CS 261: Data Structures

Week 3: Sets

Lecture 3b: Filters

David EppsteinUniversity of California, Irvine

Spring Quarter, 2025

Filters

Main idea of filters

Represent *n*-element sets using only O(n) bits

Better than hash tables, O(n) words

Better than bitmaps, O(N) bits where $N = \max$ element

What do we have to pay to get this savings?

Answers are approximate

If $x \in S$, filter will always say that $x \in S$ (cannot have "false negatives")

But if $x \notin S$, it might incorrectly say $x \in S$ (can have "false positives")

False positive rate

Choose a random x that is not in your set S What is the probability that your filter incorrectly says $x \in S$?

Called the "false positive rate" $\label{eq:called} \mbox{We want it to be small, so we will use ε as notation}$ $\mbox{Typically known when we initialize filter structure,}$ $\mbox{used to determine its structural parameters}$ $\mbox{Often (but not always) ok to assume constant, e.g. $\varepsilon=0.1$}$

When are filters useful?

If processing non-members is easier and you expect many of them

Filter can be small enough to fit in cache \Rightarrow fast Use slower exact set data structure to check matched elements Few false positives \Rightarrow few unnecessary calls to exact structure

When are filters useful?

If memory is limited and some false positives are harmless

Example: Access control for private internet server

Use filter on firewall to only allow whitelisted clients through

Firewall needs only small memory for filter

Server can handle smaller volume of non-clients that get through

Comparison of filters: Bloom filter

[Bloom 1970]; \approx 28k other publications

Widely implemented, practical

Storage: $1.44n\log_2\frac{1}{\varepsilon}$ bits larger than optimal by the 1.44 factor

Membership testing: $O(\log 1/\epsilon)$ time

Can add but not remove elements

Comparison of filters: Cuckoo filter

[Fan et al. 2014]; \approx 1600 other publications

Implemented and practical, better in practice than Bloom

Storage: $(1 + o(1))n \log_2 \frac{1}{\varepsilon}$ bits, optimal!

Membership testing: O(1) time (with good locality of reference: works well with cache)

Can add and remove elements

Storage bound requires $\epsilon = o(1)$ bigger sets need to have smaller false positive rates

(Some sources exaggerate this requirement by saying that "in theory, Cuckoo filters do not work")

Comparison of filters: Recent alternatives

Xor filters: [Graf and Lemire 2020] Binary fuse filters: [Graf and Lemire 2022]

Fast, optimal storage for constant error rates, not dynamic

Quotient filters: [Pandey et al. 2017] Morton filters: [Breslow and Jayasena 2020] Vector quotient filters: [Pandey et al. 2021]

Similar design and performance to cuckoo filters Quotient has least space; vector quotient is fastest

Bloom filters

Main idea of Bloom filters

Two parameters, N and k, to be chosen later

Store a table B of N bits, initially all zero

Construct k hash functions $h_1(x), \ldots h_k(x)$

To add x to the set, set its bits to one:

$$B[h_1(x)] = B[h_2(x)] = \cdots = B[h_k(x)] = 1$$

To test membership, check that all bits are one:

```
for i = 1, 2, ... k:

if B[h_i(x)] = 0:

return False

return True
```

B is just the bitmap representation of the set of hashes of elements!

Example of Bloom filter

Suppose N=9 and k=3 with hash functions mapping $a\to 0,3,4;\ b\to 1,5,7;\ c\to 2,3,5;\ d\to 1,4,8;\ e\to 0,3,5$

Add a, setting bits 0, 3, 4: B = 000011001

Add b, setting bits 1, 5, 7: B = 010111011

Add *c*, setting bits 2, 3, 5: B = 0101111111

Test membership for d: $b_1 = b_4 = 1$, $b_8 = 0 \Rightarrow$ return False

Test membership for e: $b_0 = b_3 = b_5 = 1 \Rightarrow$ return True This is a false positive!

