we recurse into both children, we also output the node value

Every recursive call is one of:
▶ A node whose value is output
▶ A node on the search path for the low range endpoint

(at which we search only the right child)
▶ A node on the search path for the high range endpoint

(at which we search only the left child)

Time = O(number of nodes searched) = O(output size + log n)

An algorithm whose time depends on output size and not just on input size is called
“output sensitive”.



Decomposable range search problems

Suppose:
▶ We have a collection of key,value pairs with sorted keys
▶ An associative binary operation ⊕ operates on the values
▶ We want to find the result of applying ⊕ to the values whose keys are within a

query range [low,high]

If we can decompose a range into disjoint sets, S ∪ T , we can
use ⊕ to combine results for each set: total = result(S)⊕ result(T )

Examples:
▶ Range counting, value = 1, ⊕ = addition
▶ Range reporting, value(x) = {x}, ⊕ = set union
▶ Range minimum, value = priority, ⊕ = minimization



Partition of range into subtrees

Query range

= entire subtree in range

= single node in range

Idea: search paths for range endpoints have length O(log n)

We can decompose the range into O(log n) nodes on these two paths and O(log n)
entire subtrees between them

Store ⊕ for each subtree, combine stored results for query total



Decomposable query algorithm

As we recurse, replace range endpoints by flag values −∞ and +∞ in subtrees for
which endpoints are no longer relevant

Whole tree is in range when both endpoints are infinite

To query range [low,high] at a given node:
▶ If low = −∞ and high = +∞, return stored value for subtree
▶ If key > high, return query(low, high, left child)
▶ If key < low, return query(low, high, right child)
▶ Return query(low, +∞, left child) ⊕

node’s value ⊕ query(−∞, high, right child)

Time: O(log n) for operations with ⊕ time O(1)



Maintaining the stored subtree values

Whenever a node’s stored subtree value might have changed
▶ We added or removed a descendant
▶ It was involved in a rotation

Recompute its subtree value as
left subtree value ⊕ right subtree value ⊕ node’s value

Time per insertion or deletion O(log n)

(under same assumptions on ⊕ time as for query)

Works for any balanced binary search tree



Range query summary

Using augmented search trees, we can:

Answer range counting or range minimization in time O(log n)

Answer range reporting in time O(log n + output)

Handle insertions or deletions in time O(log n)

Generalize to other decomposable range searching problems



Lower bounds



Lower bounds on data structures

We have seen:

▶ Optimality of binary heap for comparison-model priority queues
Based on the ability to sort using heaps
Can be sidestepped by using integer arithmetic and array indexing instead of only
comparisons (e.g. flat trees)

▶ Impossibility of nontrivial set disjointness
Based on unproven assumption (SETH)

This time: Lower bounds for range search
Proven rigorously in a very general computational model



Are augmented search trees optimal?

We have seen that a very general class of dynamic range searching problems can be
solved in time O(log n)

Natural question: Is that the right time bound or can we do better?

Answer: we can prove Ω(log n), for:
▶ Simple and natural range searching problem: range sum

Data = ordered keys and numeric values
Query = sum of values for key-value pairs with key in range

▶ A very general model of computing: cell probe model
Only measure communication between CPU and memory



Warmup interview question: Static range sums

You are given an array of n numbers

Problem: process it so you can quickly find the range sum

A[i ] + A[i + 1] + · · ·+ A[j − 1] + A[j ]

Solution

Store an array of prefix sums

PS [i ] =
i∑

j=0

A[j ] = A[0] + A[1] + · · ·A[j ] = PS [i − 1] + A[i ]

Return PS [j ]− PS [i − 1]

Linear space and preprocessing, constant time per query



Prefix sum problem

Simplified version of the range sum problem
(for lower bounds, simpler problem ⇒ stronger bound)

Maintain array A[0] . . .A[n − 1] of numbers

Update(i , x): set A[i ] to new value x

Query(i): calculate prefix sum A[0] + A[1] + · · ·+ A[i ]

(If these operations are hard, so are the more general operations of insertion + deletion
+ range sum)



Log-time solution

Build a perfectly balanced binary tree with array A at its leaves

Each internal node stores sums of its two children

Query(i): sum up left children on search path to A[i ]

