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Integer priority queues



Main idea

k-ary heaps, Fibonacci heaps only use comparison of priorities

If priorities are small integers, we can use bitwise binary operations, array indexing, etc

Sometimes this can be faster



Integer priority queues versus sorting

Many non-comparison-based sorting algorithms are known

E.g. radix sort: Sort n integers in range [0,X ] in time O

(
n
logX

log n

)

If we can do priority queue operations in time T , we can use them to sort in time
O(nT ) (“heap sort”)

Reverse is true!

If we can sort in time nT (n), we can do priority queue operations in time
T (n) + T (log n) + T (log log n) + · · ·

[Thorup 2007]



Theoretically fast but completely impractical

Current best known (expected) time bound for integer sorting, when priorities are small
enough to be represented by machine integers: O(n

√
log log n)

[Han and Thorup 2002]

Corollary: Can do integer priority queue operations in O(
√
log log n) expected time per

operation

We will look at simpler data structures whose time depends on the range of values, not
just on n

Open: Can we do better or is there a non-constant lower bound?



Bucket queues



Bucket queue

Priority queue version of bucket sort

Main idea: arrange items into buckets
by their priorities

Scan buckets in priority order to find
the first nonempty one



Bucket queue, more detail

When all priorities are small non-negative integers:

▶ Make an array of buckets (lists, sets, or arrays), indexed by priority

▶ Each bucket: collection of elements with that priority

▶ Add element; put it into the bucket for its priority

▶ Change priority: move it from one bucket to another

▶ Find-minimum: scan array for first non-empty bucket

Time: O(current minimum priority) for find-min, O(1) otherwise



Monotonic priorities and Dial’s algorithm

In Dijkstra’s algorithm, priorities never decrease

⇒ Can start scan for non-empty bucket at the last one we found, instead of starting at
the beginning of the array

Total time for priority queue operations: O(# operations + max priority)

Total time for shortest paths in graphs with integer edge lengths: linear in size of graph
+ O(max path length)

[Dial 1969]



Flat trees
(also known as Van Emde Boas trees)



Main idea

Think of priorities as b-bit binary numbers, for some b

Partition each priority x into two b/2-bit numbers
(the two digits in its base-2b/2 representation)
▶ xlow : x & ((1 << b/2) - 1)
▶ xhigh : x >> (b/2)

Build recursive priority queues for the low parts and the high parts

Each operation recurses into low or high but not both
⇒ time O(log b) = O

(
log log (max priority)

)
[van Emde Boas 1975]



Simplifying assumption: elements = priorities

If we have elements that are not the same thing as the priorities of the elements, then:
▶ Make a dictionary mapping each priority to a collection of elements with that

priority (like bucket queue)
▶ Keep a priority queue of the set of priorities whose collections are non-empty
▶ To find an element of minimum priority: use the priority queue to find the priority,

and the dictionary to find the element

The dictionary part is O(1) expected time per operation (using a hash table) so we only
need to worry about priority queues whose elements are integers and whose priorities
are their values



Flat tree structure

The flat tree for a set S of integers stores:
▶ The minimum element in S

▶ Recursive flat tree H of xhigh for x ∈ S \ {min}
▶ Dictionary D mapping each xhigh to a recursive flat tree of values xlow for the

subset of elements x ∈ S \ {min} that have that value of xhigh

To find the minimum priority:
Look at the value stored as minimum at root-level structure

To make one-element flat tree:
Set minimum to element, H to None, D to empty dictionary



Example

Suppose we are storing a flat tree for the nine 8-bit keys 00000001, 00000011,
00001010, 00001111, 10100101, 10101010, 11011110, 11011111, and 11101010. Then:

The minimum element is 00000001

The values xhigh for the remaining keys are 0000, 1010, 1101, and 1110. The recursive
flat tree H stores these four 4-bit keys.

The dictionary D maps each of these four values xhigh to a recursive flat tree D[xhigh]:
▶ D[0000] stores the low 4-bit keys whose high 4 bits are 0000, not including the

minimum element 00000001. These 4-bit keys are: 0011, 1010, and 1111.
▶ D[1010] stores the two low 4-bit keys 0101 and 1010
▶ D[1101] stores the two low 4-bit keys 1110 and 1111
▶ D[1110] stores as its single element the low 4-bit key 1010.



To insert an element x:

1. If x < minimum, swap x with minimum
2. If xhigh is in D:

Recursively insert xlow into D[xhigh]

3. Else:
Make one-element flat tree containing xlow

Add the new tree to D as D[xhigh]

Recursively insert xhigh into H
(or make one-element flat tree for xhigh if H was empty)



To find the second-smallest element

1. If D is empty, raise an exception
2. Let xhigh be the minimum stored in H

3. Let xlow be the minimum stored in D[xhigh]

4. Combine xhigh and xlow and return the result

Expected time O(1)

Key subroutine in element removal



To remove an element x:

1. If x is the stored minimum:
Set x and stored minimum to second-smallest value
(still need to remove from recursive structure,
just as if we were deleting it)

2. Compute xhigh and xlow

3. If D[xhigh] is a one-element flat tree (its recursive D is empty):
Recursively delete xhigh from H

Remove xhigh from D

4. Else:
Recursively delete xlow from D[xhigh]



Summary



Summary

▶ Priority queue operations, application in Dijkstra’s algorithm
▶ Limited set of operations in Python and how to work around it
▶ Binary heaps, O(log n) time per operation, O(n) heapify
▶ k-ary heaps, slower delete-min and faster decrease-priority
▶ Optimal choice of k for k-ary heaps in Dijkstra’s algorithm
▶ Fibonacci heaps, O(log n) delete-min, O(1) decrease-priority
▶ Integer priority queues and their relation to integer sorting
▶ Bucket queues and Dial’s algorithm
▶ Flat trees, O(log log (max priority)) per operation
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