CS 261: Data Structures
Week 6—7: Binary search

Lecture 6a: Balanced trees

David Eppstein
University of California, Irvine

Spring Quarter, 2025

This work is licensed under a Creative Commons Attribution 4.0 International License

Binary search

Exact versus binary

Exact search

We are given a set of keys (or key-value pairs)
Want to test if given query key is in the set (or find value)

Usually better to solve with hashing (constant expected time)
Binary search

The keys come from an ordered set (e.g. numbers)
Want to find a key near the query key
Hashing scrambles order = not useful for nearby keys

Application: Nearest neighbor classification

Given training set of (data,classification) pairs
Want to infer classification of new data values

Method: Find nearest value in training set, copy its classification

OOOl N BN N CICHICIONN | |

Binary search can be used for finding nearest value
but only when the data is only one-dimensional (unrealistic)

Application: Function interpolation

Given x, y pairs from unknown function y = f(x)
Compute approximate values of f(x) for other x

Method: assume linear between given pairs

x?

|

Find two pairs xg and x; on either side of given x and compute

yo(x — x0) + y1(x1 — x)
X1 — X0

y:

Binary search operations

Given a S of keys from an ordered space (e.g. numbers, strings; sorting order of whole
space should be defined):

» successor(q): smallest key in S that is > ¢
» predecessor(q): largest key in S thatis < g

» nearest neighbor: must be one of g (if it is in S), successor, predecessor

We will mainly consider successor; predecessor is very similar

Binary search tree

Data structure that encodes the sequences of comparisons made in a binary search (for
instance, when searching a static array)
Each node stores

> Value that the query will be compared against

> Left child, where to go when comparison is <

> Right child, where to go when comparison is >

No Yes No Yes No Yes No Yes
’rethHret35Hret4OHret50Hret7OHret75Hret95H ret co ‘

To recover sorted array, use inorder traversal:
recurse in left subtree, then root, then recurse in right subtree

Successor in binary search trees

define successor(q,tree):
s = infinity
node = tree.root
while node != null:
if q >= node.value:
node = node.right
else:
s = node.value
node = node.left
return s

For tree derived from static array, does same steps as binary search of array, but works
for any binary tree with inorder = sorted order

Balanced binary search trees

Balance

For static data, sorted array achieves O(log n) search time
For a binary search tree, search time is O(tree height)
Balanced binary search tree: a search tree data structure for dynamic data (add or

remove values) that maintains O(log n) (worst case, amortized, or expected) search
time and update time.

Typically, store extra structural info on nodes to help balance
(The name refers to a different property, that the left and right sides of a static binary

search tree have similar sizes, but a tree can have short search paths with subtrees of
different sizes.)

Three strategies for maintaining balance

Rebuild

Let the tree become somewhat unbalanced, but rebuild subtrees when they get too far
out of balance

Usually amortized; can get very close to log, n height

Rotate

Local changes to structure that preserve search tree ordering
Can give worst case O(log n) with larger constant in height
Zipping

Cut into two trees along a path and then rejoin

Used in some recent structures [Tarjan et al. 2021; Gila et al. 2023]

Rotation

reconnect: parents of x and y
left child of x, right child of y
parent of blue subtree

m—>

Self-adjusting dynamic trees

The main idea

If a sequence of queries has repeating patterns or skewed item frequencies, we may be

able to get faster than logarithmic queries

When an operation follows a search path to node x, rotate x to the root of the tree so
that the next search for it will be fast

This operation is called “splaying”

[Sleator and Tarjan 1985]

Splay(x)

While x is not root:

If parent is root, rotate x and parent, else...