Bloom filter analysis

Let f be the fraction of bits that are one \Rightarrow (by random hash assumption) false positive rate $\varepsilon = f^k$

Can't use Chernoff bound (bits are not independent of each other) but related Azuma–Hoeffding inequality $\Rightarrow f \approx E[f]$ Linearity of expectation $\Rightarrow E[f] = \Pr[\text{any given bit is one}]$

$$\begin{aligned} \text{Pr[bit is 1]} &= 1 - \text{Pr[same bit is 0]} \\ &= 1 - \text{Pr[all hashes of elements miss that bit]} \\ &= 1 - \left(1 - \frac{1}{N}\right)^{kn} \\ &= 1 - \left(\left(1 - \frac{1}{N}\right)^N\right)^{kn/N} \\ &\approx 1 - \left(\frac{1}{e}\right)^{kn/N} \end{aligned}$$

Bloom filter analysis (continued)

Simplifying assumptions: Suppose we already know N Let's try plugging fractional values of k into the calculation (even though in the actual data structure it must be an integer)

What choice of k gives the best false positive rate ε ?

Turns out to be: k that makes fraction of ones be f = 1/2

(Can prove by calculus, but intuitive reason: because then the Bloom filter has the highest possible information content)

$$f = \frac{1}{2}$$
 \Rightarrow $1 - \left(\frac{1}{e}\right)^{kn/N} = \frac{1}{2}$ \Rightarrow $N = \frac{kn}{\log 2}$

With
$$f = 1/2$$
, $\varepsilon = 1/2^k$ giving $k = \log_2 \frac{1}{\varepsilon}$ and $N = \frac{n \log_2 1/\varepsilon}{\log 2}$

Bloom filter summary

For sets of size n, with desired false positive rate ε :

Choose number of hash functions $k \approx \log_2 \frac{1}{\varepsilon}$

Choose bit array size
$$N \approx \frac{n \log_2 1/\varepsilon}{\log 2} \approx 1.44 n \log_2 \frac{1}{\varepsilon}$$

Store bitmap set of hashes of elements

Additions and membership tests take time O(k), which is O(1) for $\varepsilon = \text{constant}$

Can't remove any element because we don't know which of its bits are shared with other elements and which are used only by it

Cuckoo filters

Main idea

Use a hash function f to compute a short "fingerprint" f(x) for each element x

Store fingerprints, not key-value pairs, in a cuckoo hash table (each fingerprint can go in one of two possible home cells)

Saves space because fingerprints use fewer bits than full elements

Basic operations

Test if *x* is in set:

Check whether either of the two cells for x contains f(x)

False positive:

Some other element collides with x in both location and fingerprint

Insert *x*:

(Allowing > 1 fingerprint/cell to get load factor near one)

Add fingerprint f(x) to home cell for x If fingerprints overflow, insert recursively to second home cells

Delete x:

Remove fingerprint from one of its two homes

Difficulties

When we move a fingerprint f(x) to its other cell, we don't know which element x generated it \Rightarrow compute new cell using only current cell and f(x)

Fingerprints in any one cell can only go to a small number of other cells (as many as the number of different fingerprints)

 \Rightarrow the two cells for x cannot be chosen independently

Cuckoo hashing analysis depends on independence of pairs of cells ⇒ we need to prove that this works (all fingerprints can be inserted) all over again, without using independence

How to find the two homes for a fingerprint

Original version:

Choose three hash functions h_1 , h_2 , and f

Map each element x to fingerprint f(x) with two homes $h_1(x)$ and $(h_1(x) \times h_2(f(x)))$

When we see fingerprint f in cell with index i its other home cell has index (i xor $h_2(f)$)

We don't need to know the x that generated it!

Works well in practice (up to same load factor as cuckoo hash)

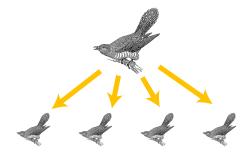
No mathematical proof that it works!

How to find the two homes for a fingerprint

Simplified version [Eppstein 2016]:

Choose two hash functions h_1 and fMap x to fingerprint f(x) with homes $h_1(x)$ and $(h_1(x) \times f(x))$

Effectively partitions big cuckoo hash table into many smaller ones, within which pairs of home cells are chosen independently



Can reuse random-graph analysis from cuckoo hashing!

