CS 261: Data Structures

Week 6–7: Binary search

Lecture 7a: Augmented search trees

David Eppstein University of California, Irvine

Spring Quarter, 2025

In sorted arrays

Rank(x) = the position of x in the array (or the position it would go if added to the array)

Can be found by binary search

Unrank(i) = the element at position i in the array

Trivial to compute as Array[i]

For example, Unrank(n/2) is the median

They are inverse operations:

- Rank(Unrank(i)) = i, if i is in the range of array indexes
- ▶ Unrank(Rank(x)) = x, if x is one of the values stored in the array

In dynamic binary search trees

Rank and Unrank are well defined as the position of a given value in the sorted order, and the value at a given position

But it's not obvious how to compute them quickly! It doesn't work to translate array search directly to trees

- In array binary search for Rank(x), we know the rank of each array cell
- In binary search trees, we cannot store a rank in each tree node, because each update would cause all later ranks to change, too many for fast updating
- ▶ There is no way to translate the trivial array Unrank algorithm into a tree algorithm

Augmented binary search trees

Store relative rank in each node: its position among it and its descendants = number of left descendants

Maintaining relative rank

On insertion or deletion: add or subtract one to all right ancestors

On rotation:

Ranking using relative ranks

```
Call the following recursive search with node = tree root:
def rank(x,node):
    if node == None:
         return 0
    else if x <= node.key:
         return rank(x,node.left)
    else:
         return rank(x,node.right) + node.relrank + 1
(In splay trees, add splay from last internal node on search path)
```

Unranking using relative ranks

```
Call the following recursive search with node = tree root:
def unrank(i,node):
    if i == node.relrank:
        return node.value
    else if i < node.relrank:
        return unrank(i,node.left)
    else:
        return unrank(i - node.relrank - 1, node.right)
(In splay trees, add splay from last internal node on search path)
```

Ranking and unranking summary

By adding extra information (relative rank) to each node of a binary search tree, we can still update the tree in $O(\log n)$ time, and answer rank and unrank queries in the same time

Works with any rotation-based balanced binary search tree

Related recent research: Ranking and unranking dynamic sorted sets of n integers in the range $[0, n^c]$ can be done slightly faster: $O(\log n / \log \log n)$ per update or query

Pătrașcu and Thorup, "Dynamic Integer Sets with Optimal Rank, Select, and Predecessor Search", FOCS 2014, https://arxiv.org/abs/1408.3045

Range searching

Range searching

Find aggregate information about data elements within a query range [low,high] of values

(or within higher-dimensional regions)

- Range counting: Number of elements in range
 Compute ranks of left and right range endpoints and subtract
- ► Range reporting: List all elements in range
- Range minimum: Find minimum priority value in range (not minimum value – trivial as successor of left endpoint)
- Other more complex queries e.g. do a recursive range search on another attribute for elements within range

Range reporting

```
Call with node = tree root:

def report(low,high,node):
    if low < node.value:
        report(low,high,node.left)
    if low <= node.value <= high:
        output node.value
    if node.value < high:
        report(low,high,node.right)</pre>
```

Analysis of range reporting

Whenever we recurse into both children, we also output the node value

Every recursive call is one of:

- A node whose value is output
- A node on the search path for the low range endpoint (at which we search only the right child)
- A node on the search path for the high range endpoint (at which we search only the left child)

Time = $O(\text{number of nodes searched}) = O(\text{output size} + \log n)$

An algorithm whose time depends on output size and not just on input size is called "output sensitive".

Decomposable range search problems

Suppose:

- We have a collection of key, value pairs with sorted keys
- ► An associative binary operation ⊕ operates on the values
- We want to find the result of applying ⊕ to the values whose keys are within a query range [low,high]

If we can decompose a range into disjoint sets, $S \cup T$, we can use \oplus to combine results for each set: total = result(S) \oplus result(T)

Examples:

- ▶ Range counting, value = 1, \oplus = addition
- ▶ Range reporting, value(x) = {x}, \oplus = set union
- Range minimum, value = priority, \oplus = minimization

Partition of range into subtrees

Idea: search paths for range endpoints have length $O(\log n)$

We can decompose the range into $O(\log n)$ nodes on these two paths and $O(\log n)$ entire subtrees between them

Store \oplus for each subtree, combine stored results for query total

Decomposable query algorithm

As we recurse, replace range endpoints by flag values $-\infty$ and $+\infty$ in subtrees for which endpoints are no longer relevant

Whole tree is in range when both endpoints are infinite

To query range [low,high] at a given node:

- If low = $-\infty$ and high = $+\infty$, return stored value for subtree
- If key > high, return query(low, high, left child)
- If key < low, return query(low, high, right child)</p>
- Return query(low, $+\infty$, left child) \oplus node's value \oplus query($-\infty$, high, right child)

Time: $O(\log n)$ for operations with \oplus time O(1)

Maintaining the stored subtree values

Whenever a node's stored subtree value might have changed

- ▶ We added or removed a descendant
- It was involved in a rotation

Recompute its subtree value as

left subtree value \oplus right subtree value \oplus node's value

Time per insertion or deletion $O(\log n)$ (under same assumptions on \oplus time as for query)

Works for any balanced binary search tree

Range query summary

Using augmented search trees, we can:

Answer range counting or range minimization in time $O(\log n)$

Answer range reporting in time $O(\log n + \text{output})$

Handle insertions or deletions in time $O(\log n)$

Generalize to other decomposable range searching problems

Lower bounds on data structures

We have seen:

- Optimality of binary heap for comparison-model priority queues
 Based on the ability to sort using heaps
 Can be sidestepped by using integer arithmetic and array indexing instead of only comparisons (e.g. flat trees)
- Impossibility of nontrivial set disjointness
 Based on unproven assumption (SETH)

This time: Lower bounds for range search
Proven rigorously in a very general computational model

Are augmented search trees optimal?