(and their mirror images)

Splay tree operations

Search
» Usual binary tree search (e.g. for successor)

» Splay the lowest interior node on the search path

Split into two subtrees at some key
> Splay the key
» Break link to its left child

Concatenate two subtrees
» Splay leftmost key in right subtree
» Add left subtree as its child

Add or remove item: split and concatenate

Simplifying assumptions for analysis

No insertions or deletions, only searches for members of an unchanging set of keys
» Deletion is similar to searching for the key and then not searching for it any more

> Insertion is similar to having a key in the initial set that you never searched for
before

» Search for a missing key is similar to having another key where that key would be

We only need to analyze the time for a splay operation

> Actual time for search is bounded by time for splay

Amortized time for of weighted items

Suppose item x; has weight w; > 0, and let W = > w;

Choose scale factor s = ¢ so that s-w; > 1 for all x;

1
min ran

For a node x; with subtree T; (including x; and all its descendants), define rank
ri = |logy s - (sum of weights of all nodes in T;)]

Potential function ® = sum of ranks of all nodes

Scale factor causes ® > 0 but doesn't affect AP so we can mostly ignore it

Claim: The amortized time to splay x; is O(log(W /w;))

Amortized analysis (sketch)

Main idea: look at the path from the previous root to x;

Separate splay steps along path into two types:
> Steps where x and its grandparent z have different rank

» Steps where ranks of x and grandparent are equal

Rank at x > log, w; and rank at root ~ log, W so number of different-rank steps is
O(log(W /w;))
Each takes actual time O(1) and can add O(Arank) to ¢

There can be many equal-rank steps but each causes ® to decrease
(if rank is equal, most weight in grandparent’s subtree is below x, so rotation causes
parent or grandparent to decrease in rank)

Decrease in ® cancels actual time for these steps

Consequences for different choices of weights

O(log(W /w;)) time is valid regardless of what the weights w; are!

We can set w; however we like; algorithm doesn’t know or care

Uniform weights:

Setall wy =1
W:ZW,':I‘I
W/W,':n

Amortized time is O(log n)

Consequences for different choices of weights

O(log(W /w;)) time is valid regardless of what the weights w; are!

We can set w; however we like; algorithm doesn’t know or care

Optimal weights:

Let T be an optimal static binary tree

Set w; = 1/3" where h is height of same node in T

o

B _ x— # nodes at height h 2h
W=> w=>» o gzﬁ_s
h h=0

W /w; < 30+t

Amortized time is O(log 3"*1) = O(h)

Splay trees are as good as static optimal tree!

Consequences for different choices of weights

O(log(W /w;)) time is valid regardless of what the weights w; are!

We can set w; however we like; algorithm doesn’t know or care

Weights from probabilities:

Suppose each search item is chosen randomly, independently of previous search items,
with probability p; of choosing key i

Set w; = p;
W=1

Expected amortized time is O(D_ pilog1/p;)

This is the entropy of the distribution!

Consequences for different choices of weights

O(log(W /w;)) time is valid regardless of what the weights w; are!

We can set w; however we like; algorithm doesn’t know or care

Weights from ranks:

Set weight of ith most frequently accessed item to 1/
n
1 1 w2
-3 hey -t
i=1 i=1
log W /w; = O(log i?) = O(log i)

Amortized time is O(log /)

Consequences for different choices of weights

O(log(W /w;)) time is valid regardless of what the weights w; are!

We can set w; however we like; algorithm doesn’t know or care

Weights from access times:

Set w; = 1/1.“,-2 where t; = number of searches since last access

Weights are dynamic = amortized analysis needs to include the change in potential
caused by any change in weights

Weights change by increasing weight of (just-accessed) tree root, decreasing everything
else = change of weights cannot increase ¢

Amortized time is O(log t;)

Dynamic optimality

Competitive ratio

Question: How valuable is knowledge of the future?

Let A be any algorithm for handling a sequence S of dynamic requests, one at a time,
without knowledge of future requests

Let OPT be an algorithm that can see the whole sequence of requests and then
chooses optimally (somehow) what to do

Then the competitive ratio of A is

cost of A on sequence S
max
S cost of OPT on sequence S

Dynamic optimality conjecture

Allow dynamic search trees to rearrange any contiguous subtree containing the root
node, with cost per operation:

> Length of search paths for all operations, plus

> Sizes of all rearranged subtrees

Conjecture: There is a structure with competitive ratio O(1)

(l.e. it gets same O-notation as the best dynamic tree structure optimized for any
specific input sequence)