Update: recompute node sums on path to root

Claim: No other data structure can achieve better O-notation

We need to define what an “other data structure” might be



Cell probe model of computing

Central processor has O(1) registers, each holding one word (binary value of length
w ≥ log2 n); memory has up to 2w words

We count only steps that move a word between CPU and memory ⇒ lower bound
doesn’t depend on what other steps are allowed

CPU
Large
main
memory

O(1)
registers

Measure communication
between CPU and memory



Fitting prefix sums to cell probe model

We are going to prove a lower bound for
prefix sums of n w -bit binary numbers

(representation size of the input values should be
the same as the word size of the computer)

We will use n = a power of two (unrelated to word size)

To avoid questions of integer overflow,
we will assume all arithmetic is modulo 2w

(just do binary addition and ignore overflows)

Goal: Find a sequence of prefix sum operations that forces any correct data structure to
do a lot of CPU–memory communication



A special permutation of n

Assume n = 2k

Define “bit reversal
permutation” r(i):
▶ Write i as a k-bit

binary number
▶ Reverse the bits
▶ Interpret the result

as a binary number

E.g. for k = 8,
22210 = 110111102
becomes
011110112 = 12310

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14 15

14
15



Computing sequence of bit-reversals

To compute a sequence of length 2k , consisting of all k-bit numbers in bit-reversed
order, compute the same sequence recursively for k − 1 and use it twice:

def bitrev(k):
if k == 0:

return [0]
L = bitrev(k-1)
return [2*x for x in L] + [2*x+1 for x in L]

[0] → [0, 1] → [0, 2, 1, 3] → [0, 4, 2, 6, 1, 5, 3, 7] → ...

Each value in the second half of the sequence is one plus the corresponding value in the
first half



A difficult sequence of prefix-sum operations

Initialize all data values A[i ] to zero, then:

For each index i in bitrev[k]:

▶ Set A[i ] to be a random w -bit number

▶ Query the prefix sum A[0] + · · ·+ A[i ]

E.g. when n = 8, k = 3, we perform the operations
Update(0,random), Query(0), Update(4,random), Query(4),
Update(2, random), Query(2), Update(6,random), Query(6),
Update(1,random), Query(1), Update(5,random), Query(5),
Update(3,random), Query(3), Update(7,random), Query(7)



A binary tree on the sequence of operations

This is not a data structure! It’s just a mathematical tree that we will use in the lower
bound proof.

Update(0)
Query(0)

Update(4)
Query(4)

Update(2)
Query(2)

Update(6)
Query(6)

Update(1)
Query(1)

Update(5)
Query(5)

Update(3)
Query(3)

Update(7)
Query(7)



Information transfer

Update(0)
Query(0)

Update(4)
Query(4)

Update(2)
Query(2)

Update(6)
Query(6)

Update(1)
Query(1)

Update(5)
Query(5)

Update(3)
Query(3)

Update(7)
Query(7)

write
cell 245

read
cell 245

adds to
transfer
at this
node

For any data structure for prefix sums, and any node x of this tree, define the
information transfer of x to be the number of times an operation in the right

descendants of x reads a memory cell that was last written during the operations in the
left descendants of x

Each memory read contributes to information transfer at ≤ 1 node ⇒ total number of
read steps ≥ total information transfer



Information transfer ≥ descendants/2

Update(0)
Query(0)

Update(4)
Query(4)

Update(2)
Query(2)

Update(6)
Query(6)

Update(1)
Query(1)

Update(5)
Query(5)

Update(3)
Query(3)

Update(7)
Query(7)

Information transfer = number of times an operation in node’s right descendants reads
a memory cell last written on the left

Let d = #descendants/2 = # left updates = # right queries

There are 2wd different possible values for the updates on the left, each of which would
produce different query results on the right

(Independently from information derived from non-transfer reads)

⇒ for correct queries, information transfer ≥ d



Finishing the lower bound

Information transfer at root node of tree: ≥ n/2

Information transfer at ith level of tree:
2i nodes with transfer ≥ n/2i+1, total ≥ n/2

Total over whole tree: ≥ (n/2)× # levels = (n/2) log2 n

There are 2n prefix sum operations (updates and queries together) ⇒ average number
of memory reads per operation ≥ 1

4 log2 n

Every prefix sum data structure that fits into the cell probe model of computation
requires Ω(log n) time per operation
⇒ same is true for dynamic range sum data structures