We have seen that a very general class of dynamic range searching problems can be solved in time $O(\log n)$

Natural question: Is that the right time bound or can we do better?

Answer: we can prove $\Omega(\log n)$, for:

- Simple and natural range searching problem: range sum
 Data = ordered keys and numeric values
 Query = sum of values for key-value pairs with key in range
- A very general model of computing: cell probe model
 Only measure communication between CPU and memory

Warmup interview question: Static range sums

You are given an array of *n* numbers

Problem: process it so you can quickly find the range sum

$$A[i] + A[i+1] + \cdots + A[j-1] + A[j]$$

Solution

Store an array of prefix sums

$$PS[i] = \sum_{i=0}^{r} A[j] = A[0] + A[1] + \cdots + A[j] = PS[i-1] + A[i]$$

Return PS[j] - PS[i-1]

Linear space and preprocessing, constant time per query

Prefix sum problem

Simplified version of the range sum problem (for lower bounds, simpler problem \Rightarrow stronger bound)

Maintain array $A[0] \dots A[n-1]$ of numbers

Update(i, x): set A[i] to new value x

Query(i): calculate prefix sum $A[0] + A[1] + \cdots + A[i]$

(If these operations are hard, so are the more general operations of insertion + deletion + range sum)

Log-time solution

Build a perfectly balanced binary tree with array A at its leaves

Each internal node stores sums of its two children

Query(i): sum up left children on search path to A[i]

Update: recompute node sums on path to root

Claim: No other data structure can achieve better *O*-notation

We need to define what an "other data structure" might be

Cell probe model of computing

Central processor has O(1) registers, each holding one word (binary value of length $w \ge \log_2 n$); memory has up to 2^w words

We count only steps that move a word between CPU and memory ⇒ lower bound doesn't depend on what other steps are allowed

Fitting prefix sums to cell probe model

We are going to prove a lower bound for prefix sums of *n w*-bit binary numbers (representation size of the input values should be the same as the word size of the computer)

We will use n = a power of two (unrelated to word size)

To avoid questions of integer overflow, we will assume all arithmetic is modulo 2^w (just do binary addition and ignore overflows)

Goal: Find a sequence of prefix sum operations that forces any correct data structure to do a lot of CPU-memory communication

A special permutation of *n*

Assume $n = 2^k$

Define "bit reversal permutation" r(i):

- ► Write *i* as a *k*-bit binary number
- ► Reverse the bits
- Interpret the result as a binary number

E.g. for k = 8, $222_{10} = 110111110_2$ becomes $01111011_2 = 123_{10}$

Computing sequence of bit-reversals

To compute a sequence of length 2^k , consisting of all k-bit numbers in bit-reversed order, compute the same sequence recursively for k-1 and use it twice:

Each value in the second half of the sequence is one plus the corresponding value in the first half

A difficult sequence of prefix-sum operations

Initialize all data values A[i] to zero, then:

For each index *i* in bitrev[k]:

- ightharpoonup Set A[i] to be a random w-bit number
- Query the prefix sum $A[0] + \cdots + A[i]$

```
E.g. when n=8, k=3, we perform the operations Update(0,random), Query(0), Update(4,random), Query(4), Update(2, random), Query(2), Update(6,random), Query(6), Update(1,random), Query(1), Update(5,random), Query(5), Update(3,random), Query(3), Update(7,random), Query(7)
```

A binary tree on the sequence of operations

This is not a data structure! It's just a mathematical tree that we will use in the lower bound proof.

Information transfer

For any data structure for prefix sums, and any node x of this tree, define the information transfer of x to be the number of times an operation in the right descendants of x reads a memory cell that was last written during the operations in the left descendants of x

Each memory read contributes to information transfer at ≤ 1 node \Rightarrow total number of read steps \geq total information transfer

Information transfer ≥ descendants/2

Information transfer = number of times an operation in node's right descendants reads a memory cell last written on the left

Let d = # descendants/2 = # left updates = # right queries

There are 2^{wd} different possible values for the updates on the left, each of which would produce different query results on the right

(Independently from information derived from non-transfer reads)

 \Rightarrow for correct queries, information transfer $\geq d$

Finishing the lower bound

Information transfer at root node of tree: $\geq n/2$

Information transfer at *i*th level of tree: 2^i nodes with transfer $\geq n/2^{i+1}$, total $\geq n/2$

Total over whole tree: $\geq (n/2) \times \# \text{ levels} = (n/2) \log_2 n$

There are 2n prefix sum operations (updates and queries together) \Rightarrow average number of memory reads per operation $\geq \frac{1}{4} \log_2 n$

Every prefix sum data structure that fits into the cell probe model of computation requires $\Omega(\log n)$ time per operation

⇒ same is true for dynamic range sum data structures