A simple example

For search sequences S where

each search is previous +1:
most recent key
Use a tree rooted at most

recent search key, with two
paths going left and right

For general searches this is a
bad structure but for S it takes
O(1) per search (one rotation)

A competitive tree must also
get O(1) per search on S

Candidates for good competitive ratio

Splay trees

Conjectured to have competitive ratio O(1)

GreedyASS trees (next slides)

Conjectured to have competitive ratio O(1)

Tango trees (next slides)

Proven to have competitive ratio O(loglog n)

Tango trees

Consider a complete binary search tree on the keys (“reference tree”)
+ “preferred paths” to most recently accessed descendant

Replace each preferred path by a balanced tree structure that can support cutting and
linking operations (like a splay tree); it has O(log n) nodes so time O(log log n)

reference tree with paths to
recently accessed descendants

tango tree

The geometry of binary search trees

Given any (static or dynamic) binary search tree,

plot access to key i during operation j as a point (i,)

search d
search g
search c
search f
search b
search e

search a

bounding box
has 3 points

time

®@ o
@OOWEe®W

Arborially satisfied sets

Key property: Every two points not both on same row or column have a bounding box
containing at least one more point

search d .)
@ search g b?lgzd(;np?o?nc;;(@ @ O
@ 6 search c @ 0 o
(@) (c) (e) (g) searchf ® °
search b @)
search e @ 0 o
searcha| @ @) time
OIOIOIO0I0]®),

lntarnratratinn: f caavrh raarheace v AanAd latvar rearcrheace v i+ mirtict nace thratiach A AARA AR

Greedy arborially satisfied sets

In each row
(bottom-up order)
add the minimum
number of extra
points (blue) to
make every
bounding box
have = 3 points

search d
search g
search c
search f
search b
search e

search a

1

time

@
@OOWEeO®W

Conjecture: uses O(1) x optimal # points

Can be turned into a dynamic tree algorithm (GreedyASS tree)

From geometry back to trees

Offline (if we know the future)

V arborially satisfied set = sequence of tree operations
Idea: Treap (a binary search tree that is heap-ordered by priorities), but replace random

priority by next access time

Online

Can convert any row-by-row construction of arborially satisfied sets into a dynamic tree
algorithm

Complicated
Greedy arborially satisfied set = GreedyASS tree
[Demaine et al. 2009]

Summary

v

vVvvyVvYVvyyypy

Summary

Hashing is usually a better choice for exact searches, but binary searching is useful
for finding nearest neighbors, function interpolation, etc.

Similar search algorithms work both for static data in sorted arrays and explicit
tree structures

Balanced trees: maintain log-height while being updated
Many variations of balanced trees

Static versus dynamic optimality

Construction of static binary search trees

Splay trees and their amortized analysis

Static optimality of splay trees

Dynamic optimality conjecture and competitive ratios

References

Erik D. Demaine, Dion Harmon, John lacono, Daniel Kane, and Mihai Puatracscu. The
geometry of binary search trees. In Claire Mathieu, editor, Proceedings of the Twentieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA,
January 4-6, 2009, pages 496-505. SIAM, 2009. doi: 10.1137/1.9781611973068.55.

Ofek Gila, Michael T. Goodrich, and Robert E. Tarjan. Zip-Zip Trees: Making Zip Trees More
Balanced, Biased, Compact, or Persistent. In Pat Morin and Subhash Suri, editors,
Algorithms and Data Structures — 18th International Symposium, WADS 2023, Montreal,
QC, Canada, July 31 — August 2, 2023, Proceedings, volume 14079 of Lecture Notes in
Computer Science, pages 474—492. Springer, 2023. doi: 10.1007/978-3-031-38906-1 31.

Daniel D. Sleator and Robert E. Tarjan. Self-adjusting binary search trees. Journal of the
ACM, 32(3):652-686, 1985. doi: 10.1145/3828.3835.

Robert E. Tarjan, Caleb C. Levy, and Stephen Timmel. Zip Trees. ACM Transactions on
Algorithms, 17(4):34:1-34:12, 2021. doi: 10.1145/3476830.

	References