How much space do we need?

Assume *k* bits per fingerprint, then

$$\begin{aligned} \Pr[\mathsf{false \ positive}] &\leq \left(\# \ \mathsf{elements \ that \ could \ collide}\right) \times \Pr[\mathsf{collision}] \\ &= n \times \Pr[\mathsf{same} \ h_1(x)] \times \Pr[\mathsf{same} \ f(x)] \\ &= n \times O\left(\frac{1}{n}\right) \times \frac{1}{\# \ \mathsf{fingerprints}} \\ &= O\left(\frac{1}{2^k}\right). \end{aligned}$$

Invert this: false positive rate ε needs $k = \log_2 \frac{1}{\varepsilon} + O(1)$

Insertion analysis needs k to be nonconstant $(\epsilon = o(1))$

 \Rightarrow can replace +O(1) in formula for k by $\times (1 + o(1))$

Cuckoo load factor near one \Rightarrow multiply space by (1 + o(1))

So for false positive rate $\varepsilon = o(1)$, need $(1 + o(1))n \log_2 \frac{1}{\varepsilon}$ bits

Summary

- Set operations and their implementation in Python and Java
- How to combine sets using single-element operations
- Exact representations of sets using hash tables
- Exact representations of sets using bitmaps
- ► Filters: approximate representations of sets
- False positives versus false negatives
- Bloom filters and cuckoo filters
- Nonexistence of good data structures for disjointness

References and image credits, I

- Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. *Communications of the ACM*, 13(7):422-426, 1970. doi: 10.1145/362686.362692.
- Alex D. Breslow and Nuwan Jayasena. Morton filters: fast, compressed sparse cuckoo filters. $VLDB\ Journal$, 29(2-3):731–754, 2020. doi: 10.1007/S00778-019-00561-0.
- David Eppstein. Cuckoo filter: simplification and analysis. In Rasmus Pagh, editor, 15th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2016, June 22–24, 2016, Reykjavik, Iceland, volume 53 of LIPIcs, pages 8:1–8:12. Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2016. doi: 10.4230/LIPICS.SWAT.2016.8.
- Bin Fan, David G. Andersen, Michael Kaminsky, and Michael Mitzenmacher. Cuckoo filter: practically better than Bloom. In Aruna Seneviratne, Christophe Diot, Jim Kurose, Augustin Chaintreau, and Luigi Rizzo, editors, *Proceedings of the 10th ACM International on Conference on emerging Networking Experiments and Technologies, CoNEXT 2014, Sydney, Australia, December 2–5, 2014*, pages 75–88, 2014. doi: 10.1145/2674005.2674994. URL https://www.eecs.harvard.edu/~michaelm/postscripts/cuckoo-conext2014.pdf.
- Thomas Mueller Graf and Daniel Lemire. Xor filters: faster and Smaller Than Bloom and cuckoo filters. *ACM Journal of Experimental Algorithmics*, 25:1–16, 2020. doi: 10.1145/3376122.

References and image credits, II

- Thomas Mueller Graf and Daniel Lemire. Binary fuse filters: fast and smaller than xor filters. *ACM Journal of Experimental Algorithmics*, 27:1.5:1–1.5:15, 2022. doi: 10.1145/3510449.
- Prashant Pandey, Michael A. Bender, Rob Johnson, and Rob Patro. A general-purpose counting filter: making every bit count. In Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu, editors, *Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14–19, 2017*, pages 775–787, 2017. doi: 10.1145/3035918.3035963.
- Prashant Pandey, Alex Conway, Joe Durie, Michael A. Bender, Martin Farach-Colton, and Rob Johnson. Vector quotient filters: overcoming the time/space trade-off in filter design. In Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava, editors, *SIGMOD '21: International Conference on Management of Data, Virtual Event, China, June 20–25, 2021*, pages 1386–1399. ACM, 2021. doi: 10.1145/3448016.3452841